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For any given integer r � 1 and a quasitoric braid βr = (σ−ε
r σ ε

r−1 · · ·σ (−1)rε
1 )3 with ε = ±1,

we prove that the maximum degree in z of the HOMFLYPT polynomial P W2(β̂r )
(v, z) of

the doubled link W2(β̂r) of the closure β̂r is equal to 6r − 1. As an application, we
give a family K3 of alternating knots, including (2,n)-torus knots, 2-bridge knots and
alternating pretzel knots as its subfamilies, such that the minimal crossing number of
any alternating knot in K3 coincides with the canonical genus of its Whitehead double.
Consequently, we give a new family K3 of alternating knots for which Tripp’s conjecture
holds.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A knot is an ambient isotopy class of an oriented 1-sphere S1 smoothly embedded in the 3-sphere S3 with a fixed
standard orientation. Satellite construction is one of frequently used machineries to obtain a new knot from an arbitrary
given knot. One of famous families of satellite knots is that of m-twisted positive Whitehead doubles W+(K ,m) and negative
Whitehead doubles W−(K ,m) (m ∈ Z), which are the satellites of knots K with positive Whitehead-clasp W+ and negative
Whitehead-clasp W− as patterns, respectively (see Section 2).

A remarkable feature of Whitehead doubles is well known facts that the Alexander polynomial and the signature invari-
ant of the 0-twisted Whitehead double of an arbitrary given knot are identical to those of the trivial knot. Also, they have
genus one and have unknotting number one. In fact, Whitehead doubles are characterized as follows: A non-trivial knot is
a Whitehead double of a knot if and only if its minimal genus and unknotting number are both 1 [17].

In 2002, Tripp [18] showed that the canonical genus of a Whitehead double of a torus knot T (2,n) of type (2,n) is equal
to n, the minimal crossing number of T (2,n), and conjectured that the minimal crossing number of any knot coincides with
the canonical genus of its Whitehead double. In [15], Nakamura has extended Tripp’s argument to show that for 2-bridge
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Fig. 1. Whitehead-clasp.

knots, Tripp’s conjecture holds. He also found a non-alternating knot of which the minimal crossing number is not equal to
the canonical genus of its Whitehead double and so he modified Tripp’s conjecture to the following:

Conjecture 1.1. The minimal crossing number of any alternating knot coincides with the canonical genus of its Whitehead double.

In [1], Brittenham and Jensen showed that Conjecture 1.1 holds for alternating pretzel knots P (k1, . . . ,kn), k1, . . . ,kn � 1
[1, Theorem 1]. To prove this, they used Morton’s inequality [13] and provided a method for building new knots K satisfying
max degz P W±(K ,m)(v, z) = 2c(K ) from old ones K ′ (for more details, see Section 3 or [1]). Actually, Brittenham and Jensen
gave a larger class of alternating knots than the class including (2,n)-torus knots, 2-bridge knots, and alternating pretzel
knots. In addition, Gruber [5] extended Nakamura’s result to algebraic alternating knots in Conway’s sense in a different
way.

The main purpose of this paper is to give a new infinite family of alternating knots for which Conjecture 1.1 holds, which
is an extension of the previous results of Tripp [18], Nakamura [15] and Brittenham and Jensen [1].

This paper is organized as follows. In Section 2, we review Whitehead double of a knot and some known preliminary
results for the canonical genus of Whitehead double of a knot. In Section 3, we review the Morton’s inequality for the
maximum degree in z of the HOMFLYPT polynomial P L(v, z) of a link L and its relation to the canonical genus of Whitehead
double of a knot. We also give a brief review of Brittenham and Jensen’s method. In Section 4, we prove that for all integers
r � 1, the maximum degree in z of the HOMFLYPT polynomial P W2(β̂r)

(v, z) of the doubled link W2(β̂r) for the closure

β̂r of a quasitoric braid βr = (σ−ε
r σ ε

r−1 · · ·σ (−1)rε
1 )3 with ε = ±1 is equal to 6r − 1 (Theorem 4.5). In Section 5, we give a

family K3 = ⋃∞
r=1 Kr of alternating knots, where K1 contains all (2,n)-torus knots, 2-bridge knots and alternating pretzel

knots and Ki �= K j if i �= j, and show that the minimal crossing number of any alternating knot in K3 coincides with the
canonical genus of its Whitehead double (Theorem 5.2). Consequently, we give a new infinite family of alternating knots for
which Conjecture 1.1 holds. The final Section 6 is devoted to prove a key Lemma 4.4, which has an essential role to prove
Theorem 4.5.

2. Canonical genus and Whitehead double of a knot

Let T be a knot embedded in the unknotted solid torus V = S1 × D2, which is essential in the sense that it meets every
meridional disc in V . Let K be an arbitrary given knot in S3 and let N(K ) be a tubular neighborhood of K in S3. Suppose
that h : V = S1 × D2 → N(K ) is a homeomorphism. Then the image h(T ) = ST (K ) is a new knot, which is called a satellite
(knot) with companion K and pattern T . Note that if K is a non-trivial knot, then the satellite ST (K ) is also a non-trivial
knot [2].

Now let W+ , W− and U denote the positive Whitehead-clasp, negative Whitehead-clasp and the doubled link embedded
in V with orientations as shown in Fig. 1. Let K be an oriented knot and let h : V = S1 × D2 → N(K ) be an orientation
preserving homeomorphism which takes the disk {1} × D2 to a meridian disk of N(K ), and the core S1 × {0} of V onto the
knot K . Let � be the preferred longitude of V . We choose an orientation for the image h(�) so that it is parallel to K . If the
linking number of the image h(�) and K is equal to m, then the satellite SW+ (K ) (respectively SW− (K )) with companion
K and pattern W+ (respectively W−) is called the m-twisted positive (respectively negative) Whitehead double of K , denoted
by W+(K ,m) (respectively W−(K ,m)), and the satellite SU (K ) with companion K and pattern U is called the m-twisted
doubled link of K , denoted by W2(K ,m). The 0-twisted positive (respectively negative) Whitehead double of K is sometimes
called the untwisted positive (respectively negative) Whitehead double of K . In what follows, we use the notation W±(K ,m)

to refer to the m-twisted positive/negative Whitehead double of K , respectively.
Let D be an oriented diagram of an oriented knot K and let w(D) denote the writhe of D , that is, the sum of the

signs of all crossings in D defined by sign
( ) = 1 and sign

( ) = −1. Recall that for an oriented diagram D = D1 ∪ D2

of an oriented two component link L = K1 ∪ K2, the linking number lk(L) of L is defined to be the half of the sum of
the signs of all crossings between D1 and D2. The m-twisted positive (respectively negative) Whitehead double W+(K ,m)

(respectively W−(K ,m)) has the canonical diagram, denoted by W+(D,m) (respectively W−(D,m)), associated with D ,
which is the doubled link diagram of D with (m − w(D)) full-twists (see Fig. 2) and a positive Whitehead-clasp W+
(respectively negative Whitehead-clasp W−) as illustrated in (b) and (c) of Fig. 3. Also, the m-twisted doubled link W2(K ,m)



H.J. Jang, S.Y. Lee / Topology and its Applications 159 (2012) 3563–3582 3565
Fig. 2. (±)-full-twist.

Fig. 3. Canonical diagram.

of K has the canonical diagram W2(D,m) associated with D , which is the doubled link diagram of D with (m − w(D)) full-
twists without Whitehead-clasp.

In particular, the canonical diagram W+(D, w(D)) (respectively W−(D, w(D))) of the w(D)-twisted positive (respec-
tively negative) Whitehead double W+(K , w(D)) (respectively W−(K , w(D))) is called the standard diagram of Whitehead
double of K associated with the diagram D and is denoted by simply W+(D) (respectively W−(D)). Likewise, the canonical
diagram W2(D, w(D)) of the w(D)-twisted doubled link W2(K , w(D)) is called the standard diagram of the doubled link of
K associated with the diagram D and is denoted by simply W2(D) (for example, see Fig. 3(d)).

Frankel and Pontrjagin [4] and Seifert [16] introduced a method to construct a compact orientable surface having a given
link as its boundary. A Seifert surface for a link L in S3 is a compact, connected, and orientable surface Σ in S3 such that
the boundary ∂Σ of Σ is ambient isotopic to L, that is, ∂Σ = L. The genus of an oriented link L, denoted by g(L), is the
minimum genus of any Seifert surface of L. The genus of an unoriented link L is the minimum taken over all possible
choices of orientation for L. For a diagram D of a link L, it is well known that a Seifert surface for L can always be obtained
from D by applying Seifert’s algorithm [16]. A Seifert surface for a link L constructed via Seifert’s algorithm for a diagram
D is called the canonical Seifert surface associated with D and denoted by Σ(D). In what follows, we denote the genus
g(Σ(D)) of the canonical Seifert surface Σ(D) by gc(D). Then the minimum genus over all canonical Seifert surfaces for L
is called the canonical genus of L and denoted by gc(L), i.e.,

gc(L) = min
D a diagram of L

gc(D).

Seifert [16] showed that

1

2
deg�K (t) � g(K ), (2.1)

where deg �K (t) is the degree of the Alexander polynomial �K (t) of K . If K is a torus knot, then the equality in (2.1) holds,
but there are also cases where the equality does not hold. In fact, the trivial knot is the only knot with genus zero and there
are many non-trivial knots whose Alexander polynomials are equal to 1. Note that Seifert’s algorithm applied to a knot or
link diagram might not produce a minimal genus Seifert surface and so the following inequality holds

g(K ) � gc(K ). (2.2)

Up to now, many authors have explored knots and links for which this inequality is strict or equal, for example, see [7–10,
12,15,18] and therein. On the other hand, Murasugi [14] proved that if K is an alternating knot, then the equality in (2.1)
holds and g(K ) = gc(K ) in (2.2). Also we have the following:

Proposition 2.1. ([1,15,18]) Let K be a non-trivial knot and let D be an oriented diagram of K with c(D) = c(K ), where c(K ) denotes
the minimal crossing number of K . Then for any integer m,

(1) gc(W±(D,m)) = gc(W±(D, w(D))).
(2) gc(W±(K ,m)) � gc(W±(D,m)) = c(K ).
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Fig. 4. Skein triple.

3. Maximum z-degree of HOMFLYPT polynomials

The HOMFLYPT polynomial P L(v, z) (or P (L) for short) of an oriented link L in S3 is defined by the following three
axioms:

(1) P L(v, z) is invariant under ambient isotopy of L.
(2) If O is the trivial knot, then P O (v, z) = 1.

(3) If L+ , L− and L0 have diagrams D+ , D− and D0 which differ as shown in Fig. 4, then v−1 P L+ (v, z) − v P L− (v, z) =
zP L0(v, z).

Let L be an oriented link and let D be its oriented diagram. Then P L(v, z) can be computed recursively by using a skein
tree, switching and smoothing crossings of D until the terminal nodes are labeled with trivial links. Observe that

P L+(v, z) = v2 P L−(v, z) + vzP L0(v, z), (3.3)

P L−(v, z) = v−2 P L+(v, z) − v−1zP L0(v, z). (3.4)

Set δ = (v−1 − v)z−1. If L1 	 L2 denotes the disjoint union of oriented links L1 and L2, then P L1	L2(v, z) = δP L1(v, z)P L2 (v, z)
[3,6].

For the HOMFLYPT polynomial P L(v, z) of a link L, we denote the maximum degree in z of P L(v, z) by max degz P L(v, z)
or M(L) for short. Let L+ , L− and L0 denote the links with the diagrams D+ , D− and D0, respectively, as shown in Fig. 4.
Note that the degree of the sum of two polynomials cannot exceed the larger of their two degrees and is equal to the
maximum of them if the two degrees are distinct. Hence it follows from (3.3) and (3.4) that

M(L+) � max
{

M(L−), M(L0) + 1
}
,

M(L−) � max
{

M(L+), M(L0) + 1
}
,

M(L0) � max
{

M(L+), M(L−)
} − 1.

Here, the equality holds if the two terms in the right-hand side of the inequality are distinct.

Proposition 3.1. Let K be an oriented knot and let D be an oriented diagram of K .

(1) For any integer m and ε = + or −,

M
(
W2(D,m)

)
� max

{
M

(
Wε(D,m)

)
,0

} − 1.

In particular, if M(Wε(K ,m)) > 0, then the equality holds, i.e.,

M
(
W2(D,m)

) = M
(
Wε(D,m)

) − 1. (3.5)

(2) For any integer m, M(W2(D, w(D))) � max{M(W2(D,m)),1}.
In particular, if M(W2(D, w(D))) �= 1, then the equality holds, i.e.,

M
(
W2

(
D, w(D)

)) = M
(
W2(D,m)

)
. (3.6)

Proof. (1) Switching one of the two crossings in the clasp of W+(D,m), we get

v−1 P (v, z) − v P (v, z) = zP (v, z),

v−1 P W+(D,m)(v, z) − v P (v, z) = zP W2(D,m)(v, z),

P W (D,m)(v, z) = v−1z−1 P W+(D,m)(v, z) − vz−1.
2
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Fig. 5. Crossing smoothing.

This gives the inequality M(W2(D,m)) � max{M(W+(D,m)),0} − 1. Similarly, we obtain the inequality M(W2(D,m)) �
max{M(W−(D,m)),0} − 1. It is obvious that the equality holds if M(W±(D,m)) > 0.

(2) Let K be a non-trivial oriented knot and let D be an oriented diagram of K . Let W2(D,m) be the canonical diagram
of the m-twisted doubled link W2(K ,m) associated with D . We remind the reader that W2(D,m) is the 2-parallel link
diagram of D with m − w(D) full-twists. Let n = m − w(D). The proof proceeds by induction on |n|.

If n = 0, then the assertion is obvious. Assume that |n| � 1 and the assertion holds for all k < |n|. Switching one of the
2n crossings among the n full-twists in W2(D,m) yields W2(D, w(D) + n

|n| (|n| − 1)) (after isotopy), while smoothing the

crossing yields the unknot , and so

P W2(D,w(D)+n−1)(v, z) = v2 P W2(D,m)(v, z) + vzP (v, z), if n � 0,

P W2(D,w(D)+n+1)(v, z) = v−2 P W2(D,m)(v, z) − v−1zP (v, z), if n < 0.

Since P (v, z) = 1, if follows that

M

(
W2

(
D, w(D) + n

|n|
(|n| − 1

)))
� max

{
M

(
W2(D,m)

)
,1

}
, (3.7)

where the equality holds when M(W2(D,m)) �= 1. By induction hypothesis, it follows that

M
(
W2

(
D, w(D)

))
� max

{
M

(
W2

(
D, w(D) + n

|n|
(|n| − 1

)))
,1

}
, (3.8)

where the equality holds when M(W2(D, w(D) + n
|n| (|n| − 1))) �= 1. Combining (3.7) and (3.8), we obtain the assertion and

complete the proof. �
Let D be an oriented link diagram. The Seifert circles of D are simple closed curves obtained from D by smoothing each

crossing as illustrated in Fig. 5. We denote by s(D) the number of the Seifert circles of D .

Theorem 3.2. ([13, Theorem 2]) For any oriented diagram D of an oriented knot or link L,

max degz P L(v, z) � c(D) − s(D) + 1, (3.9)

where c(D) is the number of crossings of the diagram D and s(D) is the number of the Seifert circles of D.

We note that the equality in (3.9) holds for alternating links, positive links, and many other links.
Let D be an oriented diagram of an oriented knot or link L, let μ denote the number of components of L. Then the Euler

characteristic χ(Σ(D)) of the canonical Seifert surface Σ(D) associated with D is given by

χ
(
Σ(D)

) = s(D) − c(D) = 2 − 2g
(
Σ(D)

) − μ.

Then it follows from (3.9) that for every canonical Seifert surface Σ(D) for L, we have

max degz P L(v, z) � c(D) − s(D) + 1 = 1 − χ
(
Σ(D)

) = 2g
(
Σ(D)

) + μ − 1.

Therefore, for a knot K , we obtain

1

2
max degz P K (v, z) � gc(K ). (3.10)

Proposition 3.3. Let K be a knot in S3 with minimal crossing number c(K ) and let W±(K ,m) be the m-twisted positive/negative
Whitehead double of K . If D is an oriented diagram of K with c(D) = c(K ), then

1

2
max degz P W±(K ,m)(v, z) � gc

(
W±(K ,m)

)
� gc

(
W±(D,m)

) = c(K ). (3.11)



3568 H.J. Jang, S.Y. Lee / Topology and its Applications 159 (2012) 3563–3582
Fig. 6. Three half-twist.

Proof. This follows from Proposition 2.1 and the inequality (3.10) at once. �
In the rest of this section, we briefly review Tripp’s conjecture for the canonical genus of Whitehead doubles of knots. For

more details, see [1,15,18]. In [18], Tripp proved that the canonical genus of an m-twisted Whitehead double W±(T (2,n),m)

of the torus knot T (2,n) is equal to its crossing number, that is, gc(W±(T (2,n),m)) = n = c(T (2,n)). The main part of
the proof is to show that the maximum z-degree of HOMFLYPT polynomial of Whitehead doubles of T (2,n) is equal to
2c(T (2,n)). Then he made the following:

Conjecture 3.4. (J.J. Tripp [18]) Let K be any knot with the crossing number c(K ). Then for any integer m,

gc
(
W±(K ,m)

) = c(K ). (3.12)

In [15], Nakamura has extended Tripp’s argument to show that for 2-bridge knot K , Conjecture 3.4 holds. He also
observed that the torus knot T (4,3), which is not an alternating knot, does not satisfy the equality (3.12) and modi-
fied Tripp’s conjecture to Conjecture 1.1 in Section 1. In [1], Brittenham and Jensen showed that Conjecture 1.1 holds
for alternating pretzel knots P (k1, . . . ,kn), k1, . . . ,kn � 1 [1, Theorem 1]. The main tool of the proof is the following,
Proposition 3.5, obtained by applying Proposition 3.6 twice, which give a method for building new knots K satisfying
max degz P W±(K ,m)(v, z) = 2c(K ).

Proposition 3.5. ([1, Proposition 2]) If K ′ is a knot satisfying

max degz P W±(K ′,m)(v, z) = 2c
(

K ′),
and if for a c(K ′)-minimizing diagram D ′ for K ′ we replace a crossing of D ′ , thought of as a half-twist, with three half-twists as shown
in Fig. 6, producing a knot K , then

max degz P W±(K ,m)(v, z) = 2c(K ),

and therefore gc(W±(K ,m)) = c(K ).

Proposition 3.6. ([1, Proposition 4]) If L′ is a non-split link with a diagram D ′ satisfying c(D ′) = c(L′) and

max degz P W2(D ′)(v, z) = 2c
(

D ′) − 1,

and L is a link having diagram D obtained from D ′ by replacing a crossing in the diagram D ′ with a full-twist (so that c(D) = c(D ′)+1),
then

max degz P W2(D)(v, z) = 2c(D) − 1 = max degz P W2(D ′)(v, z) + 2.

In fact, Brittenham and Jensen proved that Conjecture 1.1 holds for a larger class of alternating knots, including (2,n)-
torus knots, 2-bridge knots, and alternating pretzel knots, as in the following Proposition 3.7:

Proposition 3.7. ([1, Proposition 3]) Let K be the class of knots having diagrams which can be obtained from the standard diagram of
the left- or right-handed trefoil knot T (2,3), the (2,3)-torus knot, by repeatedly replacing a crossing, thought of as a half-twist, by a
full-twist. Then for every K ∈K,

max degz P W±(K ,m)(v, z) = 2c(K ),

and so gc(W±(K ,m)) = c(K ).

The remaining part of this paper will be devoted to enlarge the class K in Proposition 3.7 by applying Brittenham and
Jensen’s argument starting with a certain class of closed quasitoric braids.
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Fig. 7. σi and σ−1
i .

Fig. 8. Oriented closed braid β̂r .

4. Maximum z-degree of HOMFLYPT polynomials for doubled links of closed quasitoric braids T (r + 1,3)

Let r � 1 be an arbitrary given integer and let Br+1 be the (r + 1)-strand braid group with the standard generators
σ1, σ2, . . . , σr as shown in Fig. 7.

We recall that a toric braid T (p,q) of type (p,q) is a p-strand braid given by the following formula:

T (p,q) = (σ1 · · ·σp−1)
q.

The closures of toric braids yield all torus knots and links. In 2002, Manturov showed that all knots and links can be
represented by the closures of a small class of braids, called quasitoric braids. We briefly review here the quasitoric braids;
for more details, see [11].

Let m � 1 and n � 1 be two integers. A braid β is said to be a quasitoric braid of type (m,n) if it can be expressed as an
(m + 1)-braid of the form

β = (
σ

ε1,1
1 σ

ε2,1
2 · · ·σεm,1

m
)(

σ
ε1,2
1 σ

ε2,2
2 · · ·σεm,2

m
) · · · (σε1,n

1 σ
ε2,n
2 · · ·σεm,n

m
)
,

where εi, j = ±1 for all i = 1,2, . . . ,m and j = 1,2, . . . ,n. In other words, a quasitoric braid of type (m,n) is a braid obtained
from the standard diagram of the toric braid T (m,n) by switching some crossing types. It is worth noting that the quasitoric
m-braids form a proper subgroup of the m-braid group Bm (see [11, Proposition 1]). One of the particular utilities of the
quasitoric braids is the following:

Theorem 4.1. ([11]) Any link can be obtained as a closure of some quasitoric braid.

In this section we consider a special class of quasitoric braids βr of type (r + 1,3) for all integers r � 1, which is an
(r + 1)-braid of the form:

βr = (
σ

ε1,1
r σ

ε2,1
r−1 · · ·σεr,1

1

)(
σ

ε1,2
r σ

ε2,2
r−1 · · ·σεr,2

1

)(
σ

ε1,3
r σ

ε2,3
r−1 · · ·σεr,3

1

)
, (4.13)

where

εi, j = ±1 (1 � i � r, 1 � j � 3),

εi, jεi, j+1 > 0 (1 � i � r, 1 � j � 2),

εi, jεi+1, j < 0 (1 � i � r − 1, 1 � j � 3). (4.14)

Let w(βr) denote the exponent sum of βr , i.e., w(βr) = ∑r
i=1

∑3
j=1 εi, j . Note that w(βr) is just the writhe of the oriented

link β̂r , the closure of βr .

Remark 4.2. Let β̂r denote the closure of βr with the orientation as shown in Fig. 8. Then:

(1) β̂1 is the right-handed trefoil knot T (2,3) or the left-handed trefoil knot T (2,3)∗ according as ε1,1 = 1 or ε1,1 = −1.
And, β̂2 is the Borromean ring (see Fig. 12).
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Fig. 9. T
εi, j

i, j .

Fig. 10. W2(β̂r).

(2) β̂r is a non-split alternating link without nugatory crossings and so is a minimal crossing diagram. Hence it follows that
the minimal crossing number c(β̂r) of β̂r is given by

c(β̂r) =
r∑

i=1

3∑
j=1

|εi, j| = 3r. (4.15)

(3) If r = 3k − 1 for some integer k � 1, then the closed braid β̂r is an oriented link of three components, otherwise it is
always an oriented knot.

For a given oriented knot or link diagram D , let W2(D) denote the doubled link represented by the oriented link diagram
obtained from D as follows: Draw a parallel copy of D pushed off of D to the left according to the orientation of D , and
then orient the parallel copy in the opposite direction. Notice that if D is a knot diagram, then W2(D) = W2(D, w(D)).

Now we consider the doubled link W2(β̂r) of the closed quasitoric braid β̂r . Notice that the link W2(β̂r) has no full-
twists of two parallel strands and each crossing εi, j of the closed braid diagram β̂r as shown in Fig. 8 produces a tangle T

εi, j

i, j

as shown in Fig. 9 in the standard diagram of W2(β̂r) associated with β̂r according as εi, j = 1 or εi, j = −1. The standard

diagram of W2(β̂r) is equivalent to the diagram shown in Fig. 10 in which each rectangle labeled T
εi, j

i, j corresponds to the

crossing εi, j of β̂r .
In order to state the main result, we first define some notation. For our convenience, we represent the standard diagram

W2(β̂r) in Fig. 10 the r × 3 matrix Q r with the entries T
εi, j

i, j :

Q r =

⎛
⎜⎜⎜⎜⎜⎜⎝

T
ε1,1
1,1 T

ε1,2
1,2 T

ε1,3
1,3

T
ε2,1
2,1 T

ε2,2
2,2 T

ε2,3
2,3

...
...

...

T
εr−1,1
r−1,1 T

εr−1,2
r−1,2 T

εr−1,3
r−1,3

εr,1 εr,2 εr,3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Tr,1 Tr,2 Tr,3
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Fig. 11. Dr = W2(β̂r) with εr,1 = 1.

In the case that εr,1 = 1 (and hence εr,2 = εr,3 = 1), we will denote the diagram W2(β̂r) simply by Dr and let Nr denote
the integer given by

Nr = c(Dr) − s(Dr) + 1 = 6r − 1 (r � 1). (4.16)

In what follows, instead of the diagram Dr illustrated in Fig. 10, we use a shortcut diagram shown in Fig. 11 for Dr for the
sake of simplicity.

Example 4.3. Let β2 be the quasitoric braid of type (3,3), i.e.,

β2 = (
σ2σ

−1
1

)(
σ2σ

−1
1

)(
σ2σ

−1
1

)
.

Then the closed braid β̂2 is the Borromean ring (see Fig. 12) and the 2-parallel link D2 = W2(β̂2) is represented by 2 × 3
matrix Q 2:

Q 2 =
(

T 1
1,1 T 1

1,2 T 1
1,3

T −1
2,1 T −1

2,2 T −1
2,3

)
.

By a direct computation, we obtain

P W2(β̂2)
(v, z) = z−5(−v5 + 5v3 − 10v + 10v−1 − 5v−3 + v−5)

+ z−1(8v5 − 40v3 + 80v − 80v−1 + 40v−3 − 8v−5)
+ z

(
12v5 − 68v3 + 144v − 144v−1 + 68v−3 + 12v−5)

+ z3(2v5 − 22v3 + 56v − 56v−1 + 22v−3 − 2v−5)
+ z5(−v7 − 5v5 + 13v3 − 7v + 7v−1 − 13v−3 + 5v−5 + v−7)
+ z7(−2v5 + 8v3 + 10v − 10v−1 − 8v−3 + 2v−5)
+ z9(v3 + 11v − 11v−1 − v−3) + z11(2v − 2v−1).

Hence the maximal z-degree of the HOMFLYPT polynomial P W2(β̂2)
(v, z) of the doubled link W2(β̂2) is given by

max degz P W2(β̂2)
(v, z) = 11 = 2 · 6 − 1 = 2c(β̂2) − 1.

On the other hand, let β̂∗
2 denote the mirror image of β̂2. Then we also have

max degz P W2(β̂∗
2 )

(v, z) = max degz P W2(β̂2)

(
v−1, z

)
= 11 = 2 · 6 − 1 = 2c

(
β̂∗

2

) − 1.

Now we construct a partial skein tree as shown in Fig. 13 for the tangle T 1
r,3 in Dr of the left-hand side of Fig. 9. We

label all nodes in the skein tree with A, B , E1, F1, F2, F3, F4, and G as shown in Fig. 13. Now let Di
r (1 � i � 8) denote

the link diagram represented by the r × 3 matrix:

Di
r =

⎛
⎜⎜⎜⎜⎜⎜⎝

T
ε1,1
1,1 T

ε1,2
1,2 T

ε1,3
1,3

T
ε2,1
2,1 T

ε2,2
2,2 T

ε2,3
2,3

...
...

...

T
εr−1,1
r−1,1 T

εr−1,2
r−1,2 T

εr−1,3
r−1,3

1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Tr,1 Tr,2 Ti
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Fig. 12. Borromean ring.

Fig. 13. A partial skein tree for T 1
r,3.

That is, Di
r is the link diagram obtained from the link diagram Dr by replacing the tangle T 1

r,3 with the tangle Ti , where

T1 = A, T2 = B, T3 = E1, T4 = F1, T5 = F2, T6 = F3, T7 = F4, T8 = G.

Hence two diagrams Dr and Di
r are identical except for the tangle corresponding to the (r,3)-entry of the matrix notations.

In these terminologies, we have the following Lemma 4.4 that will play an essential role in the proof of Theorem 4.5 below.

Lemma 4.4.

(1) max degz P D4
r
(v, z) � Nr − 3 if r � 3.

(2) max degz P D5
r
(v, z) � Nr − 3 if r � 3.

(3) max degz P D6
r
(v, z) � Nr − 3 if r � 3.

(4) max degz P D7
r
(v, z) � Nr − 3 if r � 3.

(5) max degz P D8
r
(v, z) � Nr − 4 if r � 3.

The proof of this Lemma 4.4 will be given in the final Section 6. Now, let us state our main theorem of this section.

Theorem 4.5. Let βr (r � 1) be a quasitoric braid of type (r + 1,3) as in (4.13) and let W2(β̂r) be the doubled link of β̂r . Then

max degz P ˆ (v, z) = 2c(β̂r) − 1 = 6r − 1. (4.17)
W2(βr)
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Fig. 14. D1
r .

Fig. 15. L′ .

Proof. We prove the assertion (4.17) by induction on r. If r = 1, then β1 = σ 3
1 or σ−3

1 , and so β̂1 is the right-handed trefoil
knot or the left-handed trefoil knot. In either cases, it is immediate from direct calculations that

max degz P W2(β̂1)
(v, z) = max degz P D1(v, z) = 5 = 2 · 3 − 1 = 2c(β̂1) − 1.

(In the case that r = 2, it follows from Example 4.3 that the assertion (4.17) also holds.)
Now we assume that r � 3 and the assertion (4.17) holds for every integer � r − 1. We consider two cases separately.

Case I. εr,3 = 1. First we observe from (4.14) that εr,1 = εr,2 = 1. In this case, we have W2(β̂r) = Dr by the notational
convention above.

Claim. max degz P Dr (v, z) = 2c(β̂r) − 1 = 6r − 1.

Proof. From the skein relation for the HOMFLYPT polynomial and a partial skein tree for T 1
r,3 in Fig. 13, we obtain

P Dr (v, z) = (
P D1

r
(v, z) + P D2

r
(v, z) − P D3

r
(v, z)

)
z2 + (

v P D4
r
(v, z) − v−1 P D5

r
(v, z) + v P D6

r
(v, z) − v P D7

r
(v, z)

)
z

+ P D8
r
(v, z). (4.18)

We observe that the link diagram D1
r is isotopic to the link diagram (a) of Fig. 14, which is isotopic to the diagram (b) in

Fig. 14.
Now let L′ be an oriented link having diagram D ′ obtained from the standard closed braid diagram of a non-split

alternating link β̂r−1 by replacing the crossing σ
εr−1,2
1 in β̂r−1 with a full-twist (so that c(D ′) = c(β̂r−1) + 1) as illustrated in

(a) and (b) of Fig. 15. By induction hypothesis, we have

max degz P W2(β̂r−1)
(v, z) = 2c(β̂r−1) − 1 = 6(r − 1) − 1 (r � 2). (4.19)

By Proposition 3.6, we then obtain

max degz P W2(L′)(v, z) = 2c
(

D ′) − 1

= max degz P ˆ (v, z) + 2. (4.20)
W2(βr−1)
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Fig. 16. D2
r .

Fig. 17. L′′ .

It is obvious that L′ is a non-split alternating link satisfying c(L′) = c(D ′) and the doubled link W2(L′) has a diagram
W2(D ′) in (c) of Fig. 14. Now let L be an oriented link having diagram D obtained from D ′ by replacing a crossing in D ′
with a full-twist as illustrated in (c), (e) and (f) of Fig. 15 so that c(D) = c(D ′) + 1. Then the doubled link W2(L) has a
diagram W2(D) in (b) of Fig. 14. By Proposition 3.6 again, we have

max degz P W2(L)(v, z) = 2c(D) − 1

= max degz P W2(L′)(v, z) + 2. (4.21)

Then we obtain from (4.20) and (4.21) that

max degz P D1
r
(v, z) = max degz P W2(L)(v, z)

= max degz P W2(β̂r−1)
(v, z) + 4

= max degz P Dr−1(v, z) + 4. (4.22)

Similarly, we observe that the link diagram D2
r is isotopic to the link diagram in the left-hand side of Fig. 16, which is

isotopic to the diagram in the right-hand side of Fig. 16.
Let L′′ be an oriented link having diagram D ′′ obtained from the standard closed braid diagram of a non-split alternating

link β̂r−1 by replacing two crossings σ
εr−1,1
1 and σ

εr−1,3
1 in β̂r−1 with full-twists, respectively, as illustrated in Fig. 17. So

c(D ′′) = c(β̂r−1) + 2. It is obvious that the doubled link W2(L′′) has a diagram in the right-side of Fig. 16. By induction
hypothesis and Proposition 3.6, we then have

max degz P D2
r
(v, z) = max degz P W2(L′′)(v, z)

= 2c
(

D ′′) − 1

= max degz P W2(β̂r−1)
(v, z) + 4

= max degz P Dr−1(v, z) + 4. (4.23)
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Since max degz P D3
r
(v, z) is too low to interfere with our main calculation by applying Morton’s inequality, we see that max-

imal degree in z for P D3
r
(v, z) does not contribute anything to max degz P Dr (v, z). From (4.18), (4.22), (4.23) and Lemma 4.4,

it is easily seen that

max degz P Dr (v, z) = max
{

M(Dr−1) + 6, Nr − 2
}
. (4.24)

On the other hand, we see from (4.16) and (4.19) that

M(Dr−1) + 6 = max degz P Dr−1(v, z) + 6

= max degz P W2(β̂r−1)
(v, z) + 6

= (
2c(β̂r−1) − 1

) + 6

= 6r − 1

= Nr (r � 2). (4.25)

Hence it follows from (4.24) and (4.25) that

max degz P Dr (v, z) = Nr = max degz P Dr−1(v, z) + 6. (4.26)

Combining (4.19) and (4.26), we finally obtain

max degz P Dr (v, z) = max degz P Dr−1(v, z) + 6

= 2c(β̂r−1) − 1 + 6

= 2
(
c(β̂r−1) + 3

) − 1

= 2c(β̂r) − 1.

Case II. εr,3 = −1.

In this case, it follows from the condition (4.14) that εr,1 = εr,2 = −1. Then it is easily seen that the corresponding
link diagram W2(β̂r) is just the mirror image of the diagram Dr for which the assertion has already been established
in the previous Case I. On the other hand, it is well known that if L∗ is the mirror image of an oriented link L, then
P L∗(v, z) = P L(v−1, z). This fact implies that P W2(β̂r)

(v, z) = P Dr (v−1, z). Hence

max degz P W2(β̂r)
(v, z) = max degz P Dr

(
v−1, z

)
= max degz P Dr (v, z)

= 2c(β̂r) − 1.

Finally, it is straightforward from (4.15) that 2c(β̂r)− 1 = 6r − 1 for each r � 1. This completes the proof of Theorem 4.5. �
5. A family of alternating knots for which Tripp’s conjecture holds

Let us begin this section with the following:

Lemma 5.1. Let βr (r � 1) be a quasitoric braid of type (r + 1,3) as in (4.13). If L is a link having diagram D obtained from the
standard closed braid diagram of β̂r as shown in Fig. 8 by replacing a crossing with a full-twist (so that c(D) = c(β̂r) + 1), then

max degz P W2(D)(v, z) = 2c(D) − 1.

Proof. Let L′ be the link represented by a quasitoric braid βr . It is obvious that L′ is a non-split alternating link with a
diagram D ′ = β̂r satisfying c(L′) = c(D ′) = 3r. By Theorem 4.5, max degz P W2(D ′)(v, z) = 2c(D ′) − 1. Hence the assertion
follows from Proposition 3.6. �
Theorem 5.2. Let βr (r � 1) be a quasitoric braid of type (r + 1,3) as in (4.13) and let Kr be the class consisting of the alternating
knot β̂r itself (if it is a knot) and all alternating knots having diagrams which can be obtained from the standard diagram of the closed
braid β̂r as shown in Fig. 8, by repeatedly replacing a crossing by a full-twist. Then for every K ∈Kr and any integer m,

max degz P W±(K ,m)(v, z) = 2c(K ), (5.27)

and therefore

gc
(
W±(K ,m)

) = c(K ).
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Proof. Let K be an alternating knot in Kr . Then K has a diagram D which is obtained from the standard diagram of the
closed braid β̂r by repeatedly replacing a crossing by a full-twist. By Lemma 5.1 and repeatedly applying Proposition 3.6, we
obtain

max degz P W2(D)(v, z) = 2c(D) − 1. (5.28)

Now, for any given integer m, let W±(K ,m) be the m-twisted positive/negative Whitehead double of K and let W±(D,m)

be the canonical diagram for W±(K ,m) associated with D . Since c(D) > 3, it follows from (5.28) and Proposition 3.1 that
max degz P W±(K ,m)(v, z) > 0 and hence max degz P W2(D,w(D))(v, z) �= 1. By (3.5) and (3.6), we have

max degz P W±(K ,m)(v, z) = max degz P W±(D,m)(v, z)

= max degz P W2(D,m)(v, z) + 1

= max degz P W2(D,w(D))(v, z) + 1

= max degz P W2(D)(v, z) + 1

= 2c(D) − 1 + 1

= 2c(D) = 2c(K ).

This establishes the desired identity (5.27).
Finally, it follows from (3.11) and (5.27) that

c(K ) = 1

2
max degz P W±(K ,m)(v, z) � gc

(
W±(K ,m)

)
� gc

(
W±(D,m)

) = c(K ).

This gives gc(W±(K ,m)) = c(K ) and competes the proof. �
Remark 5.3.

(1) The closure β̂1 of the quasitoric braid β1 = (σ ε1,1)3 is the right-handed trefoil or left-handed trefoil knot (see Re-
mark 4.2(1)) and so the class K1 in Theorem 5.2 is just the class K in Proposition 3.7. So, in case of r = 1, Theorem 5.2
is the same as Proposition 3.7. Hence K1 contains all (2,n)-torus knots, all the 2-bridge knots, and all alternating
pretzel knots.

(2) In [1], Brittenham and Jensen noticed that the Borromean ring L, the closure of the quasitoric braid β2, satisfies
max degz P W2(L)(v, z) = 2c(L) − 1 (see Example 4.3), which gives rise, using Proposition 3.6, to a family, it is indeed
the family K2 in Theorem 5.2, of alternating knots satisfying the equality (3.12), different from the family K given by
Proposition 3.7. On the other hand, it is clear that β̂2 /∈K3 and so K3 is also a family of alternating knots satisfying the
equality (3.12), different from K2, and so on. Therefore, Theorem 5.2 provides an infinite sequence

K1(= K),K2,K3, . . . ,Ki, . . .

of infinite families Ki of alternating knots satisfying Tripp–Nakamura’s Conjecture. We define

K3 =
∞⋃

r=1

Kr .

Then the infinite family K3 of alternating knots is an extension of the previous results of Tripp [18], Nakamura [15] and
Brittenham and Jensen [1].

Example 5.4. Let A = (ni, j)1�i�r;1� j�3 be an arbitrary given r × 3 integral matrix, i.e.,

A =

⎛
⎜⎜⎝

n1,1 n1,2 n1,3
n2,1 n2,2 n2,3

...
...

...

nr,1 nr,2 nr,3

⎞
⎟⎟⎠ .

Let K A denote an oriented link in S3 having a diagram D A as shown in Fig. 18(a) in which each tangle labeled a non-zero
integer ni, j denotes a vertical ni, j half-twists as shown in Fig. 18(b) or a horizontal ni, j half-twists.

Suppose that ni, jni+1, j < 0 and ni, jni, j+1 > 0 for each i = 1,2, . . . , r − 1 and j = 1,2,3 and K A is a knot (even-
tually, an alternating knot). Let A′ = (εi, j)1�i�r;1� j�3 be the integral matrix obtained from A by defining εi, j = ni, j
|ni, j |
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Fig. 18. K A .

(1 � i � r; 1 � j � 3) and let K A′ be the oriented alternating link having a diagram D A′ . Then K A′ is the closure of a
quasitoric braid βr in (4.13). Then it follows from Theorem 5.2 that K A ∈Kr and so

max degz P W2(K A)(v, z) = max degz P W2(K A′ )(v, z) + 2
r∑

i=1

3∑
j=1

(|ni, j| − 1
)
.

Consequently, for every integer m,

gc
(
W±(K A,m)

) =
r∑

i=1

3∑
j=1

|ni, j| = c(K A).

6. Proof of Lemma 4.4

In this section, we prove Lemma 4.4. For this purpose, we first remind the reader Lemma 4.4. Recall that Dr denotes the
doubled link W2(β̂r) corresponding to the matrix notation Q r with εr,3 = 1 and Di

r (4 � i � 8) denotes the link diagram
obtained from Dr by replacing T 1

r,3 with Ti , where T4 = F1, T5 = F2, T6 = F3, T7 = F4, T8 = G (cf. Section 4).

Lemma 4.4.

(1) max degz P D4
r
(v, z) � Nr − 3 if r � 3.

(2) max degz P D5
r
(v, z) � Nr − 3 if r � 3.

(3) max degz P D6
r
(v, z) � Nr − 3 if r � 3.

(4) max degz P D7
r
(v, z) � Nr − 3 if r � 3.

(5) max degz P D8
r
(v, z) � Nr − 4 if r � 3.

Proof. (1) Consider a partial skein tree for D4
r (r � 3) and isotopy deformations as shown in Fig. 19, which yields the

identity:

P D4
r
(v, z) = v−2 Pa6(v, z) + v−3zPa5(v, z) − v−2z2 Pa4(v, z)

+ v−2z2 Pa3(v, z) − v−3zPa2(v, z) − v−1zPa1(v, z). (6.29)
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Fig. 19. A partial skein tree for D4
r .

Fig. 20. A partial skein tree for a3.

It is clear from Fig. 19 that the link a1 does not contribute anything to max degz P D4
r
(v, z). For the links a2, a4 and a5, it

follows from Morton’s inequality in (3.9) that

max degz Pa2(v, z) � c(a2) − s(a2) + 1

�
(
c(Dr) − 6

) − (
s(Dr) − 2

) + 1

= Nr − 4, (6.30)

max degz Pa4(v, z) � c(a4) − s(a4) + 1

�
(
c(Dr) − 7

) − (
s(Dr) − 2

) + 1

= Nr − 5, (6.31)

max degz Pa5(v, z) � c(a5) − s(a5) + 1

�
(
c(Dr) − 11

) − (
s(Dr) − 5

) + 1

= Nr − 6. (6.32)

For the link a3, we obtain from Fig. 20 that

Pa3(v, z) = v2 Pa8(v, z) + vzPa7(v, z).
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Fig. 21. A partial skein tree for a6.

Clearly, the link a7 does not contribute anything to max degz Pa3 (v, z) and so by Morton’s inequality,

max degz Pa3(v, z) = max degz Pa8(v, z) � c(a8) − s(a8) + 1

�
(
c(Dr) − 13

) − (
s(Dr) − 6

) + 1

= Nr − 7. (6.33)

From (6.29)–(6.33) and Claim 1 below, we obtain

max degz P D4
r
(v, z) � max

{
M(a6), M(a5) + 1, M(a4) + 2, M(a3) + 2, M(a2) + 1

}
� max

{
M(a6), Nr − 5, Nr − 3, Nr − 5, Nr − 3

}
= Nr − 3.

This establishes (1), as desired.

Claim 1. M(a6) = max degz Pa6 (v, z) � Nr − 3 (r � 3).

Proof. Consider a partial skein tree for a6 and isotopy deformations as shown in Fig. 21, which gives the identity:

Pa6(v, z) = Pa12(v, z) − v−1zPa11(v, z) + z2 Pa10(v, z) + vzPa9(v, z). (6.34)

Using Morton’s inequality, we obtain

max degz Pa12(v, z) �
(
c(Dr) − 6

) − (
s(Dr) − 3

) + 1 = Nr − 3, (6.35)

max degz Pa11(v, z) �
(
c(Dr) − 8

) − (
s(Dr) − 4

) + 1 = Nr − 4, (6.36)

max degz Pa10(v, z) �
(
c(Dr) − 8

) − (
s(Dr) − 3

) + 1 = Nr − 5. (6.37)

By a partial skein tree for a9 and isotopy deformations as shown in Fig. 22, we get

Pa9(v, z) = v−6 Pa16(v, z) − v−5zPa15(v, z) − v−3zPa14(v, z) − v−1zPa13(v, z).

It is clear that the links a13, a14 and a15 do not contribute anything to max degz Pa9 (v, z). Then

max degz Pa9(v, z) = max degz Pa16(v, z). (6.38)

In the link diagram a16, we consider the three crossings labeled 1, 2 and 3 in the (r − 1)-st row as indicated in the first
row of Fig. 23 according as the case (a) r ≡ 2 (mod 3), (b) r ≡ 0 (mod 3) and (c) r ≡ 1 (mod 3). For a regular projection of
β̂r as shown in Fig. 24(a), we observe that there are three arcs, say S1, S2, S3, in the dotted rectangle R in Fig. 24(a) that
are obtained from the arcs in the small dotted rectangles C1, C2, C3, C4 in R as shown in Fig. 24(b) by gluing them in the
obvious way, written R = C1C2C3C4. From this, it is not difficult to see in general that

β̂r = C1C2C3C4C2C3C4 · · · Cm, (6.39)

where
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Fig. 22. A partial skein tree for a9.

Fig. 23. r ≡ 2, r ≡ 0, r ≡ 1 (mod 3).

Fig. 24. β̂r .

m = 2, r ≡ 2 (mod 3),

m = 3, r ≡ 0 (mod 3),

m = 4, r ≡ 1 (mod 3).

Pushing each crossing labeled 1, 2, 3 into the part of Ωr−2 along the 2-parallel strings, it follows from (6.39) that it returns
to the arrow labeled 4, 5, 6 in the (r − 1)-st row, respectively, illustrated in (a), (b) and (c) of Fig. 23 according as the case
r ≡ 2 (mod 3), r ≡ 0 (mod 3) and r ≡ 1 (mod 3).

Now, by a similar argument in the proof of Proposition 3.1(2), the full-twists in ai
16 can be removed from without

contributing to max degz Pai
16

(v, z) for each i = 1,2,3 and so we obtain

max degz Pai
16

(v, z) = max degz Pa17(v, z),

where a17 is the link diagram as shown in Fig. 25.
On the other hand, by Morton’s inequality, we obtain

max degz Pa17(v, z) �
(
c(Dr) − 9

) − (
s(Dr) − 5

) + 1 = Nr − 4. (6.40)
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Fig. 25. a17.

Fig. 26. A partial skein tree for D5
r .

Then it is direct from (6.38) and (6.40) that

max degz Pa9(v, z) � Nr − 4. (6.41)

Therefore we have from (6.34)–(6.37) and (6.41) that

max degz Pa6(v, z) � max
{

M(a12), M(a11) + 1, M(a10) + 2, M(a9) + 1
}

� max{Nr − 3, Nr − 3, Nr − 3, Nr − 3} = Nr − 3.

This completes the proof of Claim 1. �
Proof of (2). From a partial skein tree for D5

r as shown in Fig. 26, we obtain

P D5
r
(v, z) = v2 Pb2(v, z) + vzPb1(v, z).

It is quite easy to see that the link b1 does not contribute anything to max degz P D5
r
(v, z). By Morton’s inequality, we obtain

max degz P D5
r
(v, z) = max degz Pb2(v, z)

�
(
c(Dr) − 4

) − (
s(Dr) − 1

) + 1 = Nr − 3.

This completes the proof of (2). �
Proof of (3). It follows from Morton’s inequality that

max degz P D6
r
(v, z) �

(
c(Dr) − 5

) − (
s(Dr) − 2

) + 1 = Nr − 3.

This completes the proof of (3). �
Proof of (4). By Morton’s inequality and isotopy deformations as shown in Fig. 27, we obtain

max degz P D7
r
(v, z) �

(
c(Dr) − 4

) − (
s(Dr) − 1

) + 1 = Nr − 3.

This completes the proof of (4). �
Proof of (5). It follows from Morton’s inequality that

max degz P D8
r
(v, z) �

(
c(Dr) − 8

) − (
s(Dr) − 4

) + 1 = Nr − 4.

This completes the proof of (5). �
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Fig. 27. D7
r .
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