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a b s t r a c t

The presence of the blood–brain barrier (BBB) restricts the movement of soluble mediators and leu-
kocytes from the periphery to the central nervous system (CNS). Leukocyte entry into the CNS is
nonetheless an early event in multiple sclerosis (MS), an inflammatory disorder of the CNS. Whether
BBB dysfunction precedes immune cell infiltration or is the consequence of perivascular leukocyte
accumulation remains enigmatic, but leukocyte migration modifies BBB permeability. Immune cells
of MS subjects express inflammatory cytokines, reactive oxygen species (ROS) and enzymes that can
facilitate their migration to the CNS by influencing BBB function, either directly or indirectly. In this
review, we describe how immune cells from the peripheral blood overcome the BBB and promote
CNS inflammation in MS through BBB disruption.

� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

The central nervous system (CNS) compartment, along with tes-
tis and eye, is considered an immunoprivileged site [1]. The pres-
ence of a blood–brain barrier (BBB) restricts the movement of
soluble mediators and leukocytes from the periphery to the CNS.
Despite the presence of this tightly regulated BBB, leukocyte entry
into the CNS is an early event in multiple sclerosis (MS), an inflam-
matory disorder characterized by the formation of multifocal le-
sions in the brain and spinal cord. Acute MS lesions, featuring
areas of demyelination, axonal loss and immune cell infiltrates,
display BBB disruption as evidenced by in vivo gadolinium uptake
on magnetic resonance imaging (MRI) and post-mortem evidence
of focal micro-vascular leakage. Whether BBB dysfunction precedes
immune cell infiltration or is the consequence of perivascular leu-
kocyte accumulation remains to be established. While it has been
suggested that BBB dysfunction can precede immune infiltration
and demyelination in MS, leukocyte migration, both directly and
indirectly, modifies BBB permeability. This is best exemplified by
the clinical use of Natalizumab, an anti-a4b1 integrin antibody
known to restrict leukocyte migration to the CNS, which decreases
al Societies. Published by Elsevier
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lesion genesis and the number of lesions showing gadolinium
enhancement [2]. Moreover, the contribution of the peripheral im-
mune system to BBB dysfunction has become evident with the
introduction of treatments mainly acting on leukocyte priming,
activation and availability in the periphery (such as Mitoxantrone,
Cladribine and Fingolimod). These therapeutic approaches also re-
sult in a decreased number of new gadolinium-enhancing lesions
[3–6], supporting the concept that the overall state of peripheral
immune cell activation leads to BBB dysfunction. The subject of
this review is to describe how immune cells from the peripheral
blood overcome the BBB and promote CNS inflammation in MS.

2. The blood–brain barrier (BBB)

In the CNS, large cerebral arteries entering the brain branch into
smaller arteries and arterioles consisting of ECs surrounded by
pericytes and variable layers of smooth muscle cells. Early anatom-
ical studies performed by Jones [7] indicate that «(vessels entering
the cortex carry) a small protrusion of the sub-arachnoid space be-
fore it, then pierces the attenuated pia matter, but still remains
separated from the cortex by a small gap which is finally obliter-
ated by neuroglial processes (. . .). As the vessel penetrates deeper
into the cortex, the surrounding depression becomes tubular and
is filled by (amorphous) dense material (. . .). The level at which
the fusion occurs (of parenchymal and endothelial basement) is
variable (. . .):it may extend as far as cortical layer VI, but in most
B.V. Open access under CC BY-NC-ND license.
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cases it is complete by the time the vessel reaches the upper part of
layer III». This space, now called the Virchow–Robin space, there-
fore does not extend into the white matter [7,8]. It is merely visible
in young healthy individuals, and more apparent with ageing and
disease. In capillaries, fused endothelial and parenchymal BMs in
which pericytes are embedded come into direct contact with the
astrocytic end-feet. This is the exact level at which the features
of a fully competent BBB are present [9].

Leukocytes can access the CNS compartment (brain, spinal cord
and CSF) either via the choroid plexus and the leptomeningeal
vessels, to enter the CSF, or by the parenchymal capillaries and
post-capillary venules, to enter the perivascular space [10].
E- and P-selectins are expressed in leptomeningeal and choroid
plexus vessels but not in the parenchymal capillary/post-capillary
microvessels [11]. Blocking these two selectins restrict cell rolling,
adhesion and trafficking to the CSF, but does not impact on the
development of EAE lesions [10]. This suggests that CSF accumula-
tion of immune cells is not necessary for lesion development.
Therefore, only BBB-related events occurring at the level of paren-
chymal capillaries and post-capillary venules have been consid-
ered for this review.

In CNS capillaries and post-capillary venules, where most leu-
kocyte trafficking takes place [9,12], the CNS microvasculature is
composed of specialized endothelial cells, often referred as BBB-
endothelial cells (BBB-ECs). BBB-ECs lack fenestrations, exhibit
low pinocytic but high efflux transporter activity and thus limit
transcellular diffusion [13–15]. They also express tight junction
(TJ) and adherens junction (AJ) proteins that reduce paracellular
permeability [1,16–19]. TJs are zipper-like structures that link
two adjacent cells and are formed by the close interaction and
the assembly into macromolecular complexes of at least three fam-
ilies of transmembrane proteins: claudins, occludin and junctional
adhesion molecules (JAMs). These macromolecular complexes, lo-
cated into cholesterol-enriched membrane microdomains called
lipids rafts, are anchored to actin filaments via adaptor molecules
that include zona occludens 1 (ZO1), ZO2, ZO3, cingulin and Ca2+-
dependent serine protein kinase (CASK). AJs are formed by trans-
membrane proteins such as vascular-endothelial (VE)-cadherin
and are linked to the cytoskeleton by catenins (a, b and p120)
[16,20]. This specialized BBB endothelium is lined by embedded
pericytes, which provide support, guidance and barrier properties
during embryogenesis and before astrocyte generation [21,22],
and by a vascular basement membrane (BM) formed by specialized
extracellular matrix (ECM) molecules such as laminin 8 and 10,
collagen type IV, perlecan and others [1,23]. A second BBB BM,
called the parenchymal BM, is formed by proteins such as laminin
1, 2 and dystroglycan, and the ensheathing astrocytic endfeet
which cover over 90–99% of the abluminal surface of CNS micro-
vessels [16,24]. The small anatomic area found between the vascu-
lar and the parenchymal BMs is called the perivascular space, and
it is an area where initial reactivation of lymphocytes takes place
following entry across BBB-ECs [24].

Astrocytes exert a critical influence on the BBB phenotype due
to their close apposition to the cerebral microvasculature. They
help to maintain BBB integrity and immune quiescence through
contact-dependent mechanisms and by releasing essential soluble
factors such as basic fibroblast growth factor (bFGF), transforming
growth factor beta (TGF-b), glial-derived neurotrophic factor
(GDNF), angiotensinogen, angiopoietin I, src-suppressed C-kinase
substrate (SSeCKS) and more recently members of the Hedgehog
family [16,20,25,26]. Conversely, astrocytes can release inflamma-
tory cytokines under neuropathological conditions such as MS,
leading to ECs activation and BBB dysfunction [16,27]. There is also
a prominent correlation between astrocyte differentiation and BBB
development as astrocyte polarization parallels endothelial differ-
entiation and BBB maturation [28–30]. In addition, neurons and
microglia are known to modulate the barrier phenotype by secret-
ing factors that influence BBB maintenance and by inducing the
expression of immune related molecules such as chemokines and
cell adhesion molecules (CAMs) by BBB-ECs [16,20,29].

3. The basics of leukocyte migration across the BBB

Leukocytes have to perform various actions before being enti-
tled to move across the endothelial layer (into the perivascular
space) and to subsequently find a way through the parenchymal
BM (into the brain parenchyma). The classic steps of capture-
rolling-tethering, activation, arrest-crawling and transmigration/
diapedesis have been well and extensively described [1,12,24,31].
Each step involves interaction of BBB-ECs and leukocytes via
expression of CAMs by BBB-ECs (such as intercellular CAM-1
(ICAM-1) and VCAM-1) and via expression or activation of their
cognate ligands on leukocytes (such as aLb2 (LFA-1) and a4b1
(VLA-4)). In addition, recent studies have demonstrated the impor-
tant role of ECM components in the migration of leukocytes across
the BBB, as the laminin composition of the vascular and possibly
parenchymal BMs determine accessibility to the CNS [32]. Resting
T cells have a limited ability to enter the CNS parenchyma, but it
has been previously shown that freshly activated T cells can mi-
grate into the CNS regardless of their antigen specificity [33,34].
Moreover, migration of leukocytes through the BBB increases per-
meability, which favors subsequent leukocyte infiltration [35,36].
The entry of pro-inflammatory leukocytes into the CNS is thus con-
sidered an early phenomenon that can trigger the events leading to
neuroinflammation, BBB disruption and MS plaque formation
[12,37]. Immune cells of MS subjects express inflammatory cyto-
kines, reactive oxygen species (ROS) and enzymes that can facili-
tate their migration to the CNS by influencing BBB function,
either directly or indirectly.
4. Direct influence of immune cells on the BBB

This section refers to the effect of cytokines, ROS and matrix
metalloproteinases (MMPs) produced by peripheral blood mono-
nuclear cells (PBMCs) that can directly disrupt components of the
BBB or act on receptors expressed by BBB-ECs (Fig. 1).

4.1. Cytokines and soluble factors

4.1.1. TNF-a and IFN-c
Tumor necrosis factor alpha (TNF-a) is elevated in PBMCs as

well as in serum of MS patients and its level correlates with disease
activity and secondary progression [38–42]. Moreover, a polymor-
phism of TNF-a -308 is associated with reduced MS risk [43]. Inter-
feron-gamma (IFN-c) level is often elevated in PBMCs and in the
serum of MS subjects [38,39], especially during relapses [40,44],
although this remains controversial [42,45,46]. BBB-ECs express
TNF receptor 1 (TNFR1) [47,48] and IFN-c receptor (IFN-cR)
[47,49], and TNF-a itself is also reported to increase IFN-cR expres-
sion in microvascular ECs [50]. TNF-a and IFN-c act synergistically
to modulate the expression of a wide array of chemokines,
cytokines and CAMs. This synergy is partly attributed to a different
subcellular recruitment of phosphorylated extracellular signal-
regulated kinase (Erk1/2) in human microvascular ECs, leading to
different but converging downstream signalling [50,51].

In the periphery, TNF-a and IFN-c affect the cellular distribution
of TJs and AJs proteins [20]. Intravenous administration of TNF-a to
mice results in an increased BBB permeability [52], and high levels
of TNF-a in serum downregulate occludin expression by BBB-ECs in
a mouse model of liver failure [53]. However, TNF-a is reported to
have no direct influence on occludin or ZO1 expression by human



Fig. 1. Effect of cytokines, reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) produced by peripheral blood mononuclear cells (PBMCs) that can directly
disrupt components of the BBB or act on receptors expressed by BBB-ECs. Abbreviations: APC, antigen-presenting cell; BBB-EC, blood–brain barrier endothelial cell; CAM, cell
adhesion molecule; C, chemokine; DR5, death receptor 5; FasL, Fas ligand; H1R, histamine receptor 1; H2R, histamine receptor 2; IFNcR, interferon-c receptor; IL, interleukin;
JAM, junctional adhesion molecules; MMPs, matrix metalloproteinases; MLCK, myosin light chain kinase; NTR, neurotrophin receptor; OSMR, oncostatin M receptor; PBM,
parenchymal basement membrane; P, phosporylated; R, receptor; ROS, reactive oxygen species; sIL-6R, soluble IL-6 receptor;Th, T helper lymphocyte;TLR, Toll-like receptor;
TNFR1, tumor necrosis factor receptor 1; TRAIL, TNF-related apoptosis-inducing ligand; VBM, vascular basement membrane; ZO1, zona occludens 1.
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brain microcapillary ECs [54]. In our experience, in vitro TNF-a and
IFN-c stimulation alters the architecture of junction proteins on pri-
mary cultures of BBB-ECs without an apparent change in their lev-
els of expression [20]. More recently, TNF-a treatment of human
BBB-ECs was reported to cause a strong upregulation of Toll-like
receptors (TLRs)-2 and -3, and stimulation of TLRs with appropriate
ligands was shown to downregulate TJ proteins expression [55].
Although appealing, the notion that TNF-a affects TJ architecture
indirectly through TLRs remains to be confirmed.

Both TNF-a and IFN-c influence the expression and secretion of
numerous chemokines by BBB-ECs. TNF-a increases CCL2, CXCL8
and CCL5 [48,56] and IFN-c induces CXCL10 [56,57]. Combination
of TNF-a and IFN-c synergistically induce expression of CXCL10,
CXCL9, CX3CL1, CCL3, CCL4 and CCL5, and causes a redistribution
of CCL2 to the basal surface and CCL3 to the apical surface of
BBB-ECs [50,51,58]. These chemokines promote both adhesion of
leukocytes to ECs (indirectly through avidity-maturation of inte-
grins) and migration of leukocytes across BBB-ECs [58–61].

Stimulation of BBB-ECs with both TNF-a and IFN-c increases
expression levels of ICAM-1 [48,62,63], VCAM-1 [48,62,64], ALCAM
[65], MCAM [66], E- and P-selectins [67,68] and various cytokine
receptors by CNS vessels (our unpublished data). The interaction
of VCAM-1-VLA-4 is implicated in capture and strong adhesion of
CD4 T cells to CNS microvessels [12,69] and ICAM-1-LFA-1 is
responsible for the firm adhesion, crawling, polarization and
extravasation of T cells across the BBB [12]. Through the expression
of LFA-1, VLA-4 and other CAM ligands, activated leukocytes can
thus interact efficiently with inflamed BBB-ECs. Interestingly,
while ICAM-1 expression is associated with infiltration of inflam-
matory T cells during early lesion formation in experimental auto-
immune encephalitis (EAE), it is also involved in the migration of
anti-inflammatory and protective regulatory T lymphocytes into
the CNS. ICAM-1 early blockade therefore improves clinical and
pathological indices of EAE, but a late blockade worsens it, outlin-
ing the complexity of leukocyte-BBB interactions and the potential
beneficial effects of the so-called pro-inflammatory cytokines [70].

4.1.2. TRAIL and FasL
Another member of the TNF family, TNF-related apoptosis-

inducing ligand (TRAIL), is expressed by activated monocytes and
lymphocytes both as a membrane-bound protein and in a soluble
form [71]. TRAIL polymorphism is associated with a higher risk
for MS in the Japanese population [72]. TRAIL levels are reduced
in its soluble form in serum from MS patients, with a possible
inverse correlation with the number of lymphocytes positive for
TRAIL [73]. Levels of soluble Fas ligand (FasL), a death receptor
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ligand which can reduce apoptosis of encephalitogenic T cells
when present in its soluble form, has been reported as elevated
in blood of active MS [74]. BBB-ECs express both Fas and the TRAIL
receptor DR5 [48]. TRAIL direct effect on the BBB remains contro-
versial. Our group has demonstrated that FasL and to a lesser ex-
tent TRAIL induce Erk1/2 activation in BBB-ECs, triggering the
release of MMP-9, a molecule known to favour immune cell entry
into the CNS (see Section 4.3) [48]. On the other hand, TRAIL has
been described as an inhibitor of activation and proliferation of
encephalitogenic T cells in periphery and a mediator of parenchy-
mal cell death in the CNS, but without affecting BBB-ECs or leuko-
cyte migration to the CNS [75].

4.1.3. IL-6 and family
Interleukin (IL)-6 is a pleiotropic cytokine that displays both

pro- and anti-inflammatory properties. Increased levels of IL-6
and soluble IL-6 receptor (sIL-6R) in serum of MS patients have
been reported when compared to healthy controls (HC) [76,77].
These were however not different when compared to other non-
inflammatory neurological diseases [42]. In human microvascular
ECs, TNF-a and IFN-c induce IL-6 production, and IFN-c induces
SOCS-3 expression, which in turn interferes with IL-6-induced
STAT-3 activation, thus leading to a switch towards IL-6 pro-
inflammatory properties [78]. In EAE, IL-6 plays a critical role
[79] and has been implicated in generation of Th17 lymphocytes
[80]. More recently, it has been reported that IL-6 trans-signalling
indirectly modulates VCAM-1 expression by BBB-ECs and
leukocyte recruitment in the spinal cord [81]. However, IL-6 can
be produced by numerous cells of the CNS compartment and
whether IL-6 produced by activated PBMCs affects BBB integrity
remains to be demonstrated [82].

Oncostatin M (OSM) is a member of the IL-6 family. OSM is
produced by monocytes and macrophages [83], with higher
expression in PBMCs from MS patients [38,62]. Moreover, in
MS lesions, OSM is found in infiltrating leukocytes, reactive
astrocytes and microglia. The OSM receptor components are
expressed by human brain ECs (gp130 and OSMRb) and OSM
stimulation induces expression of ICAM-1, IL-6 and CCL2 by brain
ECs, especially when ECs are synergistically treated with TNF-a
[62]. OSM also directly decreases transendothelial electric
resistance of rat brain capillary ECs and induces a structural
disorganization of ZO1 and claudin-5 [83]. Thus, OSM could play
both a direct and indirect role in favouring leukocyte migration
through the BBB.

4.1.4. IL-23, IL-17, IL-21 and IL-22
IL-23 is a cytokine produced by myeloid antigen-presenting

cells. IL-23 was shown to be significantly more abundant in the
serum and PBMCs of MS subjects [84,85]. IL-23 is critical in EAE
as it maintains an expanded pool of pro-inflammatory IL-17-
expressing (Th17) lymphocytes [86–88], a cell subset found in both
active MS and EAE lesions [89,90]. Furthermore, IL-17 and IFN-c
production by neuroantigen-specific T cells in the peripheral blood
predicts EAE disease outcome [91]. IL-17A and -17F protein and
mRNA are elevated in PBMCs from clinically isolated syndrome
(CIS) and in RRMS [44,92], especially during relapses [46,93]. Ser-
um levels of IL-17 demonstrate a trend towards higher levels in
MS patients [84]. Th17 lymphocytes express IL-17 but also IL-21,
IL-22 and Granzyme B. In MS patients BBB-ECs express IL-17R
and IL-22R, with their ligands IL-17 and IL-22 promoting BBB dis-
ruption and immune cell migration [89]. IL-17 increases BBB per-
meability through a time-dependent down-regulation of occludin
and disturbances in ZO1 expression and organization [89,94]. IL-
17 appears to promote lymphocyte and monocyte migration also
by increasing CCL2, IL-6 and CXCL8 secretion by BBB-ECs [89],
and through an increase in ROS formation in ECs that could affect
their contractile machinery via phosphorylation of the myosin
light chain [94].

IL-21, another Th17 cytokine, was reported to be an alternative
pathway to maintain and expand the Th17 pool [95,96], and IL-
21R polymorphism has been recently linked to EAE and MS suscep-
tibility [97]. Most infiltrating CD4+ T cells are positive for IL-21 and
most CD4+, CD8+ and CD19+ cells express IL-21R in active MS lesions.
Cortical neurons also express significantly more IL-21R in MS than in
controls [98]. Peripheral (non-CNS) ECs express IL-21R and IL-21 is
reported to inhibit angiogenesis [99], enhance lymphocyte migra-
tion and induce expression of CCL20 by gut epithelial cells [100].
Whether similar findings can be reproduced in brain ECs remains
to be determined. Nevertheless, IL-21 manipulations in EAE yielded
conflicting data [101]: Vollmer et al. initially reported an increased
disease severity following IL-21 treatment [102], Nurieva et al.
showed a decreased disease severity and a lower production of IL-
17 by CNS-infiltrating CD4+ T cells in IL-21 KO mice [103] and Korn
T et al. and Nurieva et al. [95,103] demonstrated a defective Th17
generation in IL-21R deficient mice and in IL-21 KO mice, respec-
tively. On the other hand, Sonderegger et al. reported no improve-
ment of EAE course in IL-21R KO or IL-21 KO mice [104], Piao et al.
reported increased EAE severity following administration of IL-21R
Fc [105] and Liu et al. reported an earlier onset and more severe def-
icits but a faster recovery in IL-21R KO mice, which they attributed to
a transitory alteration of Treg response and NK cells distribution
[106]. Overall, taking these important discrepancies into consider-
ation, it is difficult to firmly establish that IL-21 plays a critical role
in EAE or on BBB function or dysfunction.

4.1.5. Histamine
The most important source of histamine is mast cells (periphe-

ral or central) although basophils, macrophages, lymphocytes and
neurons can also produce histamine (for review see [107]). In early
MS, histamine levels in peripheral blood are increased [108]. BBB-
ECs express histamine receptors, and histamine can increase BBB
permeability [107], when administered peripherally [109] and cen-
trally [110]. EAE results are however conflicting as there are
numerous peripheral and central sources and targets of histamine.
Moreover, histamine can exhibit neuroinflammatory or neuropro-
tective properties depending on the receptor implicated (H1R,
H2R, H3R and H4R) [107]. A small open-label trial has shown ben-
eficial effects of a H1R receptor antagonist in MS [111] and a case-
control study suggested that use of H1R blockers was associated
with a decreased MS risk [112]. Whether these effects occur
through leukocyte proliferation and activation, through BBB per-
meability or through neurotransmission modulation is still un-
known. Earlier studies had reported no effect of H1R antagonists
but a protective effect of H2R antagonists on histamine-induced
BBB leakage, and an increase in permeability following treatment
with H2R agonists [109,113]. In contrast, a recent study describes
that, even if H1RKO mice are less susceptible to EAE, they display
an increased basal BBB permeability. Furthermore, overexpression
of H1R by ECs in otherwise H1R-deficient mice (H1RKO-vonWille-
brandFactorH1R) is protective in EAE, resulting in a decreased BBB
permeability without changes in ICAM-1 expression [114]. More-
over, histamine and H1R or H2R agonists decrease activation, pro-
liferation and adhesion of autoreactive T cells to BBB-ECs [115],
outlining the potential of histamine as a pleiotrophic amine, with
both pro- or anti-inflammatory functions.

4.1.6. Neurotrophins
mRNA levels of brain-derived neurotrophic factor (BDNF), neu-

rotrophin-3 (NT-3) and nerve growth factor (NGF) are significantly
lower in PBMCs of untreated MS patients as compared to HC, espe-
cially in monocytes [116–118]. Moreover, neurotrophins levels are
increased in PBMCs from HC but not from MS following activation
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with either anti-CD40 monoclonal antibody (mAb), TNF-a, IFN-c,
IL-10 or IL-17, and the reverse is true for stimulation with anti-
CD3/CD28 mAb [118]. In EAE, anti-NGF antibodies increase disease
severity [119,120]. BBB-ECs express NGF receptor mRNA [47] and
glial-derived neurotrophic factor (GDNF) receptor alpha 1 and 3
[47,121]. P75NTR, a low affinity pan-neurotrophin receptor [120],
is expressed by brain ECs in inflammatory conditions [122,123].
P75NTR KO mice suffer a more severe EAE course, a possible in-
creased BBB permeability and an increased immune infiltration
especially of T lymphocytes, suggesting that p75NTR is involved in
leukocyte-BBB interaction [122,124]. Moreover, NGF interferes
with monocyte migration through BBB-ECs in vitro [125] and in-
creases brain capillary ECs proliferation [123]. In one study, BDNF
administration attenuated blood-spinal cord barrier permeability
in a spinal cord injury model [126], although this effect was not
seen in a previous study [127]. GDNF, another neurotrophic factor,
has been shown to enhance the BBB properties of brain capillary
ECs in vitro [121]. Therefore, a reduction in neurotrophins expres-
sion, especially in monocytes, could result in an increased immune
infiltration, although the exact mechanisms underlying the impact
of neurotrophins on immune cell infiltration and neuroinflamma-
tion such as seen in MS remains to be studied, especially as neuro-
trophins and their receptors are expressed by PBMCs, BBB-ECs,
neurons and glial cells.

4.2. Reactive oxygen species (ROS)

ROS exist in various forms with hydrogen peroxide (H2O2), the
superoxide (O�2 ) and its derivatives being the most abundant in
eukaryotic cells [128]. Superoxide can react with nitric oxide
(NO) to form peroxynitrite (ONOO�), a very powerful oxidant able
to modify protein function [129,130]. The oxidative stress balance
is reported to be shifted towards a prevalence of ROS over antiox-
idants in MS patients [131,132]. ROS are known to play a pivotal
role in MS pathogenesis as they are produced by activated microg-
lia and macrophages during the process of myelin phagocytosis
and subsequently through the development of demyelinating le-
sions [133,134]. In the chronic phase of the disease, non-inflamma-
tory mechanisms such as mitochondrial dysfunction support the
formation of ROS and lead to oligodendrocyte damage and axonal
degeneration [135]. However, high levels of free radicals can also
damage brain endothelium and affect BBB permeability
[136,137]. ROS can affect the CNS endothelium by disrupting the
junctional proteins. In this regard, ONOO� is known to decrease
the expression of claudin-5 [138], and H2O2 induces aberrant
expression of occludin and ZO1 associated with increase in BBB
permeability [139]. ROS can also change the phosphorylation state
of junctional proteins, which results in alterations in the BBB phe-
notype [138], and they can affect the BBB by promoting transendo-
thelial immune cell migration across the BBB [140]. The production
of ROS by migrating leukocytes and particularly by monocytes is
thought to result from activation following their interaction with
ECs [140]. In addition, ROS can also activate redox signalling path-
ways such as the JAK-STAT pathway and thus trigger an inflamma-
tory response known to lead to TNF-a production in myeloid cells
and expression of CAMs such as ICAM-1, VCAM-1 and PECAM-1 in
BBB-ECs [141–144]. IL-17 production (see Section 4.1) also affects
BBB function [89] and this seems to occur in part via induction of
ROS production by ECs via the NADPH oxydase and xanthine-oxy-
dase enzymes [94]. After crossing the BBB, infiltrating macro-
phages continue with their extensive oxidative damage in active
demyelinating lesions where they mostly affect foamy macro-
phages and perivascular astrocytes and thus further destabilizes
the BBB [145]. The importance of ROS at the level of the BBB has
been confirmed in studies using antioxidant therapies that result
in reduction of monocyte migration across BBB-ECs and suppres-
sion of clinical symptoms in EAE [140,146,147], although limited
data is currently available in MS.

4.3. Matrix metalloproteinases (MMPs)

MMPs are endopeptidases that serve as effectors of cell migra-
tion, cytotoxicity, inflammation and tissue remodeling via degrada-
tion of ECM components [148]. MMPs can be secreted by activated T
cells and macrophages [149,150]. MMPs are expressed as inactive
zymogens and their activation process is regulated by tissue inhibi-
tors of MMPs (TIMPs). MMPs are secreted in response to both exog-
enous insults and inflammatory cytokines such as tumour necrosis
factor (TNF)-a [151] and IL-1b [152]. MMP-2, MMP-3, MMP-7 and
MMP-14 mRNAs are elevated in RRMS [153–155], MMP-8 serum
levels are increased in MS, and MMP-9 mRNA and serum levels are
increased in MS. TIMPs levels are reported as similar to controls,
although there are some conflicting data [84,153,155–157]. High
MMP-9 and low TIMP-1 levels are predictive for development of
new gadolinium-enhancing lesions [157] and disease activity in
MS patients correlates with the potential of their PBMCs to degrade
ECM components like laminin [158]. In EAE it has been shown that
the expression of active MMP-2 and -9 by T cells, monocytes and
dendritic cells is required for their migration across the BBB and their
subsequent invasion of the CNS compartment [60,149,159,160].
Active expression of these and other MMPs is known to mediate
BBB disruption by degrading junctional complex proteins [161–
163]. In terms of ECMs, macrophage derived MMP-2 and -9 are
known to cleave b-dystroglycan, a transmembrane receptor playing
a crucial role in the barrier phenotype as it anchors the astrocytic
endfeet to the parenchymal BM [149]. In contrast, overexpression
of TIMP-1, one of the MMPs negative regulators, in the CNS results
in reduced leukocyte transmigration and diffusion into the
parenchyma of EAE animals. Such decrease was associated with
low MMP activity in the perivascular and parenchymal areas [164].
These data correlate with the high EAE incidence observed in mice
lacking TIMP-1 [165]. In addition, MMPs also modulate immune cell
activation and migration across the BBB endothelium by regulating
the activation of important modulators of cell transmigration such
as chemokines, cytokines and CAMs [166–171].

Extracellular MMP inducer (EMMPRIN) is a factor expressed by
PBMCs as a membrane-bound or a soluble form, with both forms
inducing MMP production [172]. EMMPRIN is expressed by infil-
trating leukocytes and CNS resident cells in MS lesions. In EAE,
there is a higher proportion of EMMPRIN-positive lymphocytes
and monocytes/macrophages, which colocalize with areas of
MMP-9 expression and MMP-2/9 activity. Moreover, anti-EMM-
PRIN antibody reduced EAE severity by decreasing the number of
perivascular infiltrates and the activity of MMP-2 and 9, without
affecting peripheral activation [173].

4.3.1. E-Indirect influence of immune cells on the BBB
This section refers to the effect of cytokines produced by

migrating PBMCs that act on microglia, astrocytes or neurons,
which in turn release factors acting on BBB-ECs or disrupting com-
ponents of the BBB, and to the effect of ROS and MMPs secreted by
glial cells in response to ambient neuroinflammation, and which
mediate BBB disruption.

4.4. Cytokines and soluble factors

4.4.1. Granzyme B and perforin
Granzyme B produced by T cells shows cytolytic activity against

neurons and cleaves oligodendrocytes transaldolase, thus partici-
pating in CNS inflammation [89,174–176]. Moreover, the perforin/
granzyme pathway is thought to play a major role in mediating lysis
of ECs by natural killer (NK) cells [177] and perforin is implicated in
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apoptosis of cerebral ECs in a cerebral malaria model [178]. It has re-
cently been demonstrated in a variant model of Theiler’s murine
encephalomyelitis virus that activated CD8 T cells can contribute
to BBB disruption via perforin-dependent astrocyte activation and
TJ alteration [179]. Perforin was later shown to increase neuronal
VEGF expression that in turn would decrease occludin in CNS endo-
thelium, resulting in a leaky BBB [180].

4.4.2. IL-1beta and vascular endothelial growth factor (VEGF)
Activated macrophages can secrete proIL-1b, that will then be

processed to its active form by caspase-1, which is reported as ele-
vated in MS [181]. In EAE, astrocytes seem to constitute the major
source of VEGF and its expression is induced upon IL-1b stimula-
tion [182]. Therefore, through IL-1b activation of astrocytes, and
activation of immune cells and neurons, there is increased VEGF
release during relapses [182–184]. As VEGF promotes angiogenesis
and EC sprouting, and decreases occludin and claudin-5 expression
[180,182], the final endpoint of IL-1b-VEGF axis is a significant in-
crease in BBB permeability, with serum protein deposition in CNS
tissue and edema.

4.4.3. TNF-a and IFN-c
On pericytes, IFN-c induces expression of ICAM-1 and MHC

class I and II. TNF-a on the other hand induces expression of
VCAM-1 by pericytes [185], and could induce apoptosis of retinal
pericytes in vitro [186]. While infiltrating macrophages secrete
TNF-a, they also induce production of TNF-a by microglia [187],
which then increases BBB permeability [188]. Astrocytes express
IFN-cR in vivo [189]. Under IFN-c activation, astrocytes can be-
come neurotoxic, express ICAM-1 and secrete CXCL11 [190]. They
can also express CXCL9, CXCL10 and CXCL11 when stimulated with
both IFN-c and TNF-a [191]. On the other hand, a recent study has
demonstrated that IFN-c-treated astrocytes can induce apoptosis
of autoreactive T cells through astrocyte-derived immune suppres-
sor factor (AdIF), a novel protein which can prevent EAE by render-
ing encephalitogenic T cells susceptible to apoptosis [192]. IFN-c
also upregulates IL-18 binding protein (endogenous inhibitor of
IL-18) expression by microglia, and overexpression of IL-18bp re-
duces Th17 responses and therefore alleviates EAE pathology
[193]. Neurons also express IFN-cR, and so far the effect seems
to be mostly neuroprotective, as observed with IL-18 [194].

4.4.4. Oncostatin M
As mentioned previously, OSM is found in MS lesions in infil-

trating leukocytes, reactive astrocytes and microglia [62]. OSM
can induce the secretion of TNF-a and iNOS by microglia via acti-
vation of the NF-jB pathway. Activation of this pathway results
in neurotoxicity [195] and BBB hyper-permeability [188]. OSM
has also been demonstrated to inhibit adult neural precursor cell
proliferation [196], induce apoptotic death in neurons [197] and
stimulate IL-6 production by astrocytes [198], although a neuro-
protective role and a pro-remyelination role via astrocytes and
ECs stimulation has also been suggested [199–201]. Although,
one study showed improved clinical and pathological indices of
EAE using exogenous OSM [202], it is not clear whether this occu-
red through BBB-related mechanisms.

4.4.5. IL-23 and IL-17
Upon activation, microglia and infiltrating macrophages and DCs

are an important source of IL-23 in MS lesions [203]. IL-23 secretion
within the CNS promotes IL-17-expressing lymphocytes expansion,
and IL-17 is reported to induce the production of IL-6 and CXCL2 by
microglia [204,205], suggesting a microglia-dependant amplifica-
tion loop between IL-23, IL-17 and IL-6 in neuroinflammation.
Microglia was also shown to express functional IL-23R [206] and
could thus express IL-17, although this remains to be confirmed.
IL-17R was also shown to be expressed by astrocytes [204]. IL-
17 was previously reported to induce IL-6 and IL-1b secretion by
rodent astrocytes, as well as synergizing with IFN-c and IL-1b or
TNF-a to induce NO production in astrocytes [207]. IL-17 displays
a synergistic effect with IL-6/sIL-6R on expression of IL-6, IL-12,
CCL2, CXCL10 and CCL20 by astrocytes [208]. Moreover, IL-17 dis-
plays a synergistic effect with TNF-a on expression of CXCL1,
CXCL2 and CCL20 by astrocytes, and abrogation of IL-17-induced
signalling in astrocytes results in milder EAE and lesser CNS im-
mune infiltration [191,209]. Taken together, IL-17 can lead to a sig-
nificant disruption of the BBB, either directly by acting on BBB-ECs,
or indirectly by acting on astrocytes and microglia.

4.5. Reactive oxygen species

As a result of the inflammatory process driven by CNS-infiltrat-
ing immune cells, ROS are also being produced by glial cells in close
apposition to the BBB, such as astrocytes and microglia. In active
demyelinating MS lesions, high oxidative damage accumulates in
macrophages and hypertrophic astrocytes, represented by the pro-
duction of 4-hydroxy-2-nonenal (damaged cellular membranes),
nitrotyrosine residues (altered protein conformation) and 8-hydro-
xy-2’-deoxyguanosine (oxidative damage to DNA and RNA)
[145,210,211]. Microglia can generate great amounts of superoxide,
hydroxyl radicals, hydrogen peroxide and nitric oxide [212]. This
production is enhanced in MS as activated microglia are known to
express higher levels of myeloperoxidase, NADPH oxidase, xanthine
oxidase and iNOs, all known as ROS-generating enzymes [128,133].
These multiple changes are known to induce demyelination and oli-
godendrocyte death, but can also affect the BBB phenotype and lead
to BBB disruption, through a severely compromised communica-
tion between neurovascular unit members.

4.6. Matrix metalloproteinases

In the normal CNS, the expression of MMP-2, -7 and -9 by astro-
cytes and microglia is thought to control physiological processes
such as cell migration, differentiation and survival via ECM remod-
elling. In acute and chronic MS lesions, astrocytes express moder-
ate levels of MMP-2-, -3 and -9 [213]. In contrast, higher levels of
TIMP-1 are found in astrocytes surrounding perivascular infiltrated
areas and microglial nodules, and as TIMP-1 is a negative regulator
of MMPs, this pattern of expression is thought to be a mechanism
to counteract the inflammatory process and subsequent damage
occurring at the BBB [165,214]. Expression of MMP-1, -2, -3 and
-9 has been found in microglial nodules of MS patients [213] and
MMP-19 expression is detected in microglial-like cells associated
with preactive and active MS lesions [215]. In addition, membrane
type-MMPs (MT-MMPs), which are considered to be regulatory
due to their ability to cleave substrates in the vicinity of cell mem-
branes, are also expressed by microglia. In EAE, most MMPs are
upregulated, while MT-MMPs MMP-15, -16, -17 and -24 are down-
regulated [216,217]. Interestingly, their pattern of regulation is
independent of the proinflammatory environment provided by
cytokines such as IFN-c, TNF-a and IL-1b [216]. Thus, unlike astro-
cytes, microglia seem to be contributing to the inflammatory pro-
cess by upregulating the expression of pro-inflammatory MMPs
that in conjunction with those produced by infiltrating leukocytes
further destabilize the BBB.
5. Concluding remarks

In summary, activated leukocytes from MS patients can en-
hance BBB permeability by expression and secretion of inflamma-
tory cytokines, soluble factors, ROS and MMPs that can, directly or
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indirectly (via neuroglial cells) disrupt TJ architecture, alter base-
ment membrane proteins and increase expression of chemokines
and CAMs by BBB-ECs. This leads to an increase in BBB permeabil-
ity and leukocyte migration across the BBB into the CNS, which in
turn leads to lesion development in MS. However, clinical trials
have demonstrated that molecules previously labelled as pro-
inflammatory, such as TNF-a, can also have beneficial effects in
MS [218] and that CNS infiltration by leukocyte is essential for viral
immunosurveillance [3,219]. Immune cells overcoming the BBB
are also needed to promote migration of anti-inflammatory Th2
lymphocytes and of regulatory T cells [70], which are classically
held responsible for CNS repair. These dual and opposite roles of
the so-called pro-inflammatory cytokines constitute the most sig-
nificant limitations of our ability to identify the exact molecular
and cellular pathways involved in lesion formation in MS.
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