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1. Introduction

Consider the quadratic matrix polynomial Q (1) = A2M + AC + K, where M, C, K € R™" with M
nonsingular, and the associated quadratic eigenvalue problem

QMxg =0, xQ(A) =0, (1)

where A is an eigenvalue and xg and x; are corresponding right and left eigenvectors, respectively.
Throughout, we use the subscript R to denote right eigenvectors or when referring to transformations
applied to the right, and the subscript L for left eigenvectors and transformations applied to the left.
We also denote by A(Q) the spectrum of Q.

Given two eigentriples (A;, Xgj, x1j), j = 1, 2 satisfying appropriate conditions, we propose a defla-
tion procedure that decouples Q (1) into a quadratic Qg(1) = A>My + ACy + Ky of dimension n — 1
and a scalar quadratic g(A) = A*m + Ac + k = m(x — A1) (A — A3) such that

AQ) = A(Qa) U {Aq, A2}

and there exist well-defined relations between the eigenvectors of Q (1) and those of the decoupled
quadratic

w01, 2

an=%" 46

This is termed “strong deflation” in the engineering community, as opposed to “weak deflation",
which is achieved by introducing zeros in the trailing rows or columns of the matrices. Weak and
strong deflations differ from Wielandt deflation, in which a low rank modification is applied to the
eigenproblem so as to displace one or more targeted eigenvalues and leave the others unchanged. This
technique is employed when solving eigenproblems with iterative methods such as Jacobi-Davidson:
in this way, eigenvalues found can be displaced to zero or infinity [6,14,17].

Unlike for linear polynomials A — AB, we cannot in general construct an n X _n equivalence trans-
formation with nonsingular matrices P; and Pk such PLTQ(A)PR = Q(X), where Q(A) is the decoupled
quadratic in (2) [19]. The standard way of treating quadratic matrix polynomials, both theoretically
and numerically, is to convert them into equivalent linear matrix pencils of twice the dimension, a
process called linearization [11]. For example, when M is nonsingular the block symmetric pencil

oo =3[9 M43

is a linearization of Q (A) in the sense that L, (A) satisfies

ng) 0}

ELRG) = [ )

for some unimodular E(X) and F()), where I, is the n x n identity matrix [11,24]. This implies that
¢ - det(L(1)) = det(Q(X)) for some nonzero constant c, so that L, and Q have the same eigenvalues.
Deflation procedures for matrix pencils ignore the block structure of linearizations such as L, (). They
produce a deflated pencil that is not in general a linearization of a quadratic matrix polynomial [18].

Garvey et al. [8] and later Chu and Xu [7] showed that for quadratics with symmetric coefficients
and semisimple eigenvalues (i.e., each eigenvalue A appears only in 1 x 1 Jordan blocks in a Jordan
triple for Q [11]), there exists a real nonsingular matrix W € R"<2" such that

WL OOW = A [D(L g’ﬂ +[ D DOJ = Ip(0), (3)
with Dy, D¢, Dy diagonal. The pencil Lp (1) is alinearization of the diagonal quadratic Qp (A) = A2Dy +
AD¢ 4+ D, which clearly has the same eigenvalues as Q (1). The proof of the diagonalization of the
blocks of L () in (3) is constructive and requires the knowledge of all the eigenvalues and eigenvectors
of Q. Most importantly it shows that by increasing the dimension of the transformations from n x n
when working directly on Q to 2n x 2n by working on a pencil of twice the dimension of Q, total
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decoupling of the underlying second order system can be achieved. The congruence in (3) is an example
of a structure preserving transformation (SPT). More generally, we say that a pair (W, Wg) of 2n x 2n
real nonsingular matrices defines a structure preserving transformation for an n x n quadratic matrix
polynomial Q (1) = A*M + AC + K with M nonsingular if

([0 M -M 0 0 M, —M; 0
ol (o €[ )= @) [0" <) @
where Mj, Cy, and Kq are n x n matrices [23] that define a new quadratic Q; (A) = A2M; + ACy + K;
having the same eigenvalues as Q ().

Because the problem is quadratic, we need to deflate two eigenvalues at a time. For a given pair
of eigenvalues A1, A, and their associated left and right eigenvectors xj;, X, j = 1, 2, we identify con-
ditions under which there exist elementary SPTs (W, W) that are rank-two modifications of the
2n X 2n identity matrix and transform Q (A) into a new quadratic Q1 (A) for which A; and A, share
the same left eigenvector z; and same right eigenvector zg, that is,

Z7Q(A) =0, Q(A)zrR =0, j=12. (5)

In particular we find that A and A, must be semisimple and distinct and that, if they are both real,
they must also satisfy

X1Q' (h1)xp1 X1Q" (A2)xg2

which for symmetric quadratics Q means that A1 and A, must have opposite type [3]. Under these con-
ditions we characterize a family of elementary SPTs that transform Q (1) with eigentriples (A, xg;, Xi;)
to a new quadratic Qq (A) with eigentriples (A, zg, z;),j = 1, 2. Since our transformations are structure
preserving we never work with the 2n x 2n matricesin (4).Indeed the matrix coefficients of Q; (1) turn
out to be low rank modifications of M, C and K and are therefore not expensive to compute When (5)
holds we then show how to construct two nonsingular matrices Gy, Gg such that GL Q1 (MGr = Q)
with Q(A) block diagonal as in (2), that is, the pair (G, Gg) deflates the two eigenvalues A1, A».

This paper is organized as follows. After some preliminary results in Section 2 on structure pre-
serving transformation s, we explain in Section 3 how to deflate eigenvalues of symmetric quadratic
matrix polynomials. We then extend in the following section the symmetric deflation procedure to
quadratics with nonsymmetric coefficient matrices. We present in Section 5 some numerical examples
that illustrate our deflation procedure. To the best of our knowledge, this work is the first attempt at
constructing a family of nontrivial elementary SPTs that have a specific action of practical use: that of
“mapping"” two linearly independent eigenvectors to a set of linearly dependent eigenvectors.

2. Structure preserving transformations

In this section, we recall some necessary results from [9,23]. SPTs, defined in (4), have a number of
important and useful properties that we begin by summarizing.

Lemma 1 [23]. Let (W}, Wg) be an SPT transforming Q (1) = A%*M + AC + K with M nonsingular into
Q) = A*M + AC + K. Then

(i) Q1) and Q (1) share the same eigenvalues.
(ii) M is nonsingular.
(iii) If (A, x,y) is an eigentriple of Q (1) then

w [2)=[5] o [7]-[3]
X X y y
for some nonzero X,y € C" such that Q (A\)X = 0 and *Q (1) = 0.
(iv) IfL()\) belongs to the vector space of pencils [15,20]
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_ viM voM vi€C—wvM viK] . 2
DLQ) = {A [VZM vyC — vﬂ(] + [ vk wk] VERTp

with vector v then L(A) = WLTL(A)WR € DL(Q) with vector v. In other words, the SPT (W, Wg)
preserves the block structure of DIL(Q). Moreover if L(A) is a linearization of Q then I(A) is a
linearization of Q (A). _

(v) If W, = Wg and Q (X) is symmetric (i.e., M, C and K are symmetric) then Q (1) is symmetric.

Matrix pairs (G, Gg) of the form

_ 65 9 2nx2n = _
Gs = [0 Gs] € R det(Gs) £ 0, S=LR

always define an SPT for any n x n quadratic Q. They have the property that if (G, Gg) transforms
Q(A) into Q(A) then Q(1) = G Q(*)Gg. The pair (G, Gg) is called a class one elementary SPT when

Gs=1— ms”s for some nonzero vectors ms, ns € R",S = L, R[9].
The key elementary SPT used in our deflation procedure has the form

I+ a5b§ asdg 2nx2n
Is= [ affl I + ashl €R ' (6)

where as, bs, ds, fs, hs € R" with as, ds, fs nonzero. The matrix Ts differs from the identity matrix by a
matrix of rank at most two and it is nonsingular if [5,23]

det(Ts) = (1+ afbs) (1+ afhs) — (afds)(asfs) # 0.
With the notation
oy = a{MaR, ac = aZCaR, oy = a{KaR,

a pair (T, Tp) of nonsingular matrices with Ts, S = L, R, as in (6) forms a class two elementary SPT if
[9,23]

oc = a{CaR #0 (7)
and
1
EaCfL + amb, = —Mag, (8)
1
agfy + Eac(bL + h) + and, = —Cag, 9)
1
OlKhL + iacd]_ = —Kag, (10)
1
EaCfR + aybr = —M"ay, (11)
1
axfr + Eac(bR + hg) + apdg = —Cay, (12)
1
(X[(hR + EacdR = —KT(JL. (13)

The constraints (8)—(13) force preservation of structure. Multiplying the constraints (8) and (10) on
the left by a[ and the constraints (11) and (13) on the left by aE allows us to rewrite the determinant
of Ty and Ty as

det(Ts) = o> (1 + agbs) (1 + aghs) (f — dakam), S=LR

which shows that
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a2 — dagay # 0 (14)

is a necessary condition for (Ty, Ts) to be an SPT. N
From (8)-(13) we have that if (Ty, Tg) transforms Q (1) to Q (A) then

~ 1

K=K— OlKth£ — E(XC (hLdg + dd’lg) - OlmdeE,

~ 1

€ =C—ax (hufi +fihp) — S (hubf + b + dufif + fidg) — com (dib, + budy),
~ 1

M =M — afify — Soc (b +fibg) — ambiby,

which shows that M, E, and K are low rank modifications of M, C, and K.

Note that once the two vectors a; and ag are chosen such that (7) and (14) hold, the structure
preserving constraints (8)-(13) are linear in the remaining unknown vectors. They can be rewritten in
matrix form as

VA=B < VA =By, ViA=B, (15)

Bg

where A € R*3 and B = [B
L

] € R?™3 are given by

ap %ac 0

0 auy iac [ Mag  Cag  Kag }
A= 2 , B=— 16
lac ax 0 MTa, CTap KTq (16)
0 %Olc (0774
and V = [“;;] € R?™4 with Vs = [bs ds fs hs] € R"™ for S = L, R contains the remaining

unknown vectors. Some calculations show that
1 2
Ty (2 2 2 2
det(AA) = v (ac 4ocMocK> (ac + oy + ocK)
which is nonzero by (7) and (14), so that A has full rank and all solutions to (15) are given by

_ pat + Vi = BRAT + U (I — AAT),
V=ET+UI-MT) = {VR = BAY + Ug(l — AAT),
U
Ur
(ATA)~1AT since A has full rank (see Stewart and Sun [22, Section 3.1]).

The transformation Ts used in our deflation procedure performs a specific action: that of mapping
a quadratic matrix polynomial with two nonparallel eigenvectors associated with a pair of eigenvalues
to a quadratic whose eigenvectors associated to that pair of eigenvalues are now parallel. This results
in an additional constraint of the form ZSTVS = Wg for some given zs and ws that the solutions V; and
Vg of (15) must satisfy. The next result will then be useful.

for some arbitrary U = [ ] € R?™4 Here A" is the pseudoinverse of A, which is given by AT =

Theorem 2. Let A € R™K r >k have full rank, B € R™* w € R, and nonzero z € R" be given. The
problem of finding V € R™" such that

VA=B, ZV=w (17)
has a solution if and only if wWTA = z"B. In this case the general solution is
-1
V=(-2"BAY + UG — A" +2(22) W, (18)

where U € R™" is any matrix such that 2 U = 0.
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Proof. If V is a solution to (17) then z'B = z'VA = w'A. Conversely, if z'B = w’A then since
ATA = Imultiplying V in(18) on the right by Ayields VA = Bandsincez' U = Owe havethatz'V = w'
so that V in (18) is a solution to (17). Now every solution V to (17) can be rewritten as

V=(—-zz"HVAAT — (I —zz")VAAT +V —zzTV + zzTV
=(—zz")VAAT + (1 —zz")V(I — AAY) + 22tV

-1
=(U—zz"BAt + (I —zz")V(I —AAT) + 2 (sz) wl,
which is of the form (18) with U := (I — zz*) V satisfying 2’ U = 0. [

3. Deflation for symmetric quadratics

Symmetric quadratics have the property that if x is a right eigenvector associated with the eigen-
value A then y = x is the corresponding left eigenvector. So if we use congruence transformations to
preserve the symmetry of the quadratic we just need to consider the deflation of eigenpairs rather
than eigentriples. We denote by (11, x1) and (A2, X2) the two eigenpairs to be deflated. First we show
that when x1 and x, are parallel there exists an n x n congruence transformation which, when applied
directly to Q, deflates A1 and A,. When x; and x; are linearly independent, we show how to construct
a class two elementary SPT that transforms Q to a new quadratic Q; for which A and A, share the
same eigenvector. In other words, the SPT allows us to transform the original deflation problem into
one we know how to handle.

3.1. Linearly dependent eigenvectors

We first treat the case where the eigenvalues A1 and A, have a common eigenvector z € R". The
next lemma is crucial to proving the existence of a congruence transformation that deflates these two
eigenvalues. Some relations in this lemma have already been observed by Chu et al. [6].

Lemma 3. Consider the n x n symmetric quadratic Q(1) = A*M + AC + K.

() IfQ(A)z = 0,j = 1,2 with z € R™\{0} and A1 # X, then Cz = c Mz and Kz = k Mz with ¢ =
—(A1 + A2) and k = AqAy. Moreover, z' Mz # Oif and only ifz2'Q'(Aj)z # 0,j = 1, 2.
(i) If Cz = c Mz and Kz = k Mz for some nonzeroz € R" and ¢, k € C then Q(Aj)z = 0,j = 1,2 with

)\1,2 = —(C:l: \/C2 — 4k)/2.

Proof

(i) It follows from )»szz + AjCz+Kz =0, j=1,2 that when A # A, (z = — (A1 + Ax)Mz =
cMz and then Kz = —)\%Mz + A1 (A1 4+ A2)Mz = XXMz = kMz. The last part of statement
(i) follows from z'Q’(Aj)z = (2 + ¢)z' Mz and the fact that A1 # A. Note that here Q’(}) is
the first derivative of Q with respect to A, thatis, Q'(A) = 2AM + C.

(ii) If Cz = cMz and Kz = kMz then Q(}j)z = (kj-z + Ajc+k)Mz = 0,j = 1,2, from which the
formula for A, follows. [

Assume there exists a nonsingular matrix G such that

Gen =2z, G'(Mz) =me, m=2z Mz, (19)

where e, is the last column of the n x n identity matrix. Since G and M are nonsingular we must have
m # 0, which by Lemma 3(i) holds when A and A, are distinct and ZTQ/()\.]')Z # 0,j = 1,2.Then we
have that
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G'MGe, = G'Mz = me,.
Now if A1 and A, are distinct then by Lemma 3(i), Cz = cMz and Kz = kMz, so that

T/y2 2[M 0 c 0 K 0
GC'OA*M4+ACH+K)G =1 [0 m]+/\[0 mc]+[0 mk], (20)
where ¢ = —(A1 + A3) and k = A1 A; thus G deflates the two eigenvalues A and A,. Note that if
A1 = Ay and, Cz and Kz are multiples of Mz then, as long as z' Mz # 0, G in (19) deflates A1 and A,
from Q. It is easily seen from (20) that in this case A (= A) must be a defective eigenvalue with
partial multiplicity 2.
We build the matrix G in two steps. First, we construct a Householder reflector H = I — 2w' /(vTv)
[12] such that

H(Mz) = ||Mz||ep.

Second, we form L = I, + rs, where sTe, = 1 and r = % Hz — ey, so that
Mz||»
Le, = IMz] Hz, LTen =ep
m
T
since r’e, = %ZTH% —1=2M _1 =0.Hence
m
G= 1)
1Mz

satisfies (19). It is shown in [10] that taking

1T+ V141
-

T
rir
minimizes the condition number « (L) of L and that with this choice,

V11703 + rll2
(G2 =Kp(l)? = Y—m— 27,
V14105 = lirll2

which is reasonably small as long as ||r|| is not much larger than 1. Using ||Mz||;He,, = Mz and the
definition of r we have that

2
||r||§ =rlr= (zTMzz) (sz)/ (zTMz) -1
showing that ||r ||, does not depend on the norm of z or M.

Note that G in (21) depends on 2n parameters: the Householder vector v € R" and r € R" which
is consistent with the 2n constraints in (19).

s=ey

3.2. Linearly independent eigenvectors

When x; and x; are linearly independent there is clearly no nonsingular transformation mapping
the full rank matrix [x;  X2] to the rank-one matrix [e;  e;]. The idea in this case is to build an SPT
T that transforms Q (1) with eigenpairs (1}, x;),j = 1, 2 to Q; (1) with eigenpairs (4;,z),j = 1, 2 that
can then be deflated using the procedure described in Section 3.1. We only consider the case where
A1 # Xy. Indeed when the two eigenvalues are equal and x; is not parallel to x,, A1 and A belong to
two distinct Jordan blocks. In this case, the decoupling (20) cannot be achieved.

Since we aim to treat the deflation of real eigenpairs together with that of complex conjugate
eigenpairs, we introduce the real matrices A € R?*? and X € R"™? defined by

0 A

[M 0 } if A1 and A, are real,
A=
a B . = o
[—,3 a] ifA =Xy =a+ifwithg £0,

(22)
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X = {[x1 x2] for real eigenpairs,

[u v] for complex eigenpairs with x; =X, = u + iv. (23)

ab”  ad”

We want to construct a class two elementary SPTT = I, + [afT ah”

} witha, b, d, f,h € R" and

a nonzero vector z € R" such that
_1[XA] _ [ze"A
=[]

wheree = } . This constraint means that T~ [)ijj} = [)Ljajz
Xj 5]‘2

if T transforms Q(A) to Qq (1) then by Lemma 1(iii), Q1 (Aj)z = 0,j = 1, 2. We rewrite (24) in terms of
the 6n unknown vectors a, b, d, f, h, z as

], for some nonzero §;,j = 1, 2. Hence

ze" A+ (sz> ae’ A + (d'2)ae’ = XA, (25)
zel + (sz) ae’ A + (hTz) ae’ =X, (26)
and solve (25) and (26) for a, z and the scalars b'z, d"z, f"z, h'z as follows.
Let nonzerop,q € R? be such that
eTp =0, eTAp =1, eTq =1, eTAq =0.

Since A1 # Ay, it is easily seen that

af1
p=y0i1—1)" [_1]. q=Ap— (A +2A2)p, Aq= =,

with y =1 for real eigenpairs and y = i for complex eigenpairs. Multiplying (26) on the right by
p yields (fTz)a = Xp. Since the columns of X are linearly independent, we have that fTz # 0. Now
without loss of generality, we normalize a such that a’a = 1. It follows that

a=("2) " Xp. flz=IXpll2 #0. (27)
Multiplying (25) on the right by p yields z + (b"z)a = X Ap. If we choose to normalize z such that
eyz = 1, where we let £ be such that |e}a| = ||al| then

b’z = (e%XAp — 1)/ (e?a), z=XAp — (sz) a. (28)
Multiplying (25) and (26) on the right by g and on the left by ez gives

d'z = (e,EXAq)/ (e%a), h'z = (eﬁXq - 1)/ <e§a> . (29)

What is now left is the construction of V:=[b d f h] such that z'V = w', where w' =
[sz d’z fTz hlz ] and VA = B, since T is structure preserving (see Section 2), where B =
—[Ma Ca Ka] and A is as in (16) with oy = a'Ma, ac = a’Ca # 0 and ax = a’Ka. We know
from Theorem 2 that a solution V to VA = B, zTV = w exists if and only if

wlA =7"B. (30)

The next lemma, crucial for the deflation process, provides a necessary and sufficient condition on the
eigenpairs (A;,xj),j = 1, 2 for (30) to hold.

Lemma 4. The relation w'A = z"B holds if and only if the eigenpairs (A1, 1) and (A2, x2) of Q () satisfy
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xQ (Ga)x1 = ex,Q' ()% (31)
with € = —1 for real eigenpairs and € = 1 for complex conjugate eigenpairs.

Proof. Tedious calculations left to Appendix A show that the row vector g = w’A — z"B has the form
g =y (Q0x —edQ ) [1 ¢ K],

where y; is a nonzero scalar, c = —(A1 + A2), k = A1A2, € = —1 for real eigenpairs and € = 1 for
complex eigenpairs. [

For real eigenpairs such that ijQ/ (Aj)x; # 0 (this latter condition holds for simple eigenvalues [1,
Theorem 3.2] and for semisimple eigenvalues for some x; in the null space of Q(4;)), the condition
(31) implies that A1 and A, must have opposite type, the type of a real eigenvalue A of Q(X) with
associated eigenvector x being the sign of x* Q’(A)x = 24xT Mx + x” Cx. Note that this is to be expected
from the theory of Hermitian matrix polynomials since for a symmetric quadratic with 2r distinct real
eigenvalues, r of them are of positive type and r of them are of negative type (see [11]). Hence when
deflating two real eigenpairs, one must be of positive type and the other of negative type. Now under
this condition, (31) is achieved with the scaling

X1 < x1/y/ QO X < X2/ [%Q (2)xa].

For complex conjugate eigenpairs such that X]TQ/()\.]')XJ‘ # 0, (31) is achieved with the scaling

X] < Xl/\/X{Q/(M)XL Xy = X1.

(Note here the use of “T" rather than “x".)
With the above scaling, Lemma 4 together with Theorem 2 tells us that the equations VA = B and
zV = wT have the solutions

z'\ e Z 7
v=(1—2")Bat +ug —aat) + =" (32)
2Tz Tz

where U € R™“ is any matrix such that z'U = 0. It follows that (27)-(29) and (32) define a family
of class two elementary SPTs T transforming Q (1) with eigenpairs (4}, x;) to Q;(A) with eigenpairs
(A, 2),j = 1, 2. Identifying which solution minimizes the condition number «»(T) = ITN21T 2
remains an open problem.

4. Deflation for nonsymmetric quadratics

The deflation procedure described in Section 3 extends to the case where M, C, and K are non-
symmetric. We denote by (A, xg;, x;),j = 1, 2 the two eigentriples to be deflated from Q(A) with

(A2, Xg2, X12) = ()_»1,)'<R1,)'<L1) when Im(X1) # 0. In contrast with the symmetric deflation procedure
we use equivalence transformations rather than congruence transformations since we do not need to
preserve symmetry. Three situations must be considered.

4.1. Parallel left eigenvectors and parallel right eigenvectors

Without loss of generality let us assume in this case that x;;1 = x;2 = z; and Xg; = Xgy = zg with
z1,zr € R" so that

Qi) =0, U()zr=0, j=1,2. (33)
As in Lemma 3 it is easily shown that if (33) holds with A1 # XA, then

Cizr = cM1zg, Kizg = kM zg, (34)

Z1C =czlMy, 2Ky =kl My, (35)
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where c = —(A1 + Ay) and k = A A,. Suppose there exist nonsingular matrices G; and Gg such that
GLTMZR =me,, Gre, =2z, (36)
GZ;MTZL = mey, GRe,, = Zp, (37)

where m = zLTMzR. (Note that the left (right) transformation G; (Gg) depends on the right (left)
eigenvector.) Since M, G, and Gg are nonsingular we must have m #* 0 which is guaranteed when
A1 and A, are distinct and zLQ/(Aj)zR # 0. With G, and Gy, satisfying (36) and (37) we have

Gl MGge, = G Mzg = mey,, LG} MGy = z] MGg = me]
and on using (34)-(37) it follows that

amenn=( L SE ). on

If we let u; = Mzg and ug = M7z, the matrices G; and Gg can be taken in the form

m
Gs = HsLs, S=LR,
llusll2

where Hs is a Householder reflector such that Hsus = ||us||2e, and Ls = I,, — rssg with

1+ 141515

llusll2
rs = Hszs —en, Ss =en— T rs
IsTs
so that
Us||2
Lsen = ” ” HsZS, LSTen = €n.
m

Then it is easy to check that the pair (G, Gg) satisfies (34) and (35) and therefore deflates A and A,
from Q.

4.2. Nonparallel left eigenvectors and nonparallel right eigenvectors

As for the symmetric case our aim is to build a class two elementary SPT (T, T), with T; not
necessarily equal to Tg, that transforms Q (A) to a new quadratic Q; (1) for which A; and XA, share
the same left eigenvector z; and the same right eigenvector z. In order to apply the deflation process
of Section 4.1, we assume that A and A, are distinct and xij’(Aj)ij #0,j=1,2.When A1 = A,
with lineary independent eigenvectors then A; and A, belong to two distinct Jordan blocks and the
decoupling (38) cannot be achieved.

Let Ts be such that

-1 [XsAs] ZSGTAS
Ts [Xs ]—[ zceT } (39)

with A, = AT and Ag = A where A, X; and Xg are formed as in (22) and (23), and e = E] If the

pair (T, Tg) is structure preserving and transforms Q (A) to Q1 (A) then the constraint (39) for S =L
and S = R together with Lemma 1(iv) implies that zLTQ1 (Aj)) =0and Q1 (Aj)zg =0,j =1, 2.
Now if we choose Ts to have the form (6) then with the following normalizations of as and zs,

T T T
agas =1, ey zs =1, |egas| = [lasloo, (40)

we obtain in a similar way to the symmetric case described in Section 3.2, that under the constraint
(39),

f$zs = | Xspslla # O, as = (f§ zs) "' Xsps,
b_z;-Zg = (ELXSASPS - ])/ (E—gsag) ,  Zs = XsAsps — (b§25)a5, (41)

dizs = (eLXSAsqS)/ (eﬁsag), hlzs = (eZqug - 1)/ (egsas),
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where ps, gs € R? are such that
eTpg =0, eTAsps =1, equ =1, eTqus =0.
Assuming that aZCaR = 0, the class two elementary SPT (T, Tg) is completely determined if we
can find two matrices V;, Vg € R"™* of the form [bs ds fs  hs] with S = L, R such that
VIA=Bg, zVi =w], (42)
VRA =B, zkVg = wf, (43)

where A € R¥3 and B € R*" are asin (16) and w! = |:b£25 dize  flzs hEZS],S = L,R. From
Theorem 2, a solution V; to (42) and a solution Vg to (43) exist if and only if w] A = Z] Br and w}A =
ZIB;.
Lemma 5. The relations

WiA—ZBg =0, WiA—ZiB =0
hold if and only if the eigentriples (A1, Xg1, X1) and (X2, Xg2, X12) of Q(A) satisfy

X Q Ooxer = €xQ G2)xra, X1 Q (2)xre = —X1,Q ()X (44)
with € = —1 for real eigentriples and € = 1 for complex conjugate eigentriples.

Proof. Let g/ = w/A — Z] Bg and gt = w}A — Z}B;. Calculations along the same lines as those pre-
sented in Appendix Appendix A for the symmetric case show that for real eigentriples,

g=nE+&E—&—E)[1 ¢ k],
gr=wmE +& & —&)[1 ¢ k],
where y; and yy are nonzero scalars, c = —(A1 4+ A2), k = A1A2 and
£ =x4QOxr1, & =xQ Mxre, & = x[1Q' (A2)xr,
& = xLQ (M)xra, &1 =xHQ )xr1, &6 = x,Q (A1)XR1.
From x[;Q(Aj)xg2 = 0,j = 1,2 we find that x/;Cxgz = —(A1 + A2)x{;Mxgp, from which it
follows that x/;Q’(A1)xg2 = —x];Q/(A2)Xg2, that is, & = —&s. In an analogous way we find that

x1,Q (M)xr1 = —x1,Q’ (A2)xg1, thatis, €4 = —&g. Hence, g; = gz = Oifand only if & + & = O and

&5+ & =0.
For complex conjugate eigentriples, we find that

(45)

g =7 tits+&+E)[1 ¢ K],
gy = PR (E +ig + & +E)[1 ¢ K],

where ¥ and J are nonzero complexscalars, &, j = 1,2, 5, 6aredefinedin(45)and §; = x{l Q' (A2)xg1,
& = x,Q (M)xg2. Using x/1Q(Aj)xgy = 0,j = 1,2 it is easily shown that xj;Q (h1)xg2 =
—x;1Q’ (A2)xg2 which, by taking the conjugate, becomes & = —&;. We show similarly that &g = —&.
Hence, g; = gg = Oifand only if &, — & = 0 and &5 + & = 0 which completes the proof. [

The assumption that A; and A, are distinct and XZQ’(A]-)XRJ- # 0,j = 1,2 implies that in (44)
the terms on the left-hand side relation for real eigentriples and the terms on the right-hand side
relation for complex conjugate eigentriples are nonzero. lfoTjQ/ (Aj)xgj = Oor xLTjQ/ (M)xpe = 0,j £ k,
then a scaling similar to that described after Lemma 4 can be applied to ensure that (44) holds. When
both x/, Q" (A1)xg1 and x[; Q" (%2)xg, are nonzero, we let
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xQ (A2)xp2 x5Q (A1)xp1
= e — 2 = ———————

X[1Q' (A1)Xp1 X1Q (A2)XR2

Then for real eigentriples, the relations (44) hold after an appropriate scaling of the eigenvectors
only if sign(p1) = sign(py), in which case we can apply the scaling

1

xi o< 1oV2x, xj < o]V, (46)

X2 < 127V, xr2 < | 02|V xR

For complex eigentriples, (A1, Xg1, X11) = (A2, Xg2, X12) = (XA, X, y) and (44) holds when x and y are
scaled such that y' Q’(1)x is real and y*Q’(1)x is purely imaginary.

When (44) holds, Lemma 5 and Theorem 2 tell us that the set of solutions to (42) and (43) is given
by

212 + + ZL T
Vi=(1- 5 ) BeAt + U (11— AAT) + w],
zz1 212

Rz} 4 + R
Vg =(I— =% ) BiA +UR(I—AA )+T—W,
ZpZR ZpZR
where Up, Ug € R™™ are any matrices such that zZZUs = 0,S = L, R.
The matrices V; and V together with a; and ag in (41) define an SPT (Tj, Tg) that transforms Q (1)
into Q1 (A) such that (33) holds.

4.3. Nonparallel left (right) eigenvectors and parallel right (left) eigenvectors

When for example rank([x1, X2]) = 1 and rank([Xg1, Xz2]) = 2 we might want to look for an SPT
of the form (I, Tg) with Ty a class two elementary SPT, since the left eigenvectors are already parallel
to each other. Unfortunately, the pair (I, Tg) is not structure preserving. However we can still use the
procedure described in Section 4.2 to map (A}, Xgj, X1j) to (A}, zg, z),j = 1,2 as long as we make sure
that after the scaling (46), the vector X;p; is nonzero so that a; in (41) is defined. If X;p; = O then
we replace x;1 by ux;1 and xgy by uxgi, where . = —1 for real eigentriples and i = i for complex
conjugate eigenpairs so that (46) still holds but X; p; is nonzero.

5. Numerical experiments

We now describe some numerical experiments designed to give insight into our deflation procedure.
It is not our aim to investigate the numerical stability properties of the procedure. This is a separate
issue that will be addressed in a future paper. In all our experiments we take U = 0 in (18). Our
computations were done in MATLAB 7.6 (R2008a) for which u = 273 &~ 1.1 x 10716,

Recall that (T, Tg) defines a class two elementary SPT that maps a quadratic matrix polynomial
with two nonparallel eigenvectors associated with a pair of eigenvalues to a quadratic whose eigen-
vector s associated to that pair of eigenvalues are now parallel, and that (G, Gg) defines a deflating
transformation. We drop the subscripts L and R when the left and right transformations are equal. If
Q(A) isn x n, the cost of deflating (A1, A3) is O(n?) operations.

Experiment 1. Our first example is a 2 x 2 symmetric quadratic Q(A) = A*M + AC + K defined by

2 -1 0 1 3 2
M = |:_1 3 ], C= [1 0] K = |:2 3] (47)
with A(Q) = {—0.34 % 1.84i,0.14 & 0.51i} to two decimal places. Note that M ~! C does not commute

with M—'K, so Q () is not proportionally damped. Therefore the system cannot be decoupled by a
2 x 2 congruence transformation directly applied to Q (1).
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Table 1
Relative magnitude of the off-diagonal elements of the deflated quadratic Q;(A) = A2My 4+ ACy + K3 in Experiment 2 and
condition number of the transformations.

Deflated e’values Off(Mz) Off(Cz) Off(Kz) K2 (T[_) K2 (TR) K2 (G[_) K2 (GR)
Real 3.0e—15 1.7e—13 1.6e—13 6.0e5 2.0e2 3.6el 3.3e0
Complex 2.0e—16 l4e—14 5.6e—14 1.8e3 4.5el 1.0 11
Table 2
Condition numbers of the SPTs T and deflating transformations G for different pairs of eigenvalues for Experiment 4.

(A1, As) (A1, A6) (A1, A7) (A1, Ag)
k2(T) 4.62el 1.43e3 4.41e2 7.15e1
K2 (L) 2.09e0 6.41e0 1.61e0 4.61e0

Given the pair of complex conjugate eigenvalues A1 , = —0.34 &£ 1.84i and their associated linearly
independent eigenvectors our symmetric deflation procedure transforms Q (1) into
52 5.6 2.0e—16 T —1.6 —9.4e—16 1.6 —9.8e—17
2.0e—16 —1.4e—1 —9.4e—16 —9.3e—2 —9.8e—17 —4.8e—1 |’

to two significant digits, with k3 (T) = 7.9 and x,(G) ~ 1. Thus we have accomplished the decoupling
(2) to within the working precision.

Experiment 2. Our second example isa 2 x 2 quadratic matrix polynomial arising in the study of the
dynamic behaviour of a bicycle [21]. The coefficient matrices are nonsymmetric. They can be generated
using the NLEVP MATLAB toolbox [4] via nlevp(‘bicycle’). This quadratic has two real eigenvalues,
A1 = —0.32and A, & —14 and two complex conjugate eigenvalues —0.78 == 4.5i. Table 1 shows that
the left and right transformations corresponding to the deflation of the complex conjugate eigentriples
have a smaller condition number than those used for the deflation of the real eigentriples. The large
condition number of T; in the real case affects the size of the off-diagonal elements of the deflated
quadratic. Here off (E) = ||[E — diag(E)||2/||Ell2, E = Mg, C3, K>.

Experiment 3. Our next example is a4 x 4 hyperbolic symmetric quadratic eigenvalue problem gen-
erated as in [13, Section 6]. The eigenvalues, real since the quadratic is hyperbolic, are uniformly
distributed between 1 and 8. If we order them increasingly then A4, ..., A4 have negative type and
As, ..., Ag have positive type [2, Proof of Theorem 1]. Any pairs (4, 1) with 1 <j<4and 5<k<8
can be deflated from the quadratic. Table 2 displays the condition numbers of the SPT T and deflating
transformation G for different pairings. It shows that the choice of pairings affects the conditioning of
the transformations.

Experiment 4. We now consider a symmetric quadratic eigenvalue problem coming from a model
describing the motion of a beam simply supported at both ends and damped at the midpoint. It
can be generated with the NLEVP toolbox via nlevp(‘damped_beam’,nele), where nele is the num-
ber of finite elements. It is shown in [16, Theorem A1] that the damped problem Q(A) = A*M +
AC + K and the undamped problem Q,(A) = A*2M + K have n eigenvalues and n eigenvectors in
common: those corresponding to the anti-symmetric modes. Because M and K are positive definite,
the eigenvalues of Q,()\) are pure imaginary; they come in pairs (A, 1), each pair sharing the same
eigenvector.

We computed the n eigenpairs corresponding to the anti-symmetric modes of Q,(A) using the
MATLAB function eig with the option ‘chol’ and deflated all of them from Q (A) using the procedure
described in Section 3.1. Let

Q) = GgeeQ(W)Gaee = A*M +2.C + K

acc

be the deflated quadratic, where Gg is the matrix which accumulates the product of the n/2 de-
flating transformations of the form (21) and M, C,K are block 2 x 2 diagonal with (n/2) x (n/2)
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Table 3

Scaled residuals and condition numbers of the transformations used in Example 4.
n res(M) res(C) res(K) k2 (Gace) K2 (W)
8 3.07e—15 4.63e—18 3.90e—16 1.69e1 1.52e1
16 5.52e—15 5.08e—17 3.59e—15 4.47e1 3.79e1
32 1.34e—13 3.15e—16 1.68e—14 9.57el 7.84el
64 3.22e—12 6.09e—15 3.56e—14 1.95e2 1.57e2

blocks, the lower block being diagonal. Table 3 displays the scaled residuals res(M), res(C), and res(K),
where

acc
IGacc I31IENl2 + 2"
and the 2-norm condition numbers k3 (G ) for different values of n = 2 X nele.
The quadratic of the beam problem can be block diagonalized as (see [16, Appendix Al])
A2M; + AD; + K1 | 0
0 | APMy + Ky |

|GlecEGice ~

res(E) =

wioow = [

where W is orthogonal, M, and K> are both symmetric positive definite and A2M, + K5 contains the
anti-symmetric modes. The last column of Table 3 displays the condition number of the transformation
W that block diagonalizes A2My + Ky . Asa comparison, we note that k3 (Ggcc) is not much larger than
o (Wa).

Appendix A. Technical results for the proof of Lemma 4

We start by recalling the notation. Let (Aq,x1) and (XAy, x2) be two eigenpairs of a symmetric
quadratic Q(A) = A*M + AC + K such that A % ). For real eigenpairs let A = diag(A1, A2) and

let X = [x1 x2]. For complex conjugate eigenpairs let A = [_aﬂ 5} and X = [u v], where A1 =

A= +iB, B #0andx; = Xy = u + iv. Let
11
p=y(—Ai)" [_1]' q=Ap— (A1 + A2)p
with y = 1 for real eigenpairs and y = i for complex eigenpairs and let

[Tz = IXpll2 # 0. a=("2) " xp.
bz = (e?XAp — 1)/ (e%a), z=XAp — (bTZ> q,

Fo= (o)) (). 2= (dra—1)/ ().

where £ is such that ay = e}a #+ 0. Define

1
om g0c 00 p__[Ma ca K,
A= 1O oM Z0c L v=I[b d f ],
S0c 10l1< 0 wl = [sz 'z fTz hTz],
0 50C [(097¢

2

where oy = a’ Ma, ¢ = a’ Ca and ax = a’ Ka. The next lemma contains useful relations.

Lemma 6. The following relations hold:

X] Cxy = ¢ xT My, (48)
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X Kxy = k xI Mxa, (49)
d'z=—kf'z, (50)
hWz—b'z=cfz (51)
where c = —(Aq + Ay) and k = AqA;. Also for any symmetric matrix E we have
-2
a"Ea = ap = (sz) p"X"EXp, (52)
-1 -2
Z'Ea = <sz> pTATXTEXp — (sz> (sz> pTXTEXp, (53)
with
ror /L(X{Exl + xgExz — ZX{EXZ) for real eigenpairs,
p' X' EXp = (54)
B(ix{Ex; — ixjExy + 2x{Exy) otherwise,
- ,u()qxlTEx] + )szgExz + cxgE)q) for real eigenpairs,
p'A'X"EXp = (55)
B (irx]Exy — iAox)Exy — cxJExq) otherwise,

where 1 = (A1 — Ay) "2 = 0is defined since A1 # A;.
Proof. The relations (48) and (49) follow from x{Q(Al)xz = ng()q))q = 0and X-{Q()Q)XZ = 0.The

relations (50)-(53) follow from the definition of p, g, aand z and (54) and (55) follow from the definition
of Aand X andp. [

With these relations in hand we can now prove the formula for g7 = w’A — z'Bin Lemma 4. From
the definition of A, Bw and z we find that

(sz> ay + % (sz> ac +z"Ma
g= % (sz) ac + ([d"2)ay + (fTZ> ag + % (hTZ) ac+2'Ca
3@ 2)ac + axh’z + 2'Ka

Using (52)withE = MandE = Cand (53)with E = M we obtain that the first component of g satisfies
2 (sz) g1 =p X'cxXp + 2p" ATXTMXp. (56)
In a similar way we find that the other components of g satisfy
2 (sz) g2 = cp' XCXp — 2kp" XMXp + 2p" ATXT CXp + 2p" XKX,
2 (sz) g3 = —kp"X"CXp + 2cp"XTKXp + 2p" ATX"KXp.
Using (54) and (55) with E = M, C and K and the relations (48)-(51) we find that for real eigenpairs,
2(f"2) g" = (dQ')x +5Q'0)x) [1 ¢ K

and that for complex conjugate eigenpairs,

2(772)8" = {u (0 Gm ~ QO[T ¢ K.
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