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Abstract

The parity-conserving single-spin beam asymmetry of elastic electron–proton scattering is induced by an absorptiv
the two-photon exchange amplitude. We demonstrate that this asymmetry has logarithmic and double-logarithmic enhanceme
due to contributions of hard collinear quasi-real photons. An optical theorem is used to evaluate the asymmetry in terms of th
total photoproduction cross section on the proton, predicting its magnitude at 20–30 parts permillion for high electron beam
energies and small scattering angles. At fixed 4-momentum transfers, the asymmetry is rising logarithmically with in
electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the prot
 2004 Published by Elsevier B.V.Open access under CC BY license.
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1. Introduction

It has been known for a long time[1–3] that the
two photon exchange (TPE) mechanism can gene
the single-spin normal asymmetry (SSNA) of electr
scattering due to a non-zero imaginary part of the T
amplitudeA2γ ,

(1)An = 2ABorn�(A∗
2γ )

|ABorn|2 ,
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where symbol� denotes the imaginary (absorptiv
part. The one-photon-exchange amplitudeABorn is
purely real due to time-reversal invariance of elect
magnetic interactions.

The first calculations of the TPE effect on the p
ton [4] predicted the magnitude of beam SSNA at
level of a few parts per million (ppm). The effect a
pears to be small due to two suppression factors c
bined:α = 1/137, since the effect is higher-order
the electromagnetic interaction, and the electron m
me arising due to electron helicity flip. The predictio
of Ref. [4] which correspond to elastic intermadia
proton state only are in qualitative agreement with
se.
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perimental data from MIT/Bates[5] and was repro
duced later in Ref.[6].

However, the main theoretical problem in descr
tion of the TPE amplitude on the proton is a lar
uncertainty in the contribution of the inelastic hadro
intermediate states. In Ref.[6] the beam SSNA at larg
momentum transfers was estimated at the level of
ppm, using the partonic picture developed in Ref.[7]
for TPE effects but not related to the electron helic
flip.

Current experiments designed for parity-violati
electron scattering allow to measure the beam as
metry with a fraction of ppm accuracy1 [8,9] and
may also provide data on the parity-conserving be
SSNA. In fact, such measurements are needed bec
beam SSNA is a source of systematic correction
the measurements of parity-violating observables.

It was noted in[4] that while considering excita
tion of inelastic intermediate hadronic states, the be
SSNA (Eq. (11) of Ref.[4]), after factoring out the
electron mass, has an enhancement when at leas
of the photons in the TPE loop diagram is collinear
its parent electron. It is interesting that this effect d
not appear for the target SSNA. Similar behaviour
the beam SSNA in the nucleon resonance region
observed also in[10] where authors used a pheno
enological model (MAID) for single-pion electropro
duction.

In this Letter we demonstrate that collinear pho
exchange in the TPE amplitude results in single-
double-logarithmic enhancement of the beam SS
whereas such enhancement does not take plac
the target SSNA (with unpolarized electrons) and s
correlations caused by longitudinal polarization of
scattering electrons. For large electron energies
small scattering angles, we use an optical theorem
relate the nucleon Compton amplitude to the total p
toproduction cross section and obtain a simple ana
formula for the beam SSNA in this kinematics.

2. Leptonic and hadronic tensors

First, we write the formula for SSNA in terms o
rank-3 leptonic and hadronic tensors which appea

1 SLAC E158 Experiment, contact person K. Kumar.
e
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Fig. 1. Interference between the Born and the TPE box diagram
elastice–p scattering that determines SSNA.

the interference between the Born and TPE amplitu
as shown inFig. 1

(2)An = −iαQ2

π2D(s,Q2)

∫
d3k

2Ek

LµαβHµαβ

q2
1q2

2

,

where Q2 = −q2, k(Ek) is the 3-momentum (en
ergy) of the intermediate on-mass-shell electron
the TPE box diagram,q1 andq2 are the 4-moment
of the intermediate photons,q1 − q2 = q . The factor
Q2/D(s,Q2) in Eq. (2) is due to the squared Bor
amplitude, namely,

D
(
s,Q2) = Q4

2
(F1 + F2)

2 + [(
s − M2)2 − Q2s

]

(3)×
(

F 2
1 + Q2

4M2F 2
2

)
,

whereF1 (F2) is the Dirac (Pauli) proton form facto
M is the proton mass ands = (k1 + p1)

2. Our sign
convention for the beam asymmetry follows from t
definition of the normal vector with respect to the ele
tron scattering plane:k1 × k2.

Using the above notation, we have

Lµαβ = 1

4
Tr(k̂2 + me)γµ(k̂1 + me)

(
1− γ5ξ̂

e
)
γβ

(4)× (k̂ + me)γα,

and

(5)
Hµαβ = 1

4
Tr(p̂2 + M)Γµ(p̂1 + M)

(
1− γ5ξ̂

p
)�Tβα,

whereme is the electron mass,ξe (ξp) is the polar-
ization 4-vector of the electron beam (proton target
Γµ = γµ(F1 +F2)− (p1µ +p2µ)F2/(2M), andTβα is
in general a non-forward proton Compton tensor t
describes any possible hadronic intermediate state
the TPE amplitude. Inaccordance with Eq.(2) the
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the
single-spin normal asymmetry probes the imagin
part of contraction of the leptonic and hadronic te
sors defined by Eqs.(4) and (5), respectively. Thes
tensors satisfy the conditions

qµLµαβ = q2αLµαβ = q1βLµαβ = 0,

(6)qµHµαβ = q2αHµαβ = q1βHµαβ = 0,

separately for spin-independent and spin-depende
parts, as follows from gauge invariance of electrom
netic interactions.

After some algebra we arrive at the following e
pression for the model-independent leptonic tenso

(7)Lµαβ = L
(un)
µαβ + L

(pol)
µαβ ,

where the spin-independent part is

L
(un)
µαβ = 1

2
q2

1(gµβk2α − gµαk2β)

− 1

2
q2

2(gµβk1α − gµαk1β) − kµ[k1k2]αβ

+ 1

2
gαβ

(
q2

1k2µ + q2
2k1µ − q2kµ

)

+ 1

2
q2(gµαkβ + gµβkα)

+ k2µ(kk1)αβ + k1µ(kk2)αβ,

[ab]αβ = aαbβ − aβbα,

(8)(ab)αβ = aαbβ + aβbα,

and the spin-dependent part is given by

L
(pol)
µαβ

= ime

[
−gαβ

(
µqq2ξ

e
) + kβ

(
µαqξe

) + kα

(
µβqξe

)

+ ξe
µ

(
αβqq2

) + (
ξek2

)
(µαβq1) + k2µ

(
αβq1ξ

e
)

+ k1µ

(
αβq2ξ

e
) + 1

2
q2(µαβξe

)]
,

(9)(abcd) ≡ ενλρσ aνbλcρdσ ,

where the on-shell conditionk2
µ = m2

e was used for the
intermediate electron 4-momentum.

If one of photon in the box diagram is collinear
its parent electron, for example,

(10)q1 = xk1, x = W2 − M2

s − M2 ,

whereW2 is the squared invariant mass of the interm
diate hadronic system, leptonic tensor can be wri
as

(11)Lµαβ = 1− x

x
q1βLB

µα + imexL
ξ
µαβ .

The tensorLB
µα coincides with the Born one of elast

electron–proton scattering and

L
ξ
µαβ = −gαβ

(
µqk1ξ

e
) + q2

2

(
µαβξe

) + ξe
µ(αβqk1)

+ (
ξek2

)
(µαβk1) + k2µ

(
αβk1ξ

e
)

(12)+ k1µ

(
αβk2ξ

e
)
.

In the case of longitudinal polarization of the ele
tron beam(ξe

mu = k1µ/me) the tensorLξ
µαβ is zero.

Therefore, we expect no contribution from conside
kinematics to the target SSNA or to longitudinal-sp
correlations because any gauge invariant hadronic
sor has to give zero after contracting withq1β (see
Eq.(6)).

In the case of the normal polarized electron bea

(13)ξe
µ = 2(µk1p1q)√

Q2[(s − M2)2 − Q2s] ,

tensorLξ
µαβ is not zero and the considered colline

photon kinematics contributes with essential logar
mic enhancement.

Therefore, conservation of the electromagnetic c
rent that follows from gauge invariance (Eq.(6)) is the
reason why the collinear intermediate photons appe
in the TPE contribution to the beam SSNA, but not
the target SSNA. By analogy, we do not anticipate c
tributions from collinear-photon exchange in unpol
ized electron–proton scattering, parity-conserving
parity-violating asymmetries due to longitudinal ele
tron polarization the normal polarization of leptons
not involved.

Let us consider the hadronic tensor. Small value
Q2 correspond to the forward limit of nucleon virtu
Compton amplitudeTβα . On the other hand, becau
q2

1 andq2
2 are also small in the collinear photon lim

we can relate the forward Compton amplitude to
total photoproduction cross section by real photon

A general form of the Compton tensorTβα in terms
of 18 independent invariant amplitudes that are f
from kinematical singularities and zeros was deriv
in Ref. [11]. Among these amplitudes we choose
ones that contribute at the limitq2 → 0 andq2

1 → 0. It
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automatically constrains virtuality of the second ph
ton to q2

2 → 0. There is only one structure that co
tains the tensorgαβ and does not die off under th
considered conditions. It reads[11]

Tβα = [−(p̄q̄)2gαβ − (q1q2)p̄αp̄β

+ (p̄q̄)(p̄βq1α + p̄αq2β)
]
A

(
q2

1, q2
2, q2,W2),

(14)p̄ = 1

2
(p1 + p2), q̄ = 1

2
(q1 + q2).

It can be verified thatTβα defined by the above equ
tion satisfies the conditionsTβαq1β = Tβαq2α = 0.

The normalization convention is chosen such t
the imaginary part of the quantity(W2 − M2 −
q1q2)

2A(W2, q2 = 0, q2
1 = q2

2) is connected with the
inelastic proton structure functionW1(W

2, q2
1) by the

following relation
(
W2 − M2 − q1q2

)2�A
(
W2, q2 = 0, q2

1 = q2
2

)
(15)= π

M
W1

(
W2, q2

1

)
,

and W1, in turn, defines the total photoproducti
cross section[12] as

(16)W1
(
W2,0

) = W2 − M2

8π2α
σ

γp
tot

(
W2).

Keeping in mind that the main contribution to th
beam SSNA arises from collinear photon kinemat
we can combine relations(5), (14) and(15) and write
hadronic tensor in the following form

Hµαβ = 2πW1(F1 − τF2)p1µ

(
−gαβ − [p1q]αβ

W2 − M2

)
,

(17)τ = Q2

4M2 .

When writing this last expression we neglect the ter
containing(q1q2), which lead to the contribution o
the orderQ2/W2 in the beam SSNA.

It may seem at first that in the considered lim
ing case of very smallQ2 one can omit all terms
proportional toq in the hadronic tensor. But such a
proximation is valid only for the symmetric part o
Tβα with respect to the indexesα and β . The rea-
son is that the corresponding symmetric part of
leptonic tensor (see Eq.(9)) contains the momentum
transferq , and keeping it in the symmetric part
hadronic tensor leads after contraction to additio
small terms of the order at leastQ2/W2. On the other
hand, the antisymmetric part of leptonic tensor c
tains terms which do not include the momentumq .
Therefore, the antisymmetric part in Eq.(17) has to
be retained because it contributes at the same o
with respect toQ2/W2. Note, however, that this ant
symmetric part of the hadronic tensor is not related
the polarized nucleon structure functions, but it com
about as a consequence of the gauge-invariant s
ture of Eq.(14)even for a spinless hadronic target.

3. Master formula

To compute the contraction of tensors in Eq.(2) we
use the relations

−gαβp1µL
(pol)
µαβ = 2ime

[(
p1qq1ξ

e
) + (

k1p1qξe
)]

,

−[p1q]αβp1µL
(pol)
µαβ = ime(u − s)

(
p1qq1ξ

e
)
,

s + q2 + u = 2M2, which are valid for the nor
mal beam polarization((ξek1) = (ξek2) = (ξep1) =
(ξep2) = 0), and the explicit form of 4-vectorξe given
by Eq.(13). Then we arrive at

L
(pol)
µαβ Hµαβ = ime

√
Q2(F1 − τF2)

(W2 − M2)2

4πα

(18)× σT

(
W2, q2

1

)
,

whereσT (W2, q2
1) is the total photoproduction cros

section with the transverse virtual photons. When
tegrating with respect toW2 we takeσT (W2, q2

1) →
σ

γp
tot (W

2) and assumeσγp
tot (W

2) to be constant with
energy (≈ 0.1 mb, according to Ref.[13]).

Taking into account Eqs.(2) and (18)one can write
the beam SSNA at small values ofQ2 as

Ae
n = me

√
Q2 σ

γp
tot

4π3

F1 − τF2

F 2
1 + τF 2

2

I,

(19)I =
∫

d3k

2Ek

(W2 − M2)2

(s − M2)2

Q2

q2
1q2

2

.

Here and further we use notation whereEk1,Ek(k1,k)

are the energies (3-momenta) of the initial and in
mediate electron, respectively. The angular integra
in Eq. (19) can be done by introducing the Feynm
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∫
dΩk

q2
1q2

2

=
1∫

0

dy

∫
dΩk

[−2m2
e + 2(kky)]2 ,

ky = yk1 + (1− y)k2 = (
Ek1;yk1 + (1− y)k2

)
,

(kky) = Ek1Ek − 2k|ky|cosθy,

dΩk = dΦ d cosθy.

Integration overdΩk and Feynman parametery is
straightforward, leading to

I = π

2

Ek1∫
me

dEk

k
(1− z)2L,

(20)L = 1

K
log

2K + 1

2K − 1
,

wherez = Ek/Ek1, and

L = 1

K
log

2K + 1

2K − 1
, K =

√
1

4
+ η,

η = m2
e(Ek1 − Ek)

2

Q2k2
.

We extended the upper limit up toEk1 because the dif
ference between the value ofEk at inelastic threshold
of pion production (whenW2 = (mπ + M)2) andEk1
is negligible at larges.

To calculate the integral in Eq.(20), we note first
that the region wherek � 0 does not contribute be
cause of the factor ofL. For this reason we can chan
integration with respect toEk by integration overk.
Then we divide the integration region into the follow
ing two parts, 0< k < λme andλme < k < Ek1, and
choose the auxiliary parameterλ in such a way that

(21)λ � 1, λme � Ek1 �
√

Q2 λ.

In the first region we can neglectEk as compared
with Ek1 and write the corresponding contribution
the form

I1 = π

λme∫
0

dk

k
L

=
λ
√

Q2/2Ek1∫
0

2π dz√
1+ z2

log
(
z +

√
1+ z2

)

(22)= π log2
(

λ

√
Q2

Ek1

)
.

In the second region the quantityη that entersL is
small and we have

I2 = π

1∫
zλ

dz

z
(1− z)2

(
log

Q2

m2
e

+ 2 log
z

1− z

)

(23)zλ = λme

Ek1
� 1.

The integration in Eq.(23)gives

I2 = π

2

(
2 log

1

zλ

log
Q2

m2
e

− 2 log2 zλ − 3 log
Q2

m2
e

+ 2π2

3
+ 2

)
.

In the sumI1 + I2 the auxiliary parameterλ is can-
celled and we arrive at the following master formu
that defines the beam SSNA for small values ofQ2

and takes into account contributions from interme
ate collinear photons in the TPE box diagrams

Ae
n = me

√
Q2 σ

γp
tot

16π2

F1 − τF2

F 2
1 + τF 2

2

(24)×
(

log2 Q2

m2
e

− 6 log
Q2

m2
e

+ 4π2

3
+ 4

)
.

One can see that at fixed values ofQ2 the beam SSNA
does not depend on the beam energy if the total ph
production cross section is energy-independent. T
remarkable property of small-angle beam SSNA f
lows from unitarity of the scattering matrix and do
not rely on a specific model of nucleon structure.

4. Numerical results and conclusion

The master formula for beam SSNA Eq.(24) ne-
glects possibleQ2 dependence of the invariant for
factor of the nucleon Compton amplitude, which w
taken in its forward limit during the derivation. In nu
merical calculations, we estimate additionalQ2 de-
pendence by introducing an empirical form factor t
was measured experimentally in the Compton sca
ing on the nucleon in the diffractive regime (see[14]
for review). In the following, we use an exponent
suppression factor for the nucleon Compton amplit
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Fig. 2. Beam SSNA as a function of the lab scattering angle fo
different beam energies: 3 GeV (solid line), 6 GeV (dashed lin
12 GeV (dash-dotted line), 25 GeV (dash-double-dotted line) an
45 GeV (dotted line).

exp(−BQ2/2), choosing the parameterB = 8 GeV−2

that gives a good description of the nucleon Comp
cross section from the optical point to−t ≈ 0.8 GeV2

(see Table V of Ref.[14]). The predictions of Eq.(24)
combined with the above described exponential s
pression are presented inFig. 2 for the electron scat
tering kinematics relevant for the E158 Experimen
SLAC (seefootnote 1). We choose fit 1 of Ref.[15]
for the total photoproduction cross section in Eq.(24).
Exact numerical loop integration of Eq.(2) and the an-
alytic results of Eq.(24) agree with each other wit
accuracy better than 1%. Contributions from the r
onance region(W2 < 4 GeV2) were estimated at 10
20% at beam energies of 3 GeV, but rapidly decrea
below 1% at higher energies. We also tested sensit
of our results toq2

1,2 dependence of the electroprodu
tion structure functionW1 (Eq. (15)), taking various
empirical parameterizations for it. We found no se
sitivity for SLAC E158 kinematics and only modera
sensitivity(≈ 10%) when we extend our calculation
lower energies (≈ 3 GeV) and higherQ2 ≈ 0.5 GeV2.
For beam energies of 45 GeV, numerical integrat
shows that more than 95% (80%) of the result for be
SSNA comes from the upper 1/2 (3/4) part of the
W2-integration range. Based on the results of num
ical analysis, we conclude that the formula(24) gives
a good description of beam SSNA at smallQ2 and
larges above the resonance region.

We also calculated the contribution of the elas
intermediate proton state to the beam SSNA for h
energies and small electron scattering angles using th
Fig. 3. Beam SSNA as a function ofQ2 for different beam energies
Notation is as inFig. 2.

formalism of Ref.[4] and found it to be highly sup
pressed compared to the inelastic excitations. For
kinematics of SLAC E158 (seeFootnote 1), this sup
pression is a few orders of magnitude due to differ
angular and energy behavior of these contributions

Shown inFig. 3are the calculations for beam SSN
as a function ofQ2 for different energies of inciden
electrons. One can see that at smallQ2, the asymmetry
follows

√
Q2 behavior described by Eq.(24), while

at higherQ2 the asymmetry turns over and starts
decrease due to the introduced exponential form
tor exp(−BQ2/2). It can be seen that at fixedQ2 the
magnitude of beam SSNA is predicted to be appr
imately constant, as follows from slow logarithm
energy dependence of the total photoproduction c
section.

The latter feature is demonstrated inFig. 4, show-
ing the calculated beam SSNA at fixedQ2 in a wide
energy range up to

√
s = 500 GeV, where we use

several parameterizations for the total photoprod
tion cross section on a proton from Refs.[15,16],
shown inFig. 5. The physical reason for the almo
constant photoproduction cross sections at high
ergies is believed to be soft pomeron exchange[16],
therefore the beam SSNA in the considered kinem
ics is sensitive to the physics of soft diffraction.

The predictedQ2 and energy dependence of bea
SSNA, along with its relatively large magnitude,
quite different from the model expectations assum
that no hadronic intermediate states are excited in
TPE amplitude. Our unitarity-based model of sma
angle electron scattering predicts the magnitude of
beam SSNA to reach 20–30 ppm in a wide range
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Fig. 4. Beam SSNA as a function of c.m.s. energy for fix
Q2 = 0.05 GeV2 for different parameterizations of the total ph
toproduction cross section. SeeFig. 5 for notation.

Fig. 5. Different parameterizations of total photoproduction cros
section at high energies used in the present calculation. A solid
ted) line is a double-logarithmic fit 1(single-logarithmic fit 3) from
Block and Halzen[15] and a dashed line is an original Donnach
and Landshoff fit[16].

beam energies. The good news is that it makes b
SSNA measurable with presently reached fraction-of-
ppm precision of parity-violating electron scatteri
experiments[9]. On the other hand, the experimen
measuring parity-violating observables need to
special care to avoid possible systematic uncertain
due to the parity-conserving beam SSNA. Fortunat
these effects can be experimentally separated u
different azimuthal dependences of these asym
tries.

In the present Letter we calculate the beam SS
for small values ofQ2 and provide physics argumen
for the dominance of contributions from collinear ph
tons in the TPE mechanism. For electron energ
above the nucleon resonance region and smallQ2
the contribution of collinearvirtual photons leads to
the beam SSNA that is positive and has the orde
me

√
Q2 σ

γp
tot , whereσ

γp
tot is the total photoproductio

cross section on the proton. This quantity is multipl
by the factor of the order unity that includes a com
nation of double- and single-logarithm terms. The f
that the beam SSNA does not decrease with the b
energy at fixedQ2 makes it attractive for experimen
tal studies at higher energies, for example, the ener
to be reached at Jefferson Lab after the forthcom
12 GeV upgrade of CEBAF.
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