Results. – We observed no significant differences in muscle strength immediately before and 2 months after injections of botulinum toxin A (all \( P \)-values > 0.076).

Discussion and conclusions. – We observe no change in muscle strength for both the injected muscle and his antagonist, two months after the injections of botulinum toxins. We cannot confirm our initial hypothesis. An earlier assessment might be needed to identify this variation.

References


CO24-007–EN

Effect of shock wave therapy on muscle spasticity in children with cerebral palsy

E. Ilievaa,∗, M. Gonkovab, I. Chavdarovb

a Plovdiv Medical University, Department of Physical Medicine and Rehabilitation, Plovdiv, Bulgaria
b Specialized hospital for Residential Treatment of Prolonged Therapy and Rehabilitation of Children with Cerebral Palsy “Sv. Sofia”, Sofia, Bulgaria

∗Corresponding author.

Keywords: Shock wave therapy; Muscle spasticity; Cerebral palsy

Aim of the study is to evaluate the effect of radial shock wave therapy on reducing muscle hypertonia in plantar flexor muscles in children with cerebral palsy.

Material and methods. – Eleven children with spastic plantar flexor muscles as a result of cerebral palsy were included in the study: 7 boys and 4 girls, age range 2–7, mean age 3.54 ± 1.013. Radial shock wave therapy was applied to the gastrocnemius and soleus muscle (BTL-5000 shock-wave series): 1000 shots to each gastrocnemius and soleus muscle.

Clinical and instrumental methods were used for the evaluation of the results: passive range of motion, modified Ashworth scale, pedobarometry before the treatment, immediately after it, 2 and 4 weeks later.

Results. – After a single shock wave stimulation, a significant increase in passive range of motion (with 17.13°, \( r = 8.81, P < 0.05 \)) and a significant decrease in the Ashworth scale (from baseline mean 2.81 SD [0.65] to 2.11 SD [0.33]; \( t = 6.19, P < 0.05 \)) were observed immediately after treatment. This effect was persistent two weeks later. The increase in passive range of motion was with 15.95°, \( r = 5.22, P < 0.05 \). The decrease in the Ashworth scale was preserved 2.11 SD [0.33] (\( P < 0.05 \)). After placebo stimulation no significant difference was observed.

Conclusion. – Radial shock wave therapy could be appropriate adjuvant treatment for reducing muscle spasticity in plantar flexors in children with cerebral palsy. These are preliminary results and further study is needed to follow the long-term effect.

Further reading

CO29-002–EN

Scapulo-humeral motion in hemiplegic cerebral palsied children

L. Hourx,∗, S. Brochardb, M. Lempereurb, O. Rény-Nérisc

∗ MPB, CHU de Brest, 5, avenue Foch, 29609 Brest France
b Inserm U 650 LaTIM, Brest France

c Corresponding author.

Keywords: Shoulder; Scapula; Kinematics; Cerebral palsy; Children

Objective. – The aim of this study is to quantify the thoraco-scapulo-humeral motion in hemiplegic cerebral palsied children (HCP) compared with healthy children.

Materials and methods. – Ten children HCP and 10 typically developing children matched for age (11.8 and 11.2 years respectively) and gender (5 females) were included. 3D kinematics of the thoraco-glenohumeral motion was collected in an optoelectronic system (VICON). The protocol used has been validated in children. It combines an acromial marker cluster, a static calibration of the scapula, and using the Euler XZY sequence for the kinematics of the glenohumeral joint.

The children carried out three planar movements (flexion, abduction, horizontal adduction) and 3 tasks (hand to head, hand to contralateral shoulder, hand to back). A paired Wilcoxon test was performed at 0% and 100% of the task as well as range of motion during the movement.

Results. – Children with HCP showed significant differences in scapulohumeral and glenohumeral kinematics in the 3 planes of the space according to the tasks.

Introduction. – The upper limb (UL) of children with cerebral palsy (CP) requires a specific evaluation, which should apprehend movement efficacy and quality, and above all the usefulness of the assisting arm. To be relevant, this evaluation has to be based on appropriate and approved tools, which must display reproducibility and be sensitive to changes to measure the efficacy of therapeutic procedures.

Objectives. – We review the benefits and specificity of the following evaluation tools or scales:

– MACS [1], a global functional classification of self-initiated ability to handle objects;

– analytical evaluations:

1. surgically oriented classifications: Zancolli: for wrist and finger; House, Matay and Corry: for the thumb;

2. ‘BCB’ (Bard and Chaléat) classification: covers the potential clinical patterns of CP, in spontaneous attitudes or in activity, and describes major patterns of the UL and hands types with muscular involvement for a treatment algorithm.

– Functional evaluations:

1– QUEST (Quality of Upper Extremity Skills Test), validated with younger children (18-months to 8-year-old);

2– PRS (Physician Rating Scale): simple 9-items scale scored out of 24 assessing the UL functional motricity;

3– MUUL (Melbourne Unilateral Upper Limb Assessment) [2]: video-recorded test battery validated for children aged 5–15. The abilities of one of the UL are separately assessed with 16 items, including approaching, grasping, handling and releasing functions;

4– AHA (Assisting Hand Assessment) [3], validated for 18-month to 12-year-old children. Measures and describes how effectively a child uses his affected hand in bimanual activities. The child is videorecorded while playing with toys in semi-structured play sessions (22 items).

Conclusion. – The combined use of analytical and functional classification offers a relevant observation, guiding therapeutic choices and treatment readjustment.

References

CO29-001–EN

Analytical and functional analysis of the upper limb in children with hemiplegic cerebral palsy

R. Bard-Pondarre, E. Chaleat-Valayer∗, A. Combye, F. Turcant, M. Schneider, J.C. Bernard

CMCR des Massues-Croix rouge française, hôpital de jour, 69322 Lyon cedex 05, France

∗Corresponding author.

Keywords: Cerebral palsy; Children; Hemiplegia; Upper limb; Assessment
CO29-003–EN

Pain prevention for children undergoing botulinum toxin injections in France

A. Anselmetti a,*, C. Tessiot b, X. Deries b

a Médecine physique et de réadaptation neuromuskulaire, CHU de Nantes, 85, rue Saint-Jacques, 44 093 Nantes cedex 1, France
b C3RF Angers, Angers, France

*Corresponding author.

Keywords: Botulinum toxin; Pain; Prevention

Objective.— Few studies have considered pain prevention during botulinum toxin injections. There is no consensus on the premedication to use. We wish to list the analgesic procedures used for children undergoing botulinum toxin injections in France.

Material and method.— We carried out a national phone survey, during two months, among 64 medical doctors. Questions dealt with indications for general anesthesia, pain prevention, procedure assessment, and satisfaction.

Results.— The equimolar mix of oxygen and N2O is often used; analgesic or anxiolytic premedication is used by some. Non-pharmacological pain management therapies were widely used, but the way of using them varied. Some pain scale were used for pain evaluation.

Discussion.— Despite miscellaneous pain prevention protocols, 64% of people asked were satisfied, less than 20% of session are difficult for 91% of people asked.

Further readings


References


CO29-004–EN

Preliminary study on the interest of applying anesthetic cream before intramuscular botulinum toxin injections in children and adolescents with cerebral palsy

F. Mettia, B. Parratte b, S. Burlot c

a Rééducation, centre hospitalier de Mayotte, BP 04, 97600 Mamoudzou, Mayotte
b CHU de Besançon, Besançon, France
c Hôpital d’Enfants, Saint-Denis, France

Keywords: Pain; Cerebral palsy; Botulinum toxin

Discussion.— The pathophysiology of these changes remains unknown: postural abnormalities or secondary bone deformities?

References


Abstracts / Annals of Physical and Rehabilitation Medicine 54S (2011) e185–e204

http://dx.doi.org/10.1016/j.rehab.2011.07.439