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Abstract

An x-star trade consists of two disjoint decompositions of some simple graph H into copies of K1,x , the graph known as the
x-star. The number of vertices of H is referred to as the foundation of the trade, while the number of copies of K1,x in each of the
decompositions is called the volume of the trade. We determine all values of x, v and s for which there exists a K1,x -trade of volume
s and foundation v.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A decomposition of a graph H consists of a set of edge-disjoint subgraphs of H, which partition the edges of H.
If each of the subgraphs in the decomposition is isomorphic to some graph G, then the decomposition is called a
G-decomposition of H, or a decomposition of H into copies of G.

Given a simple graph G, let T1 and T2 be two different decompositions of some graph H on v vertices, with the
properties that H has no isolated vertices and that the copies of G in T1 are distinct from the copies of G in T2; that is,
T1 ∩ T2 = ∅. Then the pair {T1, T2} is a G-trade of volume s = |T1| = |T2| and foundation v, with underlying graph H.
The trade is Steiner provided that H is simple; we are interested only in Steiner trades here. We let TG(s; H) denote
a Steiner G-trade trade of volume s with underlying graph H, and similarly we let TG(s; v) denote a Steiner G-trade
trade of volume s and foundation v. If H has v vertices then any TG(s; H) is a TG(s; v); usually we are not interested
in the form of the underlying graph and so we use the more general form. The copies of G in T1 and T2 are referred to
as blocks. We call such a G-trade a graphical trade to distinguish it from trades based on other combinatorial objects,
such as blocks designs and Latin squares. The various forms of combinatorial trades are surveyed in [8,1].

For integers x�0, the graph K1,x is called the x-star. We let [a0 : a1, a2, a3, . . . , ax] denote a copy of K1,x with
vertex set {ai | 0� i�x} and edge set {a0ai | 1� i�x}. The vertex a0 is known as the centre vertex.

In this paper we determine the K1,x trade spectrum for every possible value of x and every possible foundation; that
is, we determine the set of triples (x, s, v) for which there exists a TK1,x (s; v). For various small graphs, including the
cycles C3, C4, C5, C6, and also the graph K4 − e, the trade spectrum has been determined for each possible foundation
(see [3,4,11,10,9], respectively). Here we solve this problem for an infinite family of graphs, the star graphs. The results
are summarised in the following theorem.
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Theorem 1.1. There exists a TK1,x (s; v) if and only if x�2, v�x + 2, and mx(v)�s�Mx(v), where mx(v) and
Mx(v) are defined by

mx(v) =
⎧⎨
⎩

3 if v�2x and x�3,⌈
2v

2x + 1

⌉
otherwise,

Mx(v) =
⎧⎨
⎩

2(v − x) − 1 if v�2x,⌊
v(v − 1)

2x

⌋
if v�2x + 1.

The design spectrum and design intersection problems have been completed for stars of arbitrary size. The design
spectrum problem is to determine, for a given x, the values of v for which there exists a decomposition of Kv into
copies of K1,x (that is, an x-star design of order v); the obvious necessary condition is that 2x | v(v − 1). In [5], this
problem was solved for v = rx and v = rx + 1, r �2; the obvious necessary conditions imply that either r is even or
x is odd, and these conditions were proved sufficient. But this is only a partial solution, except when x is prime. The
problem was later completed, independently, by Huang [7] and Tarsi [13]. Tarsi in fact completed the �-fold star design
problem, determining, for a given x, all v and � for which there exists a decomposition of �Kv into copies of K1,x ; in
the case � = 1, the only conditions are that 2x | v(v − 1) and v�2x.

In [2], Billington and Hoffman solved the intersection problem for star designs. The case x = 1 is trivial, so we
assume that x�2. It is easily seen that, for x�3, a K1,x-trade of volume 2 must have foundation 2x + 1; this result
is included here as Lemma 2.3. It follows that if x�3 and v = 2x, it is not possible for two x-star designs of order
v to intersect in v(v − 1)/2x − 2 = 2x − 3 blocks. Otherwise, all intersection sizes up to v(v − 1)/2x are possible,
except for v(v − 1)/2x − 1 (which would imply a trade of volume 1). To prove the sufficiency of these conditions,
Billington and Hoffman noted that an x-star design of order v can be regarded as a copy of Kv with directed edges,
with the property that the outdegree of each vertex is divisible by x (Tarsi also used this approach). Given a directed
n-cycle on this digraph, a second design can be produced by reversing the direction of each edge on the cycle. This
second design will have n blocks which are different from the original design, and any other blocks with centre vertex
on the cycle may also be permuted. The existence of the necessary directed cycles was proved with the help of Moon’s
theorem on tournaments [12].

In the following section we prove the necessity of the conditions of Theorem 1.1, and then in Section 3 we complete
the proof of Theorem 1.1 by constructing the necessary trades.

2. Necessary conditions

If x�1, then K1,x is either an isolated vertex or a single edge, and thus there is no K1,x-trade. Therefore we assume
from here on that x�2. We begin the section with some simple bounds on the possible trade volume s.

Lemma 2.1. Let x, s and v be integers such that there exists a TK1,x (s; v). Then⌈
2v

2x + 1

⌉
�s�

⌊
v(v − 1)

2x

⌋
.

Proof. The upper bound on s comes from a simple edge count, since there are sx edges in both halves of the trade, and
v(v − 1)/2 edges in Kv .

Suppose that G is a simple graph on n vertices which contains a cut-vertex. It was shown in [10] that a necessary
condition for the existence of a TG(s; v) is that s�2v/(2n − 1). Since the x-star contains x + 1 vertices and has a
cut-vertex (the centre vertex) provided that x�2, the lower bound on s follows from this general result. �

In the case v�2x, we can improve both the upper bound and the lower bound.

Lemma 2.2. Let x, s and v be integers such that there exists a TK1,x (s; v). If v�2x then s�2(v − x) − 1.

Proof. By Lemma 2.1, we have s�v(v − 1)/2x, and by assumption v�2x; therefore s�v − 1.
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Let the trade be {T1, T2}, with underlying graph H. Every edge used in the trade must be incident with the centre
vertex of at least one block of T1 (and similarly for T2). There are s blocks of T1, and hence at most s vertices which
are the centre of one or more blocks. Therefore, there are at least v − s vertices which are not centre points. There
can be no edges joining pairs of these vertices, and hence there are at most

(
s
2

) + s(v − s) edges in H. Therefore
sx�s(s − 1)/2 + s(v − s). The result follows. �

Lemma 2.3. Let x, s and v be integers such that there exists a TK1,x (s; v). If x�3 and v�2x, then s�3.

Proof. We need to prove that there is no TK1,x (2; v) with x�3 and v�2x; we assume such a trade exists and seek a
contradiction.

Let {{A1, B1}, {A2, B2}} be such a trade, and let a1, b1, a2 and b2 be the centre vertices of A1, B1, A2 and B2,
respectively. The vertices a1 and b1 have degree 3 or greater in the underlying graph H (recall that H=A1∪B1=A2∪B2),
while all other vertices have degree 2 or less in H. This is also true of a2 and b2, therefore {a1, b1} = {a2, b2}; say
a1 = a2 = a and b1 = b2 = b.

If a = b, this vertex is the centre of both A1 and B1, implying that it is adjacent to 2x vertices in H. Since v�2x this
is a contradiction, and we are done.

This leaves the case a �= b. Apart from the edge ab, all edges of H incident with a must occur in both A1 and A2,
while all edges of H incident with b must occur in both B1 and B2. This leaves only the edge ab. If ab occurs in A1 it
must also occur in A2, or else A1 will have a different number of edges to A2 (which is a contradiction). Similarly, if
ab occurs in B1 it must also occur in B2, and if ab occurs in neither A1 nor B1 then it cannot occur in A2 or B2 either.
Thus A1 = A2 and B1 = B2, again giving a contradiction. �

In fact, for x�3 the only K1,x-trade of volume 2 is a TK1,x (2; K1,2x), and so has the same centre vertex in both its
blocks (the construction for this easy trade is covered in Lemma 3.1). Lemma 2.3 is equivalent to Lemma 6 of [2].

We conclude the necessary conditions by noting the implied lower bound on v.

Corollary 2.1. Let x, s and v be integers such that there exists a TK1,x (s; v). Then v�x + 2.

Proof. If v�2x + 1, then since x�2 the result follows immediately. Therefore we assume that v�2x. If x�3, then
by Lemmas 2.2 and 2.3 we have 3�2(v − x) − 1, and the result follows. Finally, if x = 2, then by Lemma 2.2 we have
2�s�2(v − x) − 1 = 2v − 5. Since v is an integer, it follows that v�4, and so v�x + 2 in this case also, and we are
done. �

Lemmas 2.1,2.2,2.3 and Corollary 2.1 prove the necessity of the conditions of Theorem 1.1.

3. Constructions

We begin with an easy family of trades.

Lemma 3.1. For every x and s satisfying x�2 and s�2, there exists a TK1,x (s; K1,sx).

Proof. Let

V = {a∞} ∪ {ai | i ∈ Zsx},
T1 = {[a∞ : aix, aix+1, aix+2, . . . , aix+x−1] | 0� i�s − 1},
T2 = {[a∞ : aix+1, aix+2, aix+3, . . . , aix+x] | 0� i�s − 1},

with the subscripts of a taken modulo sx. Then {T1, T2} is a TK1,x (s; K1,sx), with vertex set V and independent vertex
set {ai | i ∈ Zsx}. �

We now give the main construction for the case s�v.
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Lemma 3.2. If x, v and s satisfy x�2 and

�max(3, v/x)	�s� min(v, 2(v − x) − 1),

then there exists a TK1,x (s; v).

Proof. Let V = {ai | i ∈ Zs} ∪ {bi | i ∈ Zv−s}, and let � = min(x − 1, v − s). For i ∈ Zs , define

Ki
1,x = [ai : ai+1, ai+2, . . . , ai+x−�, bi�, bi�+1, bi�+2, . . . , bi�+�−1],

Ki∗
1,x = [ai : ai−1, ai−2, . . . , ai−(x−�), bi�, bi�+1, bi�+2, . . . , bi�+�−1],

with the subscripts of b taken modulo v − s. Then {{Ki
1,x | i ∈ Zs}, {Ki∗

1,x | i ∈ Zs}} is a TK1,x (s; v).

Note that x − � = max(1, x − v + s). Thus the blocks Ki
1,x and Ki∗

1,x always contain the edges aiai+1 and aiai−1,

respectively (but not vice versa), ensuring the trade is proper (that is, Ki
1,x �= Ki∗

1,x). Since 3�s�2(v − x) − 1, we
have 1�(s − 1)/2 and x − v + s�(s − 1)/2, and hence x − ��(s − 1)/2. This ensures that no edge aiaj is repeated.

Since ��v − s, no vertex bj is repeated in any block. If � = v − s, every vertex of {bi | i ∈ Zv−s} occurs in every
block (in this case the i� terms in the subscripts of b can be replaced by 0). If � = x − 1, then by the condition v/x�s

we have s� = s(x − 1)�v − s, and hence every vertex of {bi | i ∈ Zv−s} occurs in at least one block. �

Corollary 3.1. The conditions of Theorem 1.1 are sufficient for v�2x.

Proof. When v�2x, �max(3, v/x)	=3 and min(v, 2(v−x)−1)=2(v−x)−1. Thus the result follows from Lemma
3.2, except when s = 2. In the case s = 2 we have x = 2 by Lemma 2.3; hence v�2x = 4 by assumption and v�4 by
Corollary 2.1. It follows that v = 4; a suitable TK1,2(2; 4) is {{[3 : 1, 2], [4 : 1, 2]}, {[1 : 3, 4], [2 : 3, 4]}}. �

Corollary 3.2. For integers x, v, s satisfying x�2, v�2x + 1, and �v/x	�s�v, there exists a TK1,x (s; v); that is,
the conditions of Theorem 1.1 are sufficient for v�2x + 1 and �v/x	�s�v.

Proof. When v�2x + 1, �max(3, v/x)	 = �v/x	 and min(v, 2(v − x) − 1) = v. Thus the result follows from
Lemma 3.2. �

The problem is complete for v�2x, but for v�2x + 1 we still require trades of volumes satisfying v + 1�s�
�v(v − 1)/2x� and �2v/(2x + 1)	�s < v/x. We now give the most complex construction, dealing with the case v�s.

Lemma 3.3. Let x, v and s be integers satisfying x�2, v�4x − 1 and v�s�v(v − 1)/2x. Then there exists a
TK1,x (s; v).

Proof. By assumption we have

v�s, (1)

s� v(v − 1)

2x
, (2)

v�4x − 1. (3)

Define m = s − v and n = 2v − s, so that

m + n = v (4)

and

2m + n = s. (5)

By (2) and (3), we have s�(4x − 1)(v − 1)/2x < 2(v − 1), and thus n�3. By (1), we have m�0.
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Let M = {ai | i ∈ Zm}, N = {bi | i ∈ Zn}, and V = M ∪ N . On the vertex set V we construct a set of m copies of
K1,2x and n copies of K1,x , which we call blocks, which are pairwise edge-disjoint. We say that these m + n blocks
form a packing of the complete graph on V. We label the blocks Ki

1,2x , i ∈ Zm, and K
j
1,x , j ∈ Zn, respectively. We let

ai be the centre vertex of Ki
1,2x and let bi be the centre vertex of Ki

1,x . Thus the K1,2x blocks are centred on vertices
of M, while the K1,x blocks are centred on vertices of N.

We first consider the K1,2x blocks. As far as possible, we will complete these blocks with vertices of M. The m copies
of K1,2x contain a total of 2mx edges, and there are

(
m
2

)
edges in M. Therefore the m copies of K1,2x must contain a

total of at least 2mx − m(m − 1)/2 edges between M and N; thus, on average, each K1,2x block must contain at least
2x − (m − 1)/2 vertices of N.

We define � = 2x − (m − 1)/2. By (2) and (3), we have

m = s − v�(4x − 1)(v − 1)/2x − v < v − 2�4x − 3;

it follows that � is positive (thus the K1,2x blocks cannot be completed entirely with edges and vertices of M).
If m is odd, � is an integer. We will construct the K1,2x blocks so that each one will contain exactly � vertices of N.

For i ∈ Zm, we define

Ki
1,2x = [ai : ai+1, . . . , ai+ m−1

2
, b�i , b�i+1, . . . , b�i+�−1],

with the subscripts of b taken modulo n.
If m is even the construction is similar though necessarily a little more complex, since � is not an integer. Note that

��� = 2x − m/2 and ��	 = 2x − (m − 2)/2.
For i ∈ Zm, we let

Ki
1,2x =

⎧⎨
⎩

[ai : ai+1, . . . , ai+m
2
, b���i , b���i+1, . . . , b���i+���−1] if 0� i� m

2
− 1,

[ai : ai+1, . . . , ai+ m
2 −1, b��	i− m

2
, b��	i− m

2 +1, . . . , b��	i− m
2 +��	−1] if

m

2
� i�m − 1,

with the subscripts of b taken modulo n.
We need to check that ��n, to ensure that no vertices of N are repeated in any K1,2x block (when either m is odd or

m is even). If n�2x this is clearly true, so we assume that n�2x − 1, giving x�(n + 1)/2 > (n − 1)/2, and hence

nx >

(
n

2

)
. (6)

By (5) and (2) we have

nx + 2mx = sx�
(

v

2

)
. (7)

By (4), m + n = v, and hence by considering the set of pairs on a v-set we have

(
v

2

)
=

(
m

2

)
+

(
n

2

)
+ mn. (8)

Combining Eqs. (6), (7) and (8), we have

2mx <
(m

2

)
+ mn.

We can divide through by m, since m is not zero, and then rearrange to obtain � = 2x − (m − 1)/2 < n, as required.
We begin the K1,x blocks in a similar way to the K1,2x blocks (centred on vertices of N rather than M), except that

they do not necessarily contain any vertices from M. If vertices of M are required in the K1,x blocks, we leave them
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unspecified at this point. Using an asterisk to denote an unspecified entry, for i ∈ Zn we define

Ki
1,x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[bi : bi+1, bi+2, . . . , bi+x], x� n − 1

2
,

[bi : bi+1, bi+2, . . . , bi+(n−1)/2, ∗, ∗, . . . , ∗], x� n

2
, n odd,

(
x − n − 1

2
unspecified entries

)
,

[bi : bi+1, bi+2, . . . , bi+n/2, ∗, ∗, . . . , ∗], x� n

2
, n even, 0� i� n

2
− 1,

(
x − n

2
unspecified entries

)
,

[bi : bi+1, bi+2, . . . , bi+n/2−1, ∗, ∗, . . . , ∗], x� n

2
, n even,

n

2
� i�n − 1.

(
x − n

2
+ 1 unspecified entries

)
.

If x�(n − 1)/2, the packing of Kv with m copies of K1,2x and n copies of K1,x is complete. Otherwise we must
complete the K1,x blocks, using vertices from M; we now prove that this is possible.

Let x�n/2, and, for i ∈ Zn, let li be the number of vertices of M to which the vertex ni is not adjacent in any K1,2x

block; that is, li is the number of edges available to complete the block Ki
1,x .

The K1,2x blocks use a total of 2xm edges, including all the edges between vertices of M and some of the edges
between M and N. So by counting edges we have

(
v

2

)
= 2xm +

(
n

2

)
+

∑
i∈Zn

li . (9)

For each i ∈ Zn, we let l∗i be the number of unspecified vertices in the Ki
1,x construction given above; that is (since

x�n/2),

l∗i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − n − 1

2
, n odd,

x − n

2
, n even, 0� i� n

2
− 1,

x − n

2
+ 1, n even,

n

2
� i�n − 1.

To complete the packing we require, for each i ∈ Zn, that li � l∗i .
Given the construction of the K1,2x blocks (in which the vertices of N were used in order from b0 to bn−1, then back

to b0, repeating as many times as required), for i, j ∈ Zn with 0� i < j �n − 1 we have li = lj or li = lj − 1; from the
definition of l∗i , we likewise have l∗i = l∗j or l∗i = l∗j − 1.

Assume that lj < l∗j for some i ∈ Zn (we seek a contradiction). Then by the above properties of li and l∗i we have

li � l∗i for all i ∈ Zn, and hence
∑

i∈Zn
li <

∑
i∈Zn

l∗i . But by the definition of l∗i we have
∑

i∈Zn
l∗i = xn − (

n
2

)
, so by

(9) we have
(

v
2

)
< 2xm + (

n
2

) + [xn − (
n
2

)] = x(2m + n). This is a contradiction by Eqs. (5) and (2); thus li � l∗i for
all i ∈ Zn, and hence we can complete the packing of Kv with m copies of K1,2x and n copies of K1,x .

Now we use this packing to construct a TK1,x (s; v).
For each i ∈ Zn, we construct the block Ki∗

1,x by starting with the block Ki
1,x , and replacing each vertex bi+d ,

1�d �n/2, with the vertex bi−d . We have n�3, so {{Ki
1,x | i ∈ Zn}, {Ki∗

1,x | i ∈ Zn}} is a trade.
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By Lemma 3.1, we can place a K1,x trade of volume 2 on each block Ki
1,2x , i ∈ Zm. Let this trade be {{Bi

1, B
i
2},

{Bi
3, B

i
4}}. Define

T1 = {Bi
1, B

i
2 | i ∈ Zm} ∪ {Ki

1,x | i ∈ Zn},

T2 = {Bi
3, B

i
4 | i ∈ Zm} ∪ {Ki∗

1,x | i ∈ Zn}.

Then {T1, T2} is a TK1,x (s; v). �

We now extend this result inductively to arbitrarily large foundation sizes.

Lemma 3.4. For integers x, v, s satisfying x�2, v�2x + 1, and v�s��v(v − 1)/2x�, there exists a TK1,x (s; v); that
is, the conditions of Theorem 1.1 are sufficient for v�2x + 1 and s�v.

Proof. For 2x + 1�v�4x − 1, the result follows from Lemma 3.3.
Regarding x as a constant (x�2), assume that the result holds for a given v; that is, for some v�2x + 1, there exists

a TK1,x (s; v) for every s satisfying v�s��v(v − 1)/2x�.
Take disjoint vertex sets A and B such that |A| = v and |B| = 2x. By assumption we can place a K1,x-trade of any

volume between v and �v(v − 1)/2x� on A, and by Lemma 3.2 we may place a trade of any volume between 3 and
2x − 1 on B. The bipartite graph Kv,2x with vertex set A ∪ B may be decomposed into v copies of K1,2x , and by
Lemma 3.1 (with s = 2) we may (optionally) place a K1,x-trade of volume 2 on some or all of these copies of K1,2x .
The combined trade has foundation v + 2x and any volume between v + 3 and �v(v − 1)/2x� + 2v + 2x − 1. Since
v + 3 < v + 2x and �v(v − 1)/2x�+ 2v + 2x − 1 =�(v + 2x)(v + 2x − 1)/2x�, the result holds for foundation v + 2x.

For this induction to work we require 2x basis cases, but we only have 2x−1 (namely, those v with 2x+1�v�4x−1).
However, we can include v = 2x and s = 2x − 1 as a basis case to prove the result for v = 4x (this trade exists by
Lemma 3.2), and hence the result follows inductively for all v�2x + 1. �

We conclude with a construction for the case �2v/(2x + 1)	�s < v/x.

Lemma 3.5. For integers x, v, s satisfying x�2, v�2x + 1, and �2v/(2x + 1)	�s < v/x, there exists a TK1,x (s; v);
that is, the conditions of Theorem 1.1 are sufficient for v�2x + 1 and s < v/x.

Proof. Let x, v and s be integers satisfying the above conditions. Then s�2, and sx + 1�v��s(2x + 1)/2�.
By Lemma 3.1 with s = 2 and with s = 3, there exist trades TK1,x (2; K1,2x) and TK1,x (3; K1,3x).
If s is even, take s/2 copies of TK1,x (2; K1,2x), which are vertex disjoint except that one vertex is common to

s(2x + 1)/2 − v + 1 of the trades. The combined trade is a TK1,x (s; v).
If s is odd, note that �s(2x + 1)/2� = (s(2x + 1) − 1)/2. Take (s − 3)/2 copies of TK1,x (2; K1,2x) and one copy of

TK1,x (3; K1,3x), which are vertex disjoint except that one vertex is common to (s(2x + 1)− 1)/2 − v + 1 of the trades.
The combined trade is a TK1,x (s; v). �

The sufficiency of Theorem 1.1 is established by Corollaries 3.1 and 3.2 and Lemmas 3.4 and 3.5. This completes
the proof of Theorem 1.1.
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