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1. Introduction

Consider the quadratic matrix polynomial Q(λ) = λ2M + λC + K , whereM, C, K ∈ Rn×n withM

nonsingular, and the associated quadratic eigenvalue problem

Q(λ)xR = 0, x∗L Q(λ) = 0, (1)

where λ is an eigenvalue and xR and xL are corresponding right and left eigenvectors, respectively.

Throughout, we use the subscript R to denote right eigenvectors or when referring to transformations

applied to the right, and the subscript L for left eigenvectors and transformations applied to the left.

We also denote by Λ(Q) the spectrum of Q .

Given two eigentriples (λj , xRj, xLj), j = 1, 2 satisfying appropriate conditions, we propose a defla-

tion procedure that decouples Q(λ) into a quadratic Qd(λ) = λ2Md + λCd + Kd of dimension n− 1

and a scalar quadratic q(λ) = λ2m+ λc + k = m(λ− λ1)(λ− λ2) such that

Λ(Q) = Λ(Qd) ∪ {λ1, λ2}
and there exist well-defined relations between the eigenvectors of Q(λ) and those of the decoupled

quadratic

Q̃(λ) =
[
Qd(λ) 0

0 q(λ)

]
. (2)

This is termed “strong deflation" in the engineering community, as opposed to “weak deflation",

which is achieved by introducing zeros in the trailing rows or columns of the matrices. Weak and

strong deflations differ from Wielandt deflation, in which a low rank modification is applied to the

eigenproblem so as to displace one ormore targeted eigenvalues and leave the others unchanged. This

technique is employed when solving eigenproblems with iterative methods such as Jacobi–Davidson:

in this way, eigenvalues found can be displaced to zero or infinity [6,14,17].

Unlike for linear polynomials A− λB, we cannot in general construct an n× n equivalence trans-

formation with nonsingular matrices PL and PR such PT
L Q(λ)PR = Q̃(λ), where Q̃(λ) is the decoupled

quadratic in (2) [19]. The standard way of treating quadratic matrix polynomials, both theoretically

and numerically, is to convert them into equivalent linear matrix pencils of twice the dimension, a

process called linearization [11]. For example, when M is nonsingular the block symmetric pencil

L2(λ) = λ

[
0 M

M C

]
+

[−M 0

0 K

]
is a linearization of Q(λ) in the sense that L2(λ) satisfies

E(λ)L2(λ)F(λ) =
[
Q(λ) 0

0 In

]
for some unimodular E(λ) and F(λ), where In is the n× n identity matrix [11,24]. This implies that

c · det(L2(λ)) = det(Q(λ)) for some nonzero constant c, so that L2 and Q have the same eigenvalues.

Deflation procedures formatrix pencils ignore the block structure of linearizations such as L2(λ). They
produce a deflated pencil that is not in general a linearization of a quadratic matrix polynomial [18].

Garvey et al. [8] and later Chu and Xu [7] showed that for quadratics with symmetric coefficients

and semisimple eigenvalues (i.e., each eigenvalue λ appears only in 1× 1 Jordan blocks in a Jordan

triple for Q [11]), there exists a real nonsingular matrix W ∈ R2n×2n such that

WTL2(λ)W = λ

[
0 DM

DM DC

]
+

[−DM 0

0 DK

]
=: LD(λ), (3)

withDM, DC , DK diagonal. Thepencil LD(λ) is a linearizationof thediagonalquadraticQD(λ) = λ2DM +
λDC + DK , which clearly has the same eigenvalues as Q(λ). The proof of the diagonalization of the

blocks of L2(λ) in (3) is constructive and requires the knowledge of all the eigenvalues and eigenvectors

of Q . Most importantly it shows that by increasing the dimension of the transformations from n× n

when working directly on Q to 2n× 2n by working on a pencil of twice the dimension of Q , total
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decoupling of theunderlying secondorder systemcanbe achieved. The congruence in (3) is an example

of a structure preserving transformation (SPT). More generally, we say that a pair (WL,WR) of 2n× 2n

real nonsingular matrices defines a structure preserving transformation for an n× n quadratic matrix

polynomial Q(λ) = λ2M + λC + K with M nonsingular if

WT
L

([
0 M

M C

]
,

[−M 0

0 K

])
WR =

([
0 M1

M1 C1

]
,

[−M1 0

0 K1

])
, (4)

whereM1, C1, and K1 are n× nmatrices [23] that define a new quadratic Q1(λ) = λ2M1 + λC1 + K1

having the same eigenvalues as Q(λ).
Because the problem is quadratic, we need to deflate two eigenvalues at a time. For a given pair

of eigenvalues λ1, λ2 and their associated left and right eigenvectors xLj, xRj, j = 1, 2, we identify con-

ditions under which there exist elementary SPTs (WL,WR) that are rank-two modifications of the

2n× 2n identity matrix and transform Q(λ) into a new quadratic Q1(λ) for which λ1 and λ2 share

the same left eigenvector zL and same right eigenvector zR, that is,

z∗L Q1(λj) = 0, Q1(λj)zR = 0, j = 1, 2. (5)

In particular we find that λ1 and λ2 must be semisimple and distinct and that, if they are both real,

they must also satisfy

sign

(
xTL2Q

′(λ2)xR2

xTL1Q
′(λ1)xR1

)
= sign

(
xTL2Q

′(λ1)xR1

xTL1Q
′(λ2)xR2

)
,

which for symmetric quadraticsQ means thatλ1 andλ2 must have opposite type [3]. Under these con-

ditions we characterize a family of elementary SPTs that transform Q(λ)with eigentriples (λj , xRj, xLj)
to a new quadraticQ1(λ)with eigentriples (λj , zR, zL), j = 1, 2. Since our transformations are structure

preservingweneverworkwith the2n× 2nmatrices in (4). Indeed thematrix coefficientsofQ1(λ) turn
out to be low rank modifications ofM, C and K and are therefore not expensive to compute. When (5)

holds we then show how to construct two nonsingular matrices GL, GR such that GT
L Q1(λ)GR = Q̃(λ)

with Q̃(λ) block diagonal as in (2), that is, the pair (GL, GR) deflates the two eigenvalues λ1, λ2.

This paper is organized as follows. After some preliminary results in Section 2 on structure pre-

serving transformation s, we explain in Section 3 how to deflate eigenvalues of symmetric quadratic

matrix polynomials. We then extend in the following section the symmetric deflation procedure to

quadraticswith nonsymmetric coefficientmatrices.Wepresent in Section 5 somenumerical examples

that illustrate our deflation procedure. To the best of our knowledge, this work is the first attempt at

constructing a family of nontrivial elementary SPTs that have a specific action of practical use: that of

“mapping" two linearly independent eigenvectors to a set of linearly dependent eigenvectors.

2. Structure preserving transformations

In this section, we recall some necessary results from [9,23]. SPTs, defined in (4), have a number of

important and useful properties that we begin by summarizing.

Lemma 1 [23]. Let (WL,WR) be an SPT transforming Q(λ) = λ2M + λC + K with M nonsingular into

Q̃(λ) = λ2M̃ + λC̃ + K̃. Then

(i) Q(λ) and Q̃(λ) share the same eigenvalues.
(ii) M̃ is nonsingular.
(iii) If (λ, x, y) is an eigentriple of Q(λ) then

W−1R

[
λx
x

]
=

[
λ̃x
x̃

]
, W−1L

[
λ̄y
y

]
=

[
λ̄̃y
ỹ

]
,

for some nonzero x̃, ỹ ∈ Cn such that Q̃(λ)̃x = 0 and ỹ∗Q̃(λ) = 0.

(iv) If L(λ) belongs to the vector space of pencils [15,20]
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DL(Q) =
{

λ

[
v1M v2M

v2M v2C − v1K

]
+

[
v1C − v2M v1K

v1K v2K

]
: v ∈ R2

}
,

with vector v then L̃(λ) = WT
L L(λ)WR ∈ DL(Q̃) with vector v. In other words, the SPT (WL,WR)

preserves the block structure of DL(Q). Moreover if L(λ) is a linearization of Q then L̃(λ) is a

linearization of Q̃(λ).
(v) If WL = WR and Q(λ) is symmetric (i.e., M, C and K are symmetric) then Q̃(λ) is symmetric.

Matrix pairs (GL, GR) of the form

GS =
[
G̃S 0

0 G̃S

]
∈ R2n×2n, det(G̃S) /= 0, S = L, R

always define an SPT for any n× n quadratic Q . They have the property that if (GL, GR) transforms

Q(λ) into Q̃(λ) then Q̃(λ) = G̃T
L Q(λ)G̃R. The pair (GL, GR) is called a class one elementary SPT when

G̃S = I − mSn
T
S for some nonzero vectors mS, nS ∈ Rn, S = L, R [9].

The key elementary SPT used in our deflation procedure has the form

TS =
[
I + aSb

T
S aSd

T
S

aSf
T
S I + aSh

T
S

]
∈ R2n×2n, (6)

where aS, bS, dS, fS , hS ∈ Rn with aS, dS, fS nonzero. The matrix TS differs from the identity matrix by a

matrix of rank at most two and it is nonsingular if [5,23]

det(TS) =
(
1+ aTS bS

) (
1+ aTS hS

)
− (aTS dS)(a

T
S fS) /= 0.

With the notation

αM := aTLMaR, αC := aTL CaR, αK := aTL KaR,

a pair (TL, TR) of nonsingular matrices with TS, S = L, R, as in (6) forms a class two elementary SPT if

[9,23]

αC = aTL CaR /= 0 (7)

and

1

2
αC fL + αMbL = −MaR, (8)

αK fL + 1

2
αC(bL + hL)+ αMdL = −CaR, (9)

αKhL + 1

2
αCdL = −KaR, (10)

1

2
αC fR + αMbR = −MTaL, (11)

αK fR + 1

2
αC(bR + hR)+ αMdR = −CTaL, (12)

αKhR + 1

2
αCdR = −KTaL. (13)

The constraints (8)–(13) force preservation of structure. Multiplying the constraints (8) and (10) on

the left by aTL and the constraints (11) and (13) on the left by aTR allows us to rewrite the determinant

of TL and TR as

det(TS) = α−2C

(
1+ aTS bS

) (
1+ aTS hS

) (
α2
C − 4αKαM

)
, S = L, R

which shows that
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α2
C − 4αKαM /= 0 (14)

is a necessary condition for (TL, TS) to be an SPT.

From (8)–(13) we have that if (TL, TR) transforms Q(λ) to Q̃(λ) then

K̃ = K − αKhLh
T
R −

1

2
αC

(
hLd

T
R + dLh

T
R

)
− αMdLd

T
R,

C̃ = C − αK

(
hLf

T
R + fLh

T
R

)
− 1

2
αC

(
hLb

T
R + bLh

T
R + dLf

T
R + fLd

T
R

)
− αM

(
dLb

T
R + bLd

T
R

)
,

M̃ = M − αK fLf
T
R −

1

2
αC

(
bLf

T
R + fLb

T
R

)
− αMbLb

T
R,

which shows that M̃, C̃, and K̃ are low rank modifications ofM, C, and K .

Note that once the two vectors aL and aR are chosen such that (7) and (14) hold, the structure

preserving constraints (8)–(13) are linear in the remaining unknown vectors. They can be rewritten in

matrix form as

VA = B⇐⇒ VLA = BR, VRA = BL, (15)

where A ∈ R4×3 and B =
[
BR
BL

]
∈ R2n×3 are given by

A =

⎡⎢⎢⎢⎣
αM

1
2
αC 0

0 αM
1
2
αC

1
2
αC αK 0

0 1
2
αC αK

⎤⎥⎥⎥⎦ , B = −
[
MaR CaR KaR
MTaL CTaL KTaL

]
(16)

and V =
[
VL

VR

]
∈ R2n×4 with VS = [

bS dS fS hS
] ∈ Rn×4 for S = L, R contains the remaining

unknown vectors. Some calculations show that

det(ATA) = 1

4

(
α2
C − 4αMαK

)2 (
α2
C + α2

M + α2
K

)
which is nonzero by (7) and (14), so that A has full rank and all solutions to (15) are given by

V = BA+ + U(I − AA+)⇐⇒
{
VL = BRA

+ + UL(I − AA+),

VR = BLA
+ + UR(I − AA+),

for some arbitrary U =
[
UL

UR

]
∈ R2n×4. Here A+ is the pseudoinverse of A, which is given by A+ =

(ATA)−1AT since A has full rank (see Stewart and Sun [22, Section 3.1]).

The transformation TS used in our deflation procedure performs a specific action: that of mapping

a quadraticmatrix polynomial with two nonparallel eigenvectors associatedwith a pair of eigenvalues

to a quadratic whose eigenvectors associated to that pair of eigenvalues are now parallel. This results

in an additional constraint of the form zTS VS = wT
S for some given zS and wS that the solutions VL and

VR of (15) must satisfy. The next result will then be useful.

Theorem 2. Let A ∈ Rr×k, r � k have full rank, B ∈ Rn×k, w ∈ Rr , and nonzero z ∈ Rn be given. The
problem of finding V ∈ Rn×r such that

VA = B, zTV = wT , (17)

has a solution if and only if wTA = zTB. In this case the general solution is

V = (I − zz+)BA+ + U(I − AA+)+ z
(
zT z

)−1
wT , (18)

where U ∈ Rn×r is any matrix such that zTU = 0.
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Proof. If V is a solution to (17) then zTB = zTVA = wTA. Conversely, if zTB = wTA then since

A+A = ImultiplyingV in (18)on the rightbyAyieldsVA = Bandsince zTU = 0wehave that zTV = wT

so that V in (18) is a solution to (17). Now every solution V to (17) can be rewritten as

V = (I − zz+)VAA+ − (I − zz+)VAA+ + V − zz+V + zz+V
= (I − zz+)VAA+ + (I − zz+)V(I − AA+)+ zz+V
= (I − zz+)BA+ + (I − zz+)V(I − AA+)+ z

(
zT z

)−1
wT ,

which is of the form (18) with U := (
I − zz+

)
V satisfying zTU = 0. �

3. Deflation for symmetric quadratics

Symmetric quadratics have the property that if x is a right eigenvector associated with the eigen-

value λ then y = x is the corresponding left eigenvector. So if we use congruence transformations to

preserve the symmetry of the quadratic we just need to consider the deflation of eigenpairs rather

than eigentriples. We denote by (λ1, x1) and (λ2, x2) the two eigenpairs to be deflated. First we show

thatwhen x1 and x2 are parallel there exists an n× n congruence transformationwhich, when applied

directly to Q , deflates λ1 and λ2. When x1 and x2 are linearly independent, we show how to construct

a class two elementary SPT that transforms Q to a new quadratic Q1 for which λ1 and λ2 share the

same eigenvector. In other words, the SPT allows us to transform the original deflation problem into

one we know how to handle.

3.1. Linearly dependent eigenvectors

We first treat the case where the eigenvalues λ1 and λ2 have a common eigenvector z ∈ Rn. The

next lemma is crucial to proving the existence of a congruence transformation that deflates these two

eigenvalues. Some relations in this lemma have already been observed by Chu et al. [6].

Lemma 3. Consider the n× n symmetric quadratic Q(λ) = λ2M + λC + K.

(i) If Q(λj)z = 0, j = 1, 2 with z ∈ Rn\{0} and λ1 /= λ2 then Cz = c Mz and Kz = k Mz with c =
−(λ1 + λ2) and k = λ1λ2. Moreover, zTMz /= 0 if and only if zTQ ′(λj)z /= 0, j = 1, 2.

(ii) If Cz = c Mz and Kz = k Mz for some nonzero z ∈ Rn and c, k ∈ C then Q(λj)z = 0, j = 1, 2with

λ1,2 = −(c ±√c2 − 4k)/2.

Proof

(i) It follows from λ2
j Mz + λjCz + Kz = 0, j = 1, 2 that when λ1 /= λ2, Cz = −(λ1 + λ2)Mz =

cMz and then Kz = −λ2
1Mz + λ1(λ1 + λ2)Mz = λ1λ2Mz = kMz. The last part of statement

(i) follows from zTQ ′(λj)z = (2λj + c)zTMz and the fact that λ1 /= λ2. Note that here Q ′(λ) is

the first derivative of Q with respect to λ, that is, Q ′(λ) = 2λM + C.

(ii) If Cz = c Mz and Kz = k Mz then Q(λj)z = (λ2
j + λjc + k)Mz = 0, j = 1, 2, from which the

formula for λ1,2 follows. �

Assume there exists a nonsingular matrix G such that

Gen = z, GT (Mz) = men, m = zTMz, (19)

where en is the last column of the n× n identity matrix. Since G andM are nonsingular we must have

m /= 0, which by Lemma 3(i) holds when λ1 and λ2 are distinct and zTQ ′(λj)z /= 0, j = 1, 2. Then we

have that
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GTMGen = GTMz = men.

Now if λ1 and λ2 are distinct then by Lemma 3(i), Cz = cMz and Kz = kMz, so that

GT (λ2M + λC + K)G = λ2

[
M̃ 0

0 m

]
+ λ

[
C̃ 0

0 mc

]
+

[
K̃ 0

0 mk

]
, (20)

where c = −(λ1 + λ2) and k = λ1λ2; thus G deflates the two eigenvalues λ1 and λ2. Note that if

λ1 = λ2 and, Cz and Kz are multiples of Mz then, as long as zTMz /= 0, G in (19) deflates λ1 and λ2

from Q . It is easily seen from (20) that in this case λ1 (= λ2) must be a defective eigenvalue with

partial multiplicity 2.

We build thematrixG in two steps. First, we construct a Householder reflectorH = I − 2vvT/(vTv)
[12] such that

H(Mz) = ‖Mz‖2en.
Second, we form L = In + rsT , where sT en = 1 and r = ‖Mz‖2

m
Hz − en, so that

Len = ‖Mz‖2
m

Hz, LT en = en

since rT en = ‖Mz‖2
m

zTHen − 1 = zTMz
m
− 1 = 0. Hence

G = m

‖Mz‖2HL (21)

satisfies (19). It is shown in [10] that taking

s = en − 1+√1+ rT r

rT r
r

minimizes the condition number κ(L) of L and that with this choice,

κ2(G)2 = κ2(L)
2 =

√
1+ ‖r‖22 + ‖r‖2√
1+ ‖r‖22 − ‖r‖2

,

which is reasonably small as long as ‖r‖2 is not much larger than 1. Using ‖Mz‖2Hen = Mz and the

definition of r we have that

‖r‖22 = rT r =
(
zTM2z

) (
zT z

)/ (
zTMz

)2 − 1

showing that ‖r‖2 does not depend on the norm of z or M.

Note that G in (21) depends on 2n parameters: the Householder vector v ∈ Rn and r ∈ Rn which

is consistent with the 2n constraints in (19).

3.2. Linearly independent eigenvectors

When x1 and x2 are linearly independent there is clearly no nonsingular transformation mapping

the full rank matrix
[
x1 x2

]
to the rank-one matrix

[
en en

]
. The idea in this case is to build an SPT

T that transforms Q(λ) with eigenpairs (λj , xj), j = 1, 2 to Q1(λ) with eigenpairs (λj , z), j = 1, 2 that

can then be deflated using the procedure described in Section 3.1. We only consider the case where

λ1 /= λ2. Indeed when the two eigenvalues are equal and x1 is not parallel to x2, λ1 and λ2 belong to

two distinct Jordan blocks. In this case, the decoupling (20) cannot be achieved.

Since we aim to treat the deflation of real eigenpairs together with that of complex conjugate

eigenpairs, we introduce the real matrices Λ ∈ R2×2 and X ∈ Rn×2 defined by

Λ =
⎧⎪⎪⎨⎪⎪⎩
[
λ1 0

0 λ2

]
if λ1 and λ2 are real,[

α β
−β α

]
if λ1 = λ̄2 = α + iβ with β /= 0,

(22)
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and

X =
{[

x1 x2
]

for real eigenpairs,[
u v

]
for complex eigenpairs with x1 = x̄2 = u+ iv.

(23)

Wewant to construct a class two elementary SPT T = I2n +
[
abT adT

af T ahT

]
with a, b, d, f , h ∈ Rn and

a nonzero vector z ∈ Rn such that

T−1
[
XΛ

X

]
=

[
zeTΛ

zeT

]
, (24)

where e =
[
1

1

]
. This constraint means that T−1

[
λjxj
xj

]
=

[
λjδjz
δjz

]
, for some nonzero δj , j = 1, 2. Hence

if T transforms Q(λ) to Q1(λ) then by Lemma 1(iii), Q1(λj)z = 0, j = 1, 2. We rewrite (24) in terms of

the 6n unknown vectors a, b, d, f , h, z as

zeTΛ+
(
bTz

)
aeTΛ+ (dTz)aeT = XΛ, (25)

zeT +
(
f T z

)
aeTΛ+

(
hTz

)
aeT = X, (26)

and solve (25) and (26) for a, z and the scalars bTz, dT z, f T z, hT z as follows.

Let nonzero p, q ∈ R2 be such that

eTp = 0, eTΛp = 1, eTq = 1, eTΛq = 0.

Since λ1 /= λ2, it is easily seen that

p = γ (λ1 − λ2)
−1

[
1

−1
]
, q = Λp− (λ1 + λ2)p, Λq = −λ1λ2p,

with γ = 1 for real eigenpairs and γ = i for complex eigenpairs. Multiplying (26) on the right by

p yields (f T z)a = Xp. Since the columns of X are linearly independent, we have that f T z /= 0. Now

without loss of generality, we normalize a such that aTa = 1. It follows that

a =
(
f T z

)−1
Xp, f T z = ‖Xp‖2 /= 0. (27)

Multiplying (25) on the right by p yields z + (bTz)a = XΛp. If we choose to normalize z such that

eT	z = 1, where we let 	 be such that |eT	a| = ‖a‖∞ then

bTz =
(
eT	XΛp− 1

)/ (
eT	a

)
, z = XΛp−

(
bTz

)
a. (28)

Multiplying (25) and (26) on the right by q and on the left by eT	 gives

dTz =
(
eT	XΛq

)/ (
eT	a

)
, hT z =

(
eT	Xq− 1

)/ (
eT	a

)
. (29)

What is now left is the construction of V := [
b d f h

]
such that zTV = wT , where wT =[

bTz dT z f T z hT z
]
, and VA = B, since T is structure preserving (see Section 2), where B =

− [
Ma Ca Ka

]
and A is as in (16) with αM = aTMa,αC = aTCa /= 0 and αK = aTKa. We know

from Theorem 2 that a solution V to VA = B, zTV = wT exists if and only if

wTA = zTB. (30)

The next lemma, crucial for the deflation process, provides a necessary and sufficient condition on the

eigenpairs (λj , xj), j = 1, 2 for (30) to hold.

Lemma 4. The relation wTA = zTB holds if and only if the eigenpairs (λ1, x1) and (λ2, x2) of Q(λ) satisfy
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xT1Q
′(λ1)x1 = εxT2Q

′(λ2)x2 (31)

with ε = −1 for real eigenpairs and ε = 1 for complex conjugate eigenpairs.

Proof. Tedious calculations left to Appendix A show that the row vector gT = wTA− zTB has the form

gT = γg

(
xT1Q
′(λ1)x1 − εxT2Q

′(λ2)x2
) [

1 c k
]
,

where γg is a nonzero scalar, c = −(λ1 + λ2), k = λ1λ2, ε = −1 for real eigenpairs and ε = 1 for

complex eigenpairs. �

For real eigenpairs such that xTj Q
′(λj)xj /= 0 (this latter condition holds for simple eigenvalues [1,

Theorem 3.2] and for semisimple eigenvalues for some xj in the null space of Q(λj)), the condition

(31) implies that λ1 and λ2 must have opposite type, the type of a real eigenvalue λ of Q(λ) with

associated eigenvector x being the sign of xTQ ′(λ)x = 2λxTMx + xTCx. Note that this is to be expected

from the theory of Hermitianmatrix polynomials since for a symmetric quadratic with 2r distinct real

eigenvalues, r of them are of positive type and r of them are of negative type (see [11]). Hence when

deflating two real eigenpairs, one must be of positive type and the other of negative type. Now under

this condition, (31) is achieved with the scaling

x1← x1/
√
|xT1Q ′(λ1)x1|, x2← x2/

√
|xT2Q ′(λ2)x2|.

For complex conjugate eigenpairs such that xTj Q
′(λj)xj /= 0, (31) is achieved with the scaling

x1← x1/
√
xT1Q
′(λ1)x1, x2 = x̄1.

(Note here the use of “T" rather than “∗".)
With the above scaling, Lemma 4 together with Theorem 2 tells us that the equations VA = B and

zTV = wT have the solutions

V =
(
I − zzT

zT z

)
BA+ + U(I − AA+)+ z

zT z
wT , (32)

where U ∈ Rn×4 is any matrix such that zTU = 0. It follows that (27)–(29) and (32) define a family

of class two elementary SPTs T transforming Q(λ) with eigenpairs (λj , xj) to Q1(λ) with eigenpairs

(λj , z), j = 1, 2. Identifying which solution minimizes the condition number κ2(T) = ‖T‖2‖T−1‖2
remains an open problem.

4. Deflation for nonsymmetric quadratics

The deflation procedure described in Section 3 extends to the case where M, C, and K are non-

symmetric. We denote by (λj , xRj, xLj), j = 1, 2 the two eigentriples to be deflated from Q(λ) with

(λ2, xR2, xL2) = (λ̄1, x̄R1, x̄L1) when Im(λ1) /= 0. In contrast with the symmetric deflation procedure

we use equivalence transformations rather than congruence transformations since we do not need to

preserve symmetry. Three situations must be considered.

4.1. Parallel left eigenvectors and parallel right eigenvectors

Without loss of generality let us assume in this case that xL1 = xL2 ≡ zL and xR1 = xR2 ≡ zR with

zL, zR ∈ Rn so that

zTL Q1(λj) = 0, Q1(λj)zR = 0, j = 1, 2. (33)

As in Lemma 3 it is easily shown that if (33) holds with λ1 /= λ2 then

C1zR = cM1zR, K1zR = kM1zR, (34)

zTL C1 = czTL M1, zTL K1 = kzTL M1, (35)
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where c = −(λ1 + λ2) and k = λ1λ2. Suppose there exist nonsingular matrices GL and GR such that

GT
LMzR = men, GLen = zL, (36)

GT
RM

TzL = men, GRen = zR, (37)

where m = zTL MzR. (Note that the left (right) transformation GL (GR) depends on the right (left)

eigenvector.) Since M, GL , and GR are nonsingular we must have m /= 0 which is guaranteed when

λ1 and λ2 are distinct and zLQ
′(λj)zR /= 0. With GL and GR satisfying (36) and (37) we have

GT
LMGRen = GT

LMzR = men, eTnG
T
LMGR = zTL MGR = meTn

and on using (34)–(37) it follows that

GT
L (M, C, K)GR =

([
M̃ 0

0 m

]
,

[
C̃ 0

0 mc

]
,

[
K̃ 0

0 mk

])
. (38)

If we let uL = MzR and uR = MTzL , the matrices GL and GR can be taken in the form

GS = m

‖uS‖2HSLS, S = L, R,

where HS is a Householder reflector such that HSuS = ‖uS‖2en and LS = In − rSs
T
S with

rS = ‖uS‖2
m

HSzS − en, sS = en −
1+

√
1+ rTS rS

rTS rS
rS

so that

LSen = ‖uS‖2
m

HSzS, LTS en = en.

Then it is easy to check that the pair (GL, GR) satisfies (34) and (35) and therefore deflates λ1 and λ2

from Q .

4.2. Nonparallel left eigenvectors and nonparallel right eigenvectors

As for the symmetric case our aim is to build a class two elementary SPT (TL, TR), with TL not

necessarily equal to TR, that transforms Q(λ) to a new quadratic Q1(λ) for which λ1 and λ2 share

the same left eigenvector zL and the same right eigenvector zR. In order to apply the deflation process

of Section 4.1, we assume that λ1 and λ2 are distinct and x∗LjQ ′(λj)xRj /= 0, j = 1, 2. When λ1 = λ2

with lineary independent eigenvectors then λ1 and λ2 belong to two distinct Jordan blocks and the

decoupling (38) cannot be achieved.

Let TS be such that

T
−1
S

[
XSΛS

XS

]
=

[
zSe

TΛS

zSe
T

]
, (39)

with ΛL = ΛT and ΛR = Λ where Λ, XL and XR are formed as in (22) and (23), and e =
[
1

1

]
. If the

pair (TL, TR) is structure preserving and transforms Q(λ) to Q1(λ) then the constraint (39) for S = L

and S = R together with Lemma 1(iv) implies that zTL Q1(λj) = 0 and Q1(λj)zR = 0, j = 1, 2.

Now if we choose TS to have the form (6) then with the following normalizations of aS and zS ,

aTS aS = 1, eT	S zS = 1, |eT	S aS| = ‖aS‖∞, (40)

we obtain in a similar way to the symmetric case described in Section 3.2, that under the constraint

(39),

f TS zS = ‖XSpS‖2 /= 0, aS = (f TS zS)
−1XSpS,

bTS zS =
(
eT	S XSΛSpS − 1

)/ (
eT	S aS

)
, zS = XSΛSpS − (bTS zS)aS,

dTS zS =
(
eT	S XSΛSqS

)/ (
eT	S aS

)
, hTS zS =

(
eT	S XSqS − 1

)/ (
eT	S aS

)
,

(41)
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where pS, qS ∈ R2 are such that

eTpS = 0, eTΛSpS = 1, eTqS = 1, eTΛSqS = 0.

Assuming that aTL CaR /= 0, the class two elementary SPT (TL, TR) is completely determined if we

can find two matrices VL, VR ∈ Rn×4 of the form
[
bS dS fS hS

]
with S = L, R such that

VLA = BR, zTL VL = wT
L , (42)

VRA = BL, zTRVR = wT
R, (43)

where A ∈ R4×3 and B ∈ R2n×3 are as in (16) andwT
S =

[
bTS zS dTS zS f TS zS hTS zS

]
, S = L, R. From

Theorem 2, a solution VL to (42) and a solution VR to (43) exist if and only if wT
L A = ZTL BR and wT

RA =
ZTR BL .

Lemma 5. The relations

wT
L A− ZTL BR = 0, wT

RA− ZTR BL = 0

hold if and only if the eigentriples (λ1, xR1, xL1) and (λ2, xR2, xL2) of Q(λ) satisfy

xTL1Q
′(λ1)xR1 = εxTL2Q

′(λ2)xR2, xTL1Q
′(λ2)xR2 = −xTL2Q ′(λ1)xR1 (44)

with ε = −1 for real eigentriples and ε = 1 for complex conjugate eigentriples.

Proof. Let gTL = wT
L A− ZTL BR and gTR = wT

RA− ZTR BL . Calculations along the same lines as those pre-

sented in Appendix Appendix A for the symmetric case show that for real eigentriples,

gTL = γL (ξ1 + ξ2 − ξ3 − ξ4)
[
1 c k

]
,

gTR = γR (ξ1 + ξ2 − ξ5 − ξ6)
[
1 c k

]
,

where γL and γR are nonzero scalars, c = −(λ1 + λ2), k = λ1λ2 and

ξ1 = xTL1Q
′(λ1)xR1, ξ3 = xTL1Q

′(λ1)xR2, ξ5 = xTL1Q
′(λ2)xR2,

ξ2 = xTL2Q
′(λ2)xR2, ξ4 = xTL2Q

′(λ2)xR1, ξ6 = xTL2Q
′(λ1)xR1.

(45)

From xTL1Q(λj)xR2 = 0, j = 1, 2 we find that xTL1CxR2 = −(λ1 + λ2)x
T
L1MxR2, from which it

follows that xTL1Q
′(λ1)xR2 = −xTL1Q ′(λ2)xR2, that is, ξ3 = −ξ5. In an analogous way we find that

xTL2Q
′(λ1)xR1 = −xTL2Q ′(λ2)xR1, that is, ξ4 = −ξ6. Hence, gL = gR = 0 if and only if ξ1 + ξ2 = 0 and

ξ5 + ξ6 = 0.

For complex conjugate eigentriples, we find that

gTL = γ̃L (iξ7 + iξ8 + ξ5 + ξ6)
[
1 c k

]
,

gTR = γ̃R (iξ1 + iξ2 + ξ5 + ξ6)
[
1 c k

]
,

where γ̃L and γ̃R arenonzerocomplexscalars,ξj , j = 1, 2, 5, 6aredefined in (45)andξ7 = xTL1Q
′(λ2)xR1,

ξ8 = xTL2Q
′(λ1)xR2. Using x∗L1Q(λj)xR2 = 0, j = 1, 2 it is easily shown that x∗L1Q ′(λ1)xR2 =

−x∗L1Q ′(λ2)xR2 which, by taking the conjugate, becomes ξ7 = −ξ1.We show similarly that ξ8 = −ξ2.
Hence, gL = gR = 0 if and only if ξ1 − ξ2 = 0 and ξ5 + ξ6 = 0 which completes the proof. �

The assumption that λ1 and λ2 are distinct and x∗LjQ ′(λj)xRj /= 0, j = 1, 2 implies that in (44)

the terms on the left-hand side relation for real eigentriples and the terms on the right-hand side

relation for complex conjugate eigentriples are nonzero. If xTLjQ
′(λj)xRj = 0 or xTLjQ

′(λk)xRk = 0, j /= k,

then a scaling similar to that described after Lemma 4 can be applied to ensure that (44) holds. When

both xTL1Q
′(λ1)xR1 and xTL1Q

′(λ2)xR2 are nonzero, we let
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ρ1 = xTL2Q
′(λ2)xR2

xTL1Q
′(λ1)xR1

, ρ2 = xTL2Q
′(λ1)xR1

xTL1Q
′(λ2)xR2

.

Then for real eigentriples, the relations (44) hold after an appropriate scaling of the eigenvectors

only if sign(ρ1) = sign(ρ2), in which case we can apply the scaling

xL1 ← |ρ1|1/2xL1, xR1 ← |ρ1|1/2xR1,
xL2 ← |ρ2|−1/2xL2, xR2 ← |ρ2|1/2xR2. (46)

For complex eigentriples, (λ1, xR1, xL1) = (λ2, xR2, xL2) = (λ, x, y) and (44) holds when x and y are

scaled such that yTQ ′(λ)x is real and y∗Q ′(λ)x is purely imaginary.

When (44) holds, Lemma 5 and Theorem 2 tell us that the set of solutions to (42) and (43) is given

by

VL =
(
I − zLz

T
L

zTL zL

)
BRA
+ + UL

(
I − AA+

)
+ zL

zTL zL
wT

L ,

VR =
(
I − zRz

T
R

zTRzR

)
BLA
+ + UR

(
I − AA+

)
+ zR

zTRzR
wT

R ,

where UL, UR ∈ Rn×m are any matrices such that zTS US = 0, S = L, R.

The matrices VL and VR together with aL and aR in (41) define an SPT (TL, TR) that transforms Q(λ)
into Q1(λ) such that (33) holds.

4.3. Nonparallel left (right) eigenvectors and parallel right (left) eigenvectors

When for example rank(
[
xL1, xL2

]
) = 1 and rank(

[
xR1, xR2

]
) = 2 we might want to look for an SPT

of the form (I2n, TR)with TR a class two elementary SPT, since the left eigenvectors are already parallel

to each other. Unfortunately, the pair (I2n, TR) is not structure preserving. However we can still use the

procedure described in Section 4.2 to map (λj , xRj, xLj) to (λj , zR, zL), j = 1, 2 as long as we make sure

that after the scaling (46), the vector XLpL is nonzero so that aL in (41) is defined. If XLpL = 0 then

we replace xL1 by μxL1 and xR1 by μxR1, where μ = −1 for real eigentriples and μ = i for complex

conjugate eigenpairs so that (46) still holds but XLpL is nonzero.

5. Numerical experiments

Wenowdescribesomenumerical experimentsdesigned togive insight intoourdeflationprocedure.

It is not our aim to investigate the numerical stability properties of the procedure. This is a separate

issue that will be addressed in a future paper. In all our experiments we take U = 0 in (18). Our

computations were done in MATLAB 7.6 (R2008a) for which u = 2−53 ≈ 1.1× 10−16.
Recall that (TL, TR) defines a class two elementary SPT that maps a quadratic matrix polynomial

with two nonparallel eigenvectors associated with a pair of eigenvalues to a quadratic whose eigen-

vector s associated to that pair of eigenvalues are now parallel, and that (GL, GR) defines a deflating

transformation. We drop the subscripts L and R when the left and right transformations are equal. If

Q(λ) is n× n, the cost of deflating (λ1, λ2) is O(n2) operations.

Experiment 1. Our first example is a 2× 2 symmetric quadratic Q(λ) = λ2M + λC + K defined by

M =
[

2 −1
−1 3

]
, C =

[
0 1

1 0

]
, K =

[
3 2

2 3

]
(47)

withΛ(Q) = {−0.34± 1.84i, 0.14± 0.51i} to twodecimalplaces.Note thatM−1C doesnot commute

with M−1K , so Q(λ) is not proportionally damped. Therefore the system cannot be decoupled by a

2× 2 congruence transformation directly applied to Q(λ).
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Table 1

Relative magnitude of the off-diagonal elements of the deflated quadratic Q2(λ) = λ2M2 + λC2 + K2 in Experiment 2 and

condition number of the transformations.

Deflated e’values off(M2) off(C2) off(K2) κ2(TL) κ2(TR) κ2(GL) κ2(GR)

Real 3.0e−15 1.7e−13 1.6e−13 6.0e5 2.0e2 3.6e1 3.3e0

Complex 2.0e−16 1.4e−14 5.6e−14 1.8e3 4.5e1 1.0 1.1

Table 2

Condition numbers of the SPTs T and deflating transformations G for different pairs of eigenvalues for Experiment 4.

(λ1 , λ5) (λ1 , λ6) (λ1 , λ7) (λ1 , λ8)

κ2(T) 4.62e1 1.43e3 4.41e2 7.15e1

κ2(L) 2.09e0 6.41e0 1.61e0 4.61e0

Given thepair of complexconjugateeigenvaluesλ1,2 = −0.34± 1.84i and their associated linearly
independent eigenvectors our symmetric deflation procedure transforms Q(λ) into

λ2

[
5.6 2.0e−16

2.0e−16 −1.4e−1
]
+ λ

[ −1.6 −9.4e−16
−9.4e−16 −9.3e−2

]
+

[
1.6 −9.8e−17

−9.8e−17 −4.8e−1
]
,

to two significant digits, with κ2(T) = 7.9 and κ2(G) ≈ 1. Thuswe have accomplished the decoupling

(2) to within the working precision.

Experiment 2. Our second example is a 2× 2 quadratic matrix polynomial arising in the study of the

dynamic behaviour of a bicycle [21]. The coefficientmatrices are nonsymmetric. They can be generated

using the NLEVP MATLAB toolbox [4] via nlevp(‘bicycle’). This quadratic has two real eigenvalues,

λ1 = −0.32 andλ2 ≈ −14 and two complex conjugate eigenvalues−0.78± 4.5i. Table 1 shows that

the left and right transformations corresponding to the deflation of the complex conjugate eigentriples

have a smaller condition number than those used for the deflation of the real eigentriples. The large

condition number of TL in the real case affects the size of the off-diagonal elements of the deflated

quadratic. Here off (E) = ‖E − diag(E)‖2/‖E‖2, E = M2, C2, K2.

Experiment 3. Our next example is a 4× 4 hyperbolic symmetric quadratic eigenvalue problem gen-

erated as in [13, Section 6]. The eigenvalues, real since the quadratic is hyperbolic, are uniformly

distributed between 1 and 8. If we order them increasingly then λ1, . . . , λ4 have negative type and

λ5, . . . , λ8 have positive type [2, Proof of Theorem 1]. Any pairs (λj , λk) with 1� j � 4 and 5� k � 8

can be deflated from the quadratic. Table 2 displays the condition numbers of the SPT T and deflating

transformation G for different pairings. It shows that the choice of pairings affects the conditioning of

the transformations.

Experiment 4. We now consider a symmetric quadratic eigenvalue problem coming from a model

describing the motion of a beam simply supported at both ends and damped at the midpoint. It

can be generated with the NLEVP toolbox via nlevp(‘damped_beam’,nele), where nele is the num-

ber of finite elements. It is shown in [16, Theorem A1] that the damped problem Q(λ) = λ2M +
λC + K and the undamped problem Qu(λ) = λ2M + K have n eigenvalues and n eigenvectors in

common: those corresponding to the anti-symmetric modes. Because M and K are positive definite,

the eigenvalues of Qu(λ) are pure imaginary; they come in pairs (λ, λ̄), each pair sharing the same

eigenvector.

We computed the n eigenpairs corresponding to the anti-symmetric modes of Qu(λ) using the

MATLAB function eig with the option ‘chol’ and deflated all of them from Q(λ) using the procedure

described in Section 3.1. Let

Q̃(λ) = GT
accQ(λ)Gacc = λ2M̃ + λC̃ + K̃

be the deflated quadratic, where Gacc is the matrix which accumulates the product of the n/2 de-

flating transformations of the form (21) and M̃, C̃, K̃ are block 2× 2 diagonal with (n/2)× (n/2)
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Table 3

Scaled residuals and condition numbers of the transformations used in Example 4.

n res(M) res(C) res(K) κ2(Gacc) κ2(W2)

8 3.07e−15 4.63e−18 3.90e−16 1.69e1 1.52e1

16 5.52e−15 5.08e−17 3.59e−15 4.47e1 3.79e1

32 1.34e−13 3.15e−16 1.68e−14 9.57e1 7.84e1

64 3.22e−12 6.09e−15 3.56e−14 1.95e2 1.57e2

blocks, the lower block being diagonal. Table 3 displays the scaled residuals res(M), res(C), and res(K),
where

res(E) =
∥∥∥GT

accEGacc − Ẽ
∥∥∥
2

‖Gacc‖22‖E‖2 + ‖Ẽ‖2
,

and the 2-norm condition numbers κ2(Gacc) for different values of n = 2× nele.
The quadratic of the beam problem can be block diagonalized as (see [16, Appendix A1])

WTQ(λ)W =
[
λ2M1 + λD1 + K1 0

0 λ2M2 + K2

]
,

where W is orthogonal, M2 and K2 are both symmetric positive definite and λ2M2 + K2 contains the

anti-symmetricmodes. The last columnof Table 3 displays the condition number of the transformation

W2 that block diagonalizes λ2M2 + K2. As a comparison, we note that κ2(Gacc) is notmuch larger than

κ2(W2).

Appendix A. Technical results for the proof of Lemma 4

We start by recalling the notation. Let (λ1, x1) and (λ2, x2) be two eigenpairs of a symmetric

quadratic Q(λ) = λ2M + λC + K such that λ1 /= λ2. For real eigenpairs let Λ = diag(λ1, λ2) and

let X = [x1 x2]. For complex conjugate eigenpairs let Λ =
[

α β
−β α

]
and X = [u v], where λ1 =

λ̄2 = α + iβ , β /= 0 and x1 = x̄2 = u+ iv. Let

p = γ (λ1 − λ2)
−1

[
1

−1
]
, q = Λp− (λ1 + λ2)p

with γ = 1 for real eigenpairs and γ = i for complex eigenpairs and let

f T z = ‖Xp‖2 /= 0, a =
(
f T z

)−1
Xp,

bT z =
(
eT	XΛp− 1

)/ (
eT	a

)
, z = XΛp−

(
bTz

)
a,

dT z =
(
eT	XΛq

)/ (
eT	a

)
, hT z =

(
eT	Xq− 1

)/ (
eT	a

)
,

where 	 is such that a	 = eT	a /= 0. Define

A =

⎡⎢⎢⎢⎣
αM

1
2
αC 0

0 αM
1
2
αC

1
2
αC αK 0

0 1
2
αC αK

⎤⎥⎥⎥⎦ ,

B = − [
Ma Ca Ka

]
,

V = [
b d f h

]
,

wT =
[
bTz dT z f T z hT z

]
,

where αM = aTMa,αC = aTCa and αK = aTKa. The next lemma contains useful relations.

Lemma 6. The following relations hold:

xT1Cx2 = c xT1Mx2, (48)
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xT1Kx2 = k xT1Mx2, (49)

dTz = −k f T z, (50)

hTz − bTz = c f T z, (51)

where c = −(λ1 + λ2) and k = λ1λ2. Also for any symmetric matrix E we have

aTEa = αE =
(
f T z

)−2
pTXTEXp, (52)

zTEa =
(
f T z

)−1
pTΛTXTEXp−

(
bTz

) (
f T z

)−2
pTXTEXp, (53)

with

pTXTEXp =
⎧⎨⎩ μ(xT1Ex1 + xT2Ex2 − 2xT1Ex2) for real eigenpairs,

μ
4
(ixT1Ex1 − ixT2Ex2 + 2xT1Ex2) otherwise,

(54)

pTΛTXTEXp =
⎧⎨⎩ μ(λ1x

T
1Ex1 + λ2x

T
2Ex2 + cxT2Ex1) for real eigenpairs,

μ
4
(iλ1x

T
1Ex1 − iλ2x

T
2Ex2 − cxT2Ex1) otherwise,

(55)

where μ = (λ1 − λ2)
−2 /= 0 is defined since λ1 /= λ2.

Proof. The relations (48) and (49) follow from xT1Q(λ1)x2 = xT2Q(λ1)x1 = 0 and xT1Q(λ2)x2 = 0. The

relations (50)–(53) follow fromthedefinitionofp,q, a and z and (54) and (55) follow fromthedefinition

of Λ and X and p. �

With these relations in handwe can now prove the formula for gT = wTA− zTB in Lemma 4. From

the definition of A, B w and z we find that

g =

⎡⎢⎢⎢⎣
(
bTz

)
αM + 1

2

(
f T z

)
αC + zTMa

1
2

(
bTz

)
αC + (dTz)αM +

(
f T z

)
αk + 1

2

(
hTz

)
αC + zTCa

1
2
(dTz)αC + αKh

T z + zTKa

⎤⎥⎥⎥⎦ .

Using (52)with E = M and E = C and (53)with E = Mweobtain that thefirst component of g satisfies

2
(
f T z

)
g1 = pTXTCXp+ 2pTΛTXTMXp. (56)

In a similar way we find that the other components of g satisfy

2
(
f T z

)
g2 = cpTXCXp− 2kpTXMXp+ 2pTΛTXTCXp+ 2pTXKXp,

2
(
f T z

)
g3 = −kpTXTCXp+ 2cpTXTKXp+ 2pTΛTXTKXp.

Using (54) and (55)with E = M, C and K and the relations (48)–(51)we find that for real eigenpairs,

2
(
f T z

)
gT = μ

(
xT1Q
′(λ1)x1 + xT2Q

′(λ2)x2
) [

1 c k
]

and that for complex conjugate eigenpairs,

2
(
f T z

)
gT = i

4
μ

(
xT1Q
′(λ1)x1 − xT2Q

′(λ2)x2
) [

1 c k
]
.
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