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The method of gradients is a recently developed iterative technique for the solution 
of the generalized eigenvalue problem A x  = ABx. This paper essentially determines the 
size of the neighborhoods about the unit vectors in each eigenspace in which choices of 
initial estimates guarantee convergence of the iteration to the appropriate eigenvector. 

1. INTRODUCTION 

Lately, a great deal of attention has been directed toward methods for solution of the 
generalized eigenvalue problem 

A x  = ~,Bx (1) 

for square matrices A and B, which includes the classical eigenvalue problem 

A x  = Ax (2) 

as a special case. Solutions of (1) will henceforth be referred to as eigenvectors of 
(A, B). Of the various gradient-l ike methods treated (cf. [1-9]), what we will call the 
method of gradients [ l ,  3, 6, 9] is especially important  when A and B are large, sparse, 
and unsymmetric.  This  method is the subject of this paper. 

The  procedure is a simple gradient projection algorithm which is given formally by 

y .  = x .  - -  s ( F ( x n )  VF(x . ) / I ,  VF(x.)It2), 

x,,-~x = Y. / I [Y.  I', 
(3) 

where the scalar 0 < s < 4, l[ Y II represents the Euclidean norm o f  y ,  and the functional 
F is defined by 

F(x) = ( A x ,  A x )  (Bx ,  B x )  - -  ( A x ,  B x )  2. (4) 
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Here, /x,. ,,~,,~ denotes the Euclidean inner-product of the vectors x and y. Note that 
the gradient of F is then given by 

VF(x) -- 2[(Ax, A x )  B*Bx  + (Bx,  Bx )  A * A x  -- (Ax,  Bx)  (A*Bx  ~- B~Ax)], (5) 

where A* and B* denote the adjoints of A and B, respectively. The  fact that (3) is in 
the form of a gradient projection algorithm follows from the equivalence of problem (1) 
to the constrained minimization problem of finding a unit vector x such that 

F(x) = min(F(u): u in H, II u ~1 = I). (6) 

The  extension of iteration (3) to general optimization problems is realized in this way 
and has been exploited in an article by the author [7]. 

Rodrigue [9] chose to treat the technique with the projection phase ommit ted so 
that the method has the form 

x , .x  -- x ,  --  s (F(x,,) VF(x,)/II VF(x,)Hz). (7) 

The  difficulty with this approach is that convergence to the null vector often occurs 
and, consequently, the theoretical results are somewhat unsettling. Note that con- 
vergence of the two procedures is otherwise the same up to differing by a normalizing 
constant. Moreover, for a given choice of x o , the limit of the sequence in either (3) or 
(7), if it exists, must be a zero of and, hence, an eigenvector of (A, B). This  follows 
from taking limits of both sides of the defining equations and noting 

V(x) = �88 <VF(x), x). (8) 

It  is therefore important to determine which unit eigenvectors of (M, B) are indeed 
limit points of sequences (3) produced by different choices of the initial guess x o 
and to also have some idea of the nature of the initial estimates that provide con- 
vergence to a particular unit eigenvector. More precisely, it is desirable to be able to 
specify neighborhood balls about each of the eigenvectors of (A, B) such that con- 
vergence of iteration (3) to a particular eigenveetor is guaranteed for any normalized 
choice of x 0 in its surrounding neighborhood. Such is the aim of this paper. 

The  central result is that each nondegenerate eigenvector of (A, B) exhibits a 
neighborhood ball with the above properties and, quite surprisingly, are all of equal 
size and depend only on s when B-1A is symmetric. Moreover, in the limiting case 
s = 0, the balls are as large as possible without intersecting. Although the general 
situation for problem (1) is somewhat more complex, the size of the balls are never- 
theless independent of the eigenvalues, a property which is in marked contrast to other 
techniques like the power method, inverse iteration, and the angular gradient technique 
[8]. This nature of the method of gradients is one of its most significant characteristics 
and suggests advantages over other iterative techniques when intermediate eigenvalues 
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and their eigenvector are sought. This  remains true even though one should keep in 
mind that convergence rates do depend on the relative positions of the eigenvalues 
of (A, B). 

2. MAIN RESULTS 

For  simplification we shall henceforth assume that A and B are real n by n matrices 
and that B is nonsingular. 

Remark. Le t  u be a real normalized n vector. Then the following are equivalent: 

a. F ( u )  - -  O, 

b. F(u) = min{F(x): x in R n, 1! B x  ]1 : 1}, 

c. V F ( u ) -  0, 

d. A u  --- ABu for some real A. 

The  equivalence of a to b follows directly from applying the Schwarz inequality to the 
definition of F(x)  in (4). The  equality condition implies the equivalence of a to c. 
Finally, substi tution shows that d implies a and that a implies d is a consequence of (8). 

Our  first theorem summarizes results presently known about the method of gradients 
[3, 7, 9], so the proof is ommitted. Not that the conclusions indicate qualitative local 
convergence only. 

THEOREM I. Let  0 < s < 4 and suppose that )t is a nondegenerate eigenvalue of  

(A,  B)  in the sense that the minimal polynomial of  B - 1 A  has only an elementary divisor 

associated with A. Let  Ea = {u in R~: H u l] = 1, Au  = Bu} and for  each x in R ~ where 

possible define Vx  ~- x - -  u x letting u x represent the closest point in Ea to x. Then for  
some 3 > 0 the sequence x n in (3) is well defined and linearly convergent to u% for  any 

x o in the set 

Me = {x in R": II x II = 1, II Ax  ,1 < ~), 

Theorem 1 establishes the existence of a "neighborhood ball" about Ea in which 
convergence is guaranteed for the method of gradients. To have some idea of  the 
usefulness of the technique it now becomes necessary to determine allowable sizes of 
such neighborhoods, which is what the next two theorems at tempt to do. We first 
consider the special case in which B ---- I,  the identity matrix, for which it is necessary 
to have some estimate of the quanti ty 

a,  := m a x ( i < ( A  - -  M)h ,  ")I(IICA - -  Xt)h 112 - -  < (A  - -  ~ / )h ,  u)2)-x/~,  u in  E ~ ,  h in E ~ ) .  (9)  

Here E ~  denotes the set of.unit  vectors in R ~ that are orthogonal to E a . Note that d a 
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can be thought of as a measurement of the nondegeneracy of A and that an alternate 
definition is given by 

d a = max{[ a/b l: (.4 - -  M)h  =: au + by, h and v in E~}. (10) 

Observe that da < oo for A nondegenerate and that d^ = 0 if each u in Ea is also an 
eigenveetor of .4". 

THEOREM 2. Suppose B = I and 0 < s < 4 and let A represent a nondegenerate 
eigenvalue o f  (A,  B).  Choose % so that 

and 

1 > % ~> [4/(8 - -  s)]t / ' ,  

da 2 ~< (%2(8 - -  s) --  4)2/[%2(8 - -  s)2(l --  %z)], 

(11) 

(12) 

da 2 ~ %21(1 --  %~). (13) 

Then  the conclusions of Theorem 1 are valid for the choice 3 =~ 2(1 - -  %). Note that, 
for this choice, 

M, = (au + flh: u in Ea,  h in E~, a and fl reals, ~ > %}. 

Before we present the proof, we first remark that condition (11) is quite a loose 
restriction on the size of ~ a ,  as we shall see in the corollary; condition (13) simply 
ensures that no other eigenvectors of (.4, B) lie in ~8; and condition (12) is restrictive 
only when da is much different from zero~ The  possibility that the quantities (Ah, u)  
are nonzero obscures conception of the size of d 0 ,  since otherwise (12) and (13) are 
empty restrictions. The corollary immediately following the proof should provide a 
clearer picture. 

Proof. Let x ---- oat + flh denote an element of.~8 where we suppress the subscript 
of u x and where h ~ E~  and, therefore, cx 2 + f12 = 1. That  ~]n is given according to the 
theorem follows from noting 

II A x  il ~ = 11(~ - 1)u + Bh I1' 

.... (~2 _ 2~ + l)  + ~2 

= 2(1 - -  a), 

so that the requirement [I Ax  ii < 8 is equivalent to ~ > % .  
To prove the remainder of the theorem, we first formally define 

q(x) = x - -  (sF(x) VF(x)/[I VF(x)![z). 
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Now temporarily suppose we could prove for x in Ma - -  Ea that 

a .  II VF(x)II :# 0 and II ~(x)II # 0, 
b. <q(x), u> ~> o, 

and 

c. <x, u>(S - s)y(x) ~> 2< VF(x), u>. 

Then a would imply that q(x) and q(x)tiI q(x) ]l are well defined. From c it would then 
follow that 

W(x)<VF(x), u>~ ~ (1 
(<x, u> - II VF(x)II u : > <x, u> ~ 

which, coupled with b, would imply that 

~(8 - s) F2(x) 
II VF(x)II 2 ) 

and, hence 

<q(x), u> > <x, u> II q(x)It 

II(q(x)lll q(x) l l )  - E~, l :  = ll(q(x)ttl q(x) l l  - -  u~ I? 

= 2(1 - -  (<q(x), u>lllq(x)ll) 

< 2(1 - -  <x, u>) 

= 11 Ax II z. 

Then, choosing 3' > 0 small enough to ensure the validity of the conclusions of 
Theorem 1 and letting 

k = max{l l (q(x) l l l  q(x)rl) - E~ II/ll ,'ix II: x in ~ a  - -  D~g}, 

it would then follow from the finite dimensionality and boundedness of Dtl 8 - - ~ 8 '  
that k < 1. Linear convergence would therefore be guaranteed in all of ~ and the 
theorem would be proved. We therefore complete the proof by establishing a, b, and c. 

First note that if A is replaced by A --  M, then neither F(x) nor, therefore, VF(x) 
is altered. We may for the remainder of the proof, then, assume that ~ ---- 0. 

To  prove (a) we first assume [[ VF(x) [[ = 0 and, thus, that Ax = #zx for some tt =~ 0. 
Since d x  = flAh it follows that Ah = kau + k~h for some scalar k # 0. From (10), 
therefore, 

[ ka/k~ [ <~ dA. 

Thus, 
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which contradicts (13) and establishes that H VF(x)][ =# 0. (a) now follows from the 
observation 

I] q(x) II >~ (q(x), x> 

1 - -  (s (VF(x), x)~/4 II VF(x)ll 2) 

~> 1 - -  (s/4) 

> 0 .  

To  prove (b), note that 

(q(x), u) = ~ - -  (s(VF(x), x)(VF(x) ,  u)/4 ]] VF(x)][ ~) 

>~ ~ - ( s / 4 ) .  

But since ~ > 4/(8 - -  s) it suffices to show for 0 < s < 4 that 

4/ (8  - -  s ) ~  (s~/4 ') 

or, equivalently, 

sS--  8s" + 64 >~ 0. 

The  only critical point of the polynomial s 3 --  8s z + 64 in the interval [0, 4] is at 
s ---- 0. Examining the polynomial for a minimum at the endpoints s = 0, 4 shows that 
the minimum is zero, thus proving the validity of  (b). 

For (c), we first observe 

F(x) = [3~((Ah, A h )  - -  (Ah,  x )  2) 

and 

(vF(x), u) = 2f~((Ah, A h )  o, --  (Ah,  x ) ( A h ,  ,,)). 

We must therefore show that 

a(8 - -  s)((Ah, Ah )  - -  (Ah ,  x)  ~) - -  4((Ah, A h )  a - -  (Ah ,  x ) (Ah ,  u)) >/O, (14) 

Now let a ,b , r  and ~7 be real numbers such that E z + ~ z - 1  and A h - ~ a u +  
b(r + ~lv) for some unit vector v orthogonal to both u a n d  h. Then  a simple calculation 
shows that (14) is equivalent to the nonnegativity of the polynomial 

P(,)  -~-- c~(8 - -  s)(a ~ + b a - -  (aa + b,fl)') - -  4(ab ~ - -  aflbr 

which is of degree two in r Since the coefficient of ~ is nonnegative, to prove (14) it 
suffices to show that P ( •  ~> 0. Observe that 

~ ( •  = ~(8  --  s)(b~ • aft) ~ + 4~ (~a  • an) 
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and, dividing by b2~ ~ and letting d ---- T a[3/bo~ [, we have 

(P(q-1)[o~b ~) ---- c~(8 - -  s)(1 :~ d) z - -  4(1 4- d) 

/> a~(8 - -  s)(1 - -  d) 2 - -  4(1 - -  d) 

= (1 - -  d)(az(8 - -  s) --  4 - -  ~(8  - -  s)d). 

Note that from (13) it follows that 

I ~//3 I > %(1 - -  %2)-1/~ 

>~d~ 

>~ l alb[. 

Clearly d < 1, and it suffices to prove that 

( ~ z ( 8  - -  s )  - -  4 )  - -  ~ 2 ( 8  - -  s)d ~ O. 

This, of course, is (12) rewritten. We have thus proved (c) and, therefore, the theorem. 

COROLLARY. 
set 

Suppose A is a symmetric matrix, B = L and 0 < s < 4. Define the 

= {oat + flh: h in E~, ~2 > 4/(8 - -  s)}. 

Then the sequence in (3) is well defined and converges linearly to u% for any x o in ~ .  

Note that the "balls" ~ are equal for all values of A and depend solely on s. More-  
over, as s goes from four to zero they expand monotonically from the sets Ea to "cir- 
cular" surfaces on the unit sphere that are as large as possible. That  is, in the limiting 
case s = 0, although the balls do not intersect, their closures do. This fact, coupled 
with the local properties of the method of gradients, suggests that numerical imple- 
mentation of the algorithm should begin with small s and increase to the value s ----- 2 
in later stages of  the iterative procedure. No apparent advantage is gained by having 
2 < s < 4 .  

We now turn our attention to the general case for which we need the quantity 

Da = max{l((A - -  AB)h, Bu>I(IJ(A - -  AB)h II e [I Bu II e - < (A  - -  AB)h,  Bu>2)-l/m: (15)  

u in E~, h in E~). 

This quantity corresponds to da with equality in the case B ~ I and exhibits the 
same characteristics. As before, an alternate definition is given by 

Da ---- max{[ a/b [: (A - -  AB)h ~ aBu + bBv, (16) 

(By ,  Bu> = O, ]I Bu [[ ---- [] B y  I] = 1}. 
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Note that Da < c~ if h is nondegenerate and a sufficient condition for Da = 0 is the 
symmetry of B-1A. 

Theorem 2 applies directly to the case when B is orthogonal. The  possibility that  B 
alters the orthogonality relationship between Ea and Ea ~, however, requires that  we 
take this into account as we do by defining 

Oa ~ max{0/[[ Bu II~)r(ll Bh [I s Ib Bu LI ~ - (Bu, Bh)  2 Da + ](Bu, Bh)l]:  u in Ea, h in E~}. 

(17) 

THEOREM 3. Let 0 < s < 4 and suppose A is a nondegenerate eigenvalue of (A, B). 
Let ~o be such that 

1 > ~o ~> ( 4 / ( 8  - -  s ) )  1/2, ( 1 8 )  

$a ~ ~< (%3(8  - -  s) - -  4)~/ [~o~(8 - -  s)2(1 - -  %') ] ,  ( 1 9 )  

and 

r < ~0~/(1 - ~o'). (20)  

Then the conclusions of Theorem 1 are valid for 3 = 2(1 - -  %). 

Proof. Let  x = ~u + / 3 h  as in the proof  of Theorem 2. With q(x) as in the proof  
of  Theorem 2, to prove Theorem 3 it suffices as before to establish (a), (b), and (c) 
listed in the proof of Theorem 2. For this purpose, we again assume without loss of  
generality and for convenience that A = 0 noting that F(x) and VF(x) are unchanged 
by the replacement of A by A - -  AB. 

The  proof of (a) and (b) are just as before and we settle with the task of establishing 
(c). Note, as previously, that 

and 

F(x) - -  ~([1Ah []~ [[ Bx []~ - -  (Ah, Bx)  ~) 

<VF(x), u) = 2H~(lk Ah Ir <Bx, Bu) --  <Ah, Bx)<.dh, Bu). 

We must  therefore show that 

n(8  - -  s)([] Ah ][ 2 II B x  [r - (Ah, Bx) 2) 
- -  4(ll Ah I[ 2 (Bx, Bu) --  (Ah, Bx) (Ah ,  Bu)) >/0 

or, rewritten with the factor a, that 

(~z(8 - -  s) - -  4)(I] Ah II 2 II e x  II 2 --  <Ah, Bx> 2) + 4/32F(h) - -  4 ~ ( A h ,  Bu)(Ah,  Bh)  >~ O. 

(22) 

Let  a, b, e, and ~/be reals with E = + ~/~ = 1 and Ah = aBu + bB(Eh' + 3v). Here we 
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require Bv to be orthogenal to both Bu and Bh and of length ]] By  ]1 = [I Bu ]] and we 
let 

h' = (- -  (Ah ,  Bu)u  + (Bu,  Bu)h)([] Bh II 2 II B u  II 2 - <Bu, Bh)2)-l/2. 

We have constructed h '  as a linear combinat ion of  u and h so that  (Bh' ,  Bu )  = 0 and 
I] Bh'  ]] = ]] Bu ]]. Proving (21) reduces therefore to deriving the nonnegativi ty of  the 
polynomial  P(~) in ~ which is achieved by subst i tut ing the above representation of Ah 
into (21). As before it is sufficient to consider the case ~ = •  i.e., Ah -~ aBu + bBh' 
where now 

] a/b I -~ I(Ah, Bu)[(ll Ah  [I ~' II B u  II ~ - (Ah,  Bu)2)-l/~ 

<~D~. 

Let t ing 

and 

a o = a - -  (Ah,  Bu)(l] Ah [I s ]l Bu[I s - -  (Ah ,  Bg)~) -1/2. 

b o ---- [1Bu ]l s ([] A h  ]13 II B u  I1 ~ - (Ah,  Bu)~)-l/2 b, 

then we have Ah ~ aoBu + boBh. Calculation now shows that, as before, 

~3~(+1) ~ a2(8 - -  s)(boa -4- aofl) ~ + 4od~o(flao • c~bo), 

which implies 

( P ( + l ) / a b 0  2) >/~2(8 - -  s)(1 - -  d) 2 - -  4(1 - -  d) 

where now d = ] aofl/boot ]. I f  d > / 1 ,  we are done. Otherwise, it suffices to show that 

~ 2 ( 8  - s )  - 4 ~> ~ ( 8  - s)a 
o r  

( ~ ' ( 8  - s )  - 4 ) 3  

b0 2 - -  _ �9 

(c) now follows from observing 

a 0 ~00 ] = ](I] 2~h []3 H B u  [13 - -  ( A h ,  Bu>2)  112 a _ <2/~h, B . )  I ]] Bu ][3 b [[BuH 2 , 

~< Oa 

and not ing (19). T h e  theorem is proved. 
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3. CONCLUDING REMARKS 

Although conclusions in the general environment of problem (1) are complex 
at best, the situation is entirely expected from the nature of the parameters  that  
affect the "regions of at traction" about E~. Specifically, we must  take note of the 
effects of the choice of s, the exclusion of other eigenvalues, and, if you will, the 
nearness of B - 1 A  to symmetry and the nearness of B to orthogonality. The  size 
restrictions on . ~  that  correspond to these four aspects are, roughly speaking, con- 
tained in (18), (20), (19), and, again, (19), respectively. 

The  results presented here can be posed in greater generality by including the 
complex, rectangular, and Hilber t  space cases. The  expected effort, however, is 
prohibitive. 
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