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In coding theory, quasi-twisted (QT) codes form an important class
of codes which has been extensively studied. We decompose a
QT code to a direct sum of component codes – linear codes over
rings. Furthermore, given the decomposition of a QT code, we
can describe the decomposition of its dual code. We also use the
generalized discrete Fourier transform to give the inverse formula
for both the nonrepeated-root and repeated-root cases. Then we
produce a formula which can be used to construct a QT code given
the component codes.
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1. Introduction

Quasi-twisted (QT) codes over finite fields form an important class of block codes that includes
cyclic codes, quasi-cyclic codes and constacyclic codes as special cases. In this paper, we investigate
issues related to the decomposition and construction of a QT code. The important tool used is the
generalized discrete Fourier transform.

Let Fq denote the finite field of q = pm elements, where p is a prime and m is a positive integer.
Let C be a linear code of length n over Fq . Let λ ∈ F

∗
q and let l be a positive integer. For each

codeword c = (c0, c1, . . . , cn−1) in C , if the vector

(λcn−l, λcn−l+1, . . . , λcn−1, c0, . . . , cn−l−1) ∈ C ,
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where the subscripts are taken modulo n, then the code C is called a (λ, l)-quasi-twisted (QT) code.
It is well known that a (λ, l)-QT code of length n = lθ over Fq is identified with a Fq[x]

(xθ −λ)
-submodule

of (
Fq[x]

(xθ −λ)
)l .

First, by decomposing the ring Rθ,λ := Fq[x]
(xθ −λ)

into a direct sum of coprime component rings, it is
shown that a (λ, l)-QT code of length lθ over Fq can be decomposed into a direct sum of linear codes
Ci over these component rings.

The decomposition of the ring involves the factorization of the polynomial xθ − λ over Fq . If
gcd(θ,q) = 1 (nonrepeated-root case), then the polynomial xθ − λ is factorized into a product of dis-
tinct irreducible polynomials. It is shown that if gcd(θ,q) = pa with a � 1 (repeated-root case), then
all the irreducible factors of the polynomial xθ − λ are with multiplicity pa . In this paper, we allow
a � 0 and then both cases are included. When xθ − λ = ( f1(x))pa

( f2(x))pa · · · ( fk(x))pa
, where f i(x)’s

are irreducible polynomials over Fq , the ring Rθ,λ is decomposed into a direct sum of the coprime

component rings Ri := Fq[x]
(( f i(x))pa

)
, 1 � i � k.

Since the dual code C ⊥Fq of a (λ, l)-QT code C is a (λ−1, l)-QT code, a natural question that then
arises is: given the decomposition of C , what is the decomposition of C ⊥Fq ? When λ = ±1, C and
C ⊥Fq are modules over the same ring Fq[x]

(xθ −λ)
and hence, only in this case, self-dual QT codes make

sense. When λ �= ±1, C and C ⊥Fq are modules over different rings: Rθ,λ and Rθ,λ−1 respectively.

Since the two rings are isomorphic by identifying x ∈ Rθ,λ with x−1 ∈ Rθ,λ−1 , we map C ⊥Fq into the

module R
l
θ,λ and get an isomorphic copy of C ⊥Fq . Based on the dual defined over two modules over

the same ring, the decomposition of the dual code over Rθ,λ−1 is explicitly described. In particular,
the decomposition of self-dual QT codes is given.

An important tool to study algebraic codes is the discrete Fourier transform (DFT). When
gcd(θ, p) = 1, i.e., in the nonrepeated-root case, the classical DFT of c(x) ∈ Fq[x]

(xθ −λ)
is defined to be

a matrix

ĉ = [ĉ0, ĉ1, . . . , ĉθ−1],

where

ĉi = c
(
βξ i), for 0 � i � θ − 1,

β is a θ-th root of λ,

and ξ is a primitive θ-th root of unity.

It is well known that the DFT is invertible. However, in the repeated-root case, the classical DFT is
not applicable. Therefore, we adopt the Hasse derivatives to develop the generalized discrete Fourier
transform (GDFT). We also give the inverse formula of the GDFT.

The GDFT also gives an explicit connection between a QT code and its component codes. Therefore,
by the inverse formula of the GDFT, we produce a formula to construct a QT code from linear codes
over component rings. It is further shown that the computation can be done in the field Fq instead
of the extension fields.

This paper is organized as follows. After a brief introduction of the key notions and notations
in Section 2, the decomposition of a (λ, l)-QT code is given in Section 3. Section 4 deals with the
decomposition of the dual code of a QT code in two cases: λ = ±1 and λ �= ±1. In Section 5, the
GDFT and the inverse formula are given. After the construction formula is given in Section 6, some
examples are shown in Section 7. A summary concludes the paper in Section 8.
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2. Preliminaries

Let Fq denote the finite field of q = pm elements and let F
∗
q denote Fq \ {0}, where p is a prime

and m is a positive integer. Denote by Fq[x] the polynomial ring in indeterminate x with coefficients
from Fq .

A linear code C of length n and dimension k over Fq is a k-dimensional subspace of the vector
space F

n
q . It is known as an [n,k]q code. The elements of the subspace are the codewords of C and

written as row vectors: c = (c0, c1, . . . , cn−1).

Definition 1. An [n,k]q code C is called cyclic provided that, for each codeword c = (c0, c1, . . . , cn−1)

in C , the vector (cn−1, c0, . . . , cn−2) is also a codeword in C .

Mapping a codeword (c0, c1, . . . , cn−1) ∈ C to a polynomial c0 + c1x + · · · + cn−1xn−1 ∈ Fq[x],
a cyclic code C is an ideal in Fq[x]/(xn − 1).

Generalized from cyclic codes, we have the following three classes of codes.

Definition 2. Let C be a linear code of length n over Fq . Let λ ∈ F
∗
q . For each codeword c =

(c0, c1, . . . , cn−1) in C , if the vector (λcn−1, c0, . . . , cn−2) ∈ C , then the code C is called a λ-con-
stacyclic code and λ is called the constant of C .

By the correspondence between codewords and polynomials, a λ-constacyclic code can be identi-
fied with an ideal in Fq[x]/(xn − λ).

Definition 3. Let C be a linear code of length n over Fq . For each codeword c = (c0, c1, . . . , cn−1)

in C , if the vector (cn−l, cn−l+1, . . . , cn−1, c0, . . . , cn−l−1) ∈ C where the subscripts are taken modulo
n and l is a positive integer, then the code C is called an l-quasi-cyclic (QC) code and l is called the
index of C .

It is easy to check that an l-QC code of length n is also a gcd(l,n)-QC code. Without loss of
generality, we therefore assume that the index l always divides the length n. Let θ = n

l . Properly
permuting the coordinates of a codeword (c0, c1, . . . , cn−1) in the l-QC code to the vector

c′ = (c0, cl, . . . , c(θ−1)l, c1, cl+1, . . . , c(θ−1)l+1, . . . , cl−1, . . . , cθl−1),

we divide c′ to l parts and each part consists of θ consecutive coordinates.
It is observed that each part can be regarded as a codeword in a cyclic code of length θ over Fq .

Therefore, representing each part of c′ by a polynomial in Fq[x]/(xθ −1), the codeword c is equivalent
to the vector in (Fq[x]/(xθ − 1))l:

(
c0 + clx + · · · + c(θ−1)lx

θ−1, c1 + · · · + c(θ−1)l+1xθ−1, . . . , cl−1 + c2l−1x + · · · + cθl−1xθ−1)
(see [4]). Then an l-QC code is equivalent to a submodule of (Fq[x]/(xθ − 1))l over the ring Fq[x]/
(xθ − 1).

Definition 4. Let C be a linear code of length n over Fq . Let λ ∈ F
∗
q and let l be a positive integer. For

each codeword c = (c0, c1, . . . , cn−1) in C , if the vector

(λcn−l, λcn−l+1, . . . , λcn−1, c0, . . . , cn−l−1) ∈ C ,

where the subscripts are taken modulo n, then the code C is called a (λ, l)-quasi-twisted (QT) code.
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We define an action Tλ,l on the codewords as

Tλ,l(c0, c1, . . . , cn−1) = (λcn−l, λcn−l+1, . . . , λcn−1, c0, . . . , cn−l−1).

A (λ, l)-QT code is invariant as a set under the action Tλ,l .
It is easy to check that a (λ, l)-QT code of length n is also a (λ,gcd(l,n))-QT code (see [1]). Thus

we always assume l divides n. Let θ = n
l . When λ = 1, a (λ, l)-QT code is an l-QC code. When l = 1,

a (λ, l)-QT code is a λ-constacyclic code. When λ = l = 1, a (λ, l)-QT code is a cyclic code. From the
above discussion about constacyclic codes and QC codes, a (λ, l)-QT code of length n is a submodule
of (Fq[x]/(xθ − λ))l over the ring Fq[x]/(xθ − λ). For convenience, we use the same notation for both
the code over Fq and its corresponding submodule of (Fq[x]/(xθ − λ))l over the ring Fq[x]/(xθ − λ).

3. Decomposition of QT codes

Let C be a (λ, l)-QT code of length n over Fq . Recall that C is a module over the ring Fq[x]/
(xθ − λ). Denote the ring Fq[x]/(xθ − λ) by Rθ,λ .

In order to know more about the algebraic structure of QT codes, we next focus on the ring Rθ,λ .
Let θ = pa θ̄ , where gcd(θ̄ , p) = 1. Since the map x �→ xpa

is a power of the Frobenius automor-
phism of Fq defined by x �→ xp , it is an automorphism of Fq . Therefore, for any λ ∈ F

∗
q , there exists a

unique λ̄ ∈ F
∗
q such that λ̄pa = λ. Therefore, we may write

xθ − λ = (
xθ̄ − λ̄

)pa

.

Since gcd(θ̄ , p) = 1, the polynomial xθ̄ − λ̄ is factorized into distinct irreducible polynomials over Fq

as follows:

xθ̄ − λ̄ = f1(x) f2(x) · · · fk(x).

Therefore, we have

xθ − λ = (
f1(x)

)pa(
f2(x)

)pa · · · ( fk(x)
)pa

. (1)

By the Chinese Remainder Theorem, we have the following decomposition:

Fq[x]
(xθ − λ)

	 Fq[x]
(( f1(x))pa

)
⊕ Fq[x]

(( f2(x))pa
)

⊕ · · · ⊕ Fq[x]
(( fk(x))pa

)
,

r(x) ↔ (
r(x) + ((

f1(x)
)pa)

, . . . , r(x) + ((
fk(x)

)pa))
.

For convenience, we denote the ring Fq[x]
(( f i(x))pa

)
by Ri for 1 � i � k. It follows that

R
l
θ,λ 	

k⊕
i=1

R
l
i . (2)

Then we have the following theorem immediately.
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Theorem 1. Let C be a (λ, l)-QT code of length lθ over Fq. Then C is a linear code over Rθ,λ of length l and it
can be decomposed as the direct sum

C 	
k⊕

i=1

Ci, (3)

where Ci is a linear code over Ri of length l for each 1 � i � k.

4. Dual codes of QT codes

In this section, we discuss the dual codes of QT codes. For our purpose, we give the following
definition about dual codes.

Definition 5. Let K be a commutative ring or a finite field and let N be a positive integer. Let

u = (u0, . . . , uN−1)

and

v = (v0, . . . , v N−1)

be two vectors over K. The inner product of u and v over K is denoted by

〈u,v〉K =
l−1∑
i=0

ui vi .

Let C be a linear code of length N over K, then the dual code of C (with respect to the inner product
over K), denoted by C ⊥K , is defined as

C ⊥K = {
v ∈ KN

∣∣ 〈v,u〉K = 0, for any u ∈ C
}
.

In particular, if C = C ⊥K , then C is a self-dual code over K.

Notice that when K = Fq , the inner product defined above is exactly the Euclidean inner product.
Recall that the index l always divides the length n for a QT code. The following proposition follows

directly from the definition of QT codes.

Proposition 1. Let C be a (λ, l)-QT code of length n over Fq and let C ⊥Fq be the dual code of C . Then C ⊥Fq

is a (λ−1, l)-QT code of length n over Fq.

By the above proposition, we know that C ⊥Fq is a submodule of R
l
θ,λ−1 over Rθ,λ−1 , and hence a

linear code over Rθ,λ−1 .
Notice that a (λ, l)-QT code is an Rθ,λ-module while its dual code is an Rθ,λ−1 -module. However,

the two rings Rθ,λ and Rθ,λ−1 are isomorphic:

Rθ,λ 	 Rθ,λ−1 ,

x ↔ x−1,

where x−1 = λ−1xθ−1 in the ring Rθ,λ and x−1 = λxθ−1 in the ring Rθ,λ−1 .
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By the above isomorphism, we define the map φ as follows.

Definition 6. For all (r0(x), r1(x), . . . , rl−1(x)) ∈ R
l
θ,λ−1 , we define the map φ : R

l
θ,λ−1 → R

l
θ,λ with

φ
((

r0(x), r1(x), . . . , rl−1(x)
)) = (

r0
(
x−1), r1

(
x−1), . . . , rl−1

(
x−1)).

Obviously, the map φ is bijective since it is induced from the isomorphism between Rθ,λ and
Rθ,λ−1 . Therefore, it immediately follows that:

Proposition 2. The map φ gives a one-to-one correspondence between the Rθ,λ-submodules of R
l
θ,λ and the

Rθ,λ−1 -submodules of R
l
θ,λ−1 .

Although the (λ, l)-QT code and its dual code are modules over different rings, by the above propo-
sition, we can consider the image of the dual code of a (λ, l)-QT code under the map φ. Then φ(C ⊥Fq )

and C are modules over the same ring Rθ,λ . Similarly, we can also consider the following two mod-
ules over Rθ,λ−1 : C ⊥Fq and the preimage of C under the map φ.

The following lemma studies the dual with respect to the inner product over Rθ,λ .

Lemma 1. Let c and d be any two vectors in F
n
q , where n = lθ . Let the vector c(x) ∈ R

l
θ,λ be the polynomial

representation corresponding to the vector c and let the vector d(x) ∈ R
l
θ,λ−1 be the polynomial representation

corresponding to the vector d. Then 〈c(x),φ(d(x))〉Rθ,λ
= 0 if and only if 〈T i

λ,l(c),d〉Fq = 0 for each 0 � i �
θ − 1.

Proof. Assume that 〈c(x),φ(d(x))〉Rθ,λ
= 0. Then we have

l−1∑
i=0

((
θ−1∑
j=0

ci+ jlx
j

)(
θ−1∑
k=0

di+klx
−k

))
= 0. (4)

Since the above equation is in the ring Rθ,λ , the left-hand side can be written as a unique polyno-
mial over Fq of degree less than θ . Denote by [xi] the term in xi in such a unique expression, where
0 � i � θ − 1.

Since xθ = λ in the ring Rθ,λ , it immediately follows that

x− j = λ−1xθ x− j = λ−1xθ− j, for 1 � j � θ − 1.

Therefore, each term on the left-hand side of (4) is as follows:

[
x0] =

l−1∑
i=0

θ−1∑
j=0

ci+ jldi+ jl =
θl−1∑
i=0

cidi = 〈c,d〉Fq ,

[
xk] =

l−1∑
i=0

(
(ci+kldi + · · · + ci+(θ−1)ldi+(θ−1−k)l)xk

+ (cidi+(θ−k)l + · · · + ci+(k−1)ldi+(θ−1)l)xk−θ
)

= λ−1
l−1∑

(λci+kldi + · · · + λci+(θ−1)ldi+(θ−1−k)l
i=0
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+ cidi+(θ−k)l + · · · + ci+(k−1)ldi+(θ−1)l)xk

= λ−1(〈T θ−k
λ,l (c),d

〉
Fq

)
xk, for each 1 � k � θ − 1.

Then the uniqueness of the expression of the left-hand side of (4) implies that each term is 0. Thus,
the above equations imply that 〈T i

λ,l(c),d〉Fq = 0 for 0 � i � θ − 1.
It is easy to observe that the converse is also true. �
Applying Lemma 1, we have the following theorem:

Theorem 2. Let C be a (λ, l)-QT code of length n over Fq and D a (λ−1, l)-QT code of length n over Fq. Then
D is the dual code of C with respect to the inner product on F

n
q if and only if φ(D) is the dual code of C with

respect to the inner product on R
l
θ,λ , i.e.,

φ
(
C ⊥Fq

) = C ⊥Rθ,λ , (5)

where C on the left is the code over Fq while C on the right means its corresponding module over Rθ,λ .

Proof. Since C is a (λ, l)-QT code, for any codeword c ∈ C , we have T i
λ,l(c) ∈ C . Then for any code-

word d ∈ C ⊥Fq , we have 〈T i
λ,l(c),d〉Fq = 0. By Lemma 1, it follows 〈c, φ(d)〉Rθ,λ

= 0. Therefore, we

have φ(d) ∈ C ⊥Rθ,λ . Then by Definition 5, we have φ(C ⊥Fq ) ⊆ C ⊥Rθ,λ .
Assume that e∈C ⊥Rθ,λ . Then by Lemma 1, for any codeword c∈C , we have 〈T i

λ,l(c),φ−1(e)〉Fq = 0.

It follows that φ−1(e) ∈ C ⊥Fq . Then C ⊥Rθ,λ ⊆ φ(C ⊥Fq ). Therefore, φ(C ⊥Fq ) = C ⊥Rθ,λ . �
By the decomposition of the ring Rθ,λ in (2), we have the following corollary.

Corollary 1. Let C be a (λ, l)-QT code over Fq of length n = lθ . Suppose that C is decomposed as in (2). Then

C ⊥Rθ,λ is decomposed as follows:

C ⊥Rθ,λ 	
k⊕

i=1

Di, (6)

where, for each 1 � i � k, Di is the dual code of Ci with respect to the inner product on R
l
i . In particular, C is

self-dual if and only if Ci = Di for all 1 � i � k.

By Theorem 2, the above corollary gives the decomposition of φ(C ⊥Fq ). Next we discuss the rela-
tionship between the decomposition of C ⊥Fq ⊆ R

l
θ,λ−1 and that of φ(C ⊥Fq ) = C ⊥Rθ,λ ⊆ R

l
θ,λ .

Assume that xθ − λ is factorized as in Eq. (1). Then

xθ − λ−1 = −λ−1( f ∗
1 (x)

)pa · · · ( f ∗
k (x)

)pa

, (7)

where f ∗
i (x) := xdeg f i(x) f i(x−1) is the reciprocal polynomial of f i(x) over Fq . It is easy to check that

f ∗
i (x) is also irreducible over Fq if f i(x) is irreducible. Therefore, we have the following decomposition

of the ring Rθ,λ−1 :

Fq[x]
(xθ − λ−1)

	 Fq[x]
(( f ∗

1 (x))pa
)

⊕ Fq[x]
(( f ∗

2 (x))pa
)

⊕ · · · ⊕ Fq[x]
(( f ∗

k (x))pa
)
,

r(x) ↔ (
r(x) + ((

f ∗
1 (x)

)pa)
, . . . , r(x) + ((

f ∗
k (x)

)pa))
. (8)
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For simplicity, we denote the ring Fq[x]
(( f ∗

i (x))pa
)

by R
∗
i for 1 � i � k. It follows that

R
l
θ,λ−1 	

k⊕
i=1

(
R

∗
i

)l
. (9)

Note that a (λ, l)-QT code is self-dual only if λ = ±1. If λ �= ±1, then the polynomials xθ − λ

and xθ − λ−1 are coprime over Fq . Therefore, the irreducible polynomials f i(x), f ∗
j (x), 1 � i, j � k,

are pairwise coprime where f i(x), f ∗
j (x), 1 � i, j � k are as in Eqs. (2) and (7). Thus, no irreducible

polynomial is an associate of its reciprocal polynomial and no reciprocal pair exists in the factorization
of xθ − λ, which is different from the case when λ = ±1.

4.1. Case when λ = ±1

In this subsection, we focus on the case when λ = ±1. If λ = ±1, then xθ −λ = xθ −λ−1 and hence
Rθ,λ = Rθ,λ−1 . With the proper permutation of the irreducible polynomial factors, xθ − λ is written as

xθ − λ = ε
(

g1(x)
)pa · · · (gs(x)

)pa(
h1(x)

)pa(
h∗

1(x)
)pa · · · (ht(x)

)pa(
h∗

t (x)
)pa

,

where s + 2t = k, ε ∈ F
∗
q and, for each 1 � i � s, gi(x) is an associate of its reciprocal polynomial,

i.e., gi(x) = εi g∗
i (x) over Fq for some unit εi . Throughout this subsection, we denote Fq[x]/((gi(x))pa

)

by Gi for 1 � i � s, Fq[x]/((h j(x))pa
) by H j and Fq[x]/((h∗

j (x))pa
) by H

∗
j for 1 � j � t . Then the

decomposition of Rθ,λ = Rθ,λ−1 is

Rθ,λ 	
s⊕

i=1

Gi ⊕
(

t⊕
j=1

(
H j ⊕ H

∗
j

))
. (10)

Therefore, when λ = ±1, the map φ is an automorphism of R
l
θ,λ . We define same isomorphisms

between the component rings as follows.

Definition 7. For 1 � i � s, define

φi : (Gi)
l → (Gi)

l

by

φi
((

r1(x) + ((
gi(x)

)pa)
, . . . , rl(x) + ((

gi(x)
)pa)))

= (
r1

(
x−1) + ((

gi(x)
)pa)

, . . . , rl
(
x−1) + ((

gi(x)
)pa))

.

For 1 � j � t , define

φ′
j : (H j)

l → (
H

∗
j

)l

by

φ′
j

((
r1(x) + ((

h j(x)
)pa)

, . . . , rl(x) + ((
h j(x)

)pa)))
= (

r1
(
x−1) + ((

h∗
j (x)

)pa)
, . . . , rl

(
x−1) + ((

h∗
j (x)

)pa))
.
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Actually, when λ = ±1, the maps φ, φi and φ′
j are exactly the conjugate maps defined in [5].

Lemma 2. Assume that λ = ±1 and the decomposition of the ring Rθ,λ = Rθ,λ−1 is as in Eq. (10). Let r(x) ∈
Rθ,λ and let its decomposition in Rθ,λ be

(
r1(x), . . . , rs(x), r′

1(x), r′′
1(x), . . . , r′

t(x), r′′
t (x)

)
where for 1 � i � s, ri(x) = r(x) + ((gi(x))pa

) ∈ Gi , and for 1 � j � t, r′
j(x) = r(x) + ((h j(x))pa

) ∈ H j and

r′′
j (x) = r(x) + ((h∗

j (x))pa
) ∈ H

∗
j . Then the decomposition of φ−1(r(x)) ∈ Rθ,λ−1 is

(
r1

(
x−1), . . . , rs

(
x−1), r′′

1

(
x−1), r′

1

(
x−1), . . . , r′′

t

(
x−1), r′

t

(
x−1)).

Proof. For 1 � i � s, since ri(x) = r(x) + ((gi(x))pa
),

ri
(
x−1) = r

(
x−1) + ((

gi
(
x−1))pa)

.

Since g(x) is an associate of its reciprocal polynomial,

((
gi(x)

)pa) = ((
gi

(
x−1))pa)

.

Therefore, we have

ri
(
x−1) = r

(
x−1) + ((

gi(x)
)pa)

,

i.e., the component of φ−1(r(x)) = r(x−1) in Gi is ri(x−1).
For 1 � j � t , we have

r′
j

(
x−1) = r

(
x−1) + ((

h j
(
x−1))pa)

.

Then

r′
j

(
x−1) = r

(
x−1) + (

h∗
j (x)

)pa

,

i.e., the component of φ−1(r(x)) = r(x−1) in H
∗
j is r′

j(x−1).

Similarly, the component of φ−1(r(x)) = r(x−1) in H j is r′′
j (x−1). �

The following theorem gives the algebraic structure of the dual code of a (λ, l)-QT code when
λ = ±1.

Theorem 3. Let C be a (λ, l)-QT code of length lθ over Fq with λ = ±1. Let the decomposition of the ring Rθ,λ

be as in Eq. (10) and let the corresponding decomposition of C be

C 	
s⊕

i=1

Ci ⊕
(

t⊕
j=1

(
C ′

j ⊕ C ′′
j

))
.

Then the decomposition of its dual code C ⊥Fq is
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C ⊥Fq 	
s⊕

i=1

φi
(
C

⊥Gi
i

) ⊕
(

t⊕
j=1

((
φ′

j

)−1((
C ′′

j

)⊥
H

∗
j
) ⊕ φ′

j

((
C ′

j

)⊥H j
)))

,

where the duality on the left is the duality with respect to the inner product over Fq, while the dualities on the
right are the dualities with respect to the inner products over the respective component rings.

In particular, C is self-dual if and only if

⎧⎨
⎩Ci = φi

(
C

⊥Gi
i

)
, 1 � i � s,

C ′′
j = φ′

j

((
C ′

j

)⊥H j
)
, 1 � j � t.

(11)

Proof. This theorem follows from Corollary 1 and Lemma 2. �
When λ = ±1, the map φi ’s are actually the conjugates defined in [5]. We can check that the above

theorem is consistent with Theorem 4.2 in [5] which describes the dual with respect to the Hermitian
inner product.

4.2. Case when λ �= ±1

In this subsection, we assume that λ �= ±1. Recall that φ is the isomorphism between Rθ,λ and
Rθ,λ−1 . Let the decompositions of R

l
θ,λ and R

l
θ,λ−1 be as in Eqs. (2) and (9), respectively. Then the

quotient rings Ri = Fq[x]/(( f i(x))pa
) and R

∗
i = Fq[x]/(( f ∗

i (x))pa
) are isomorphic as rings. The corre-

sponding isomorphism is defined as follows.

Definition 8. The isomorphism is

φ′
i : (Ri)

l → (
R

∗
i

)l

given by

φ′
i

((
r1(x) + ((

f i(x)
)pa)

, . . . , rl(x) + ((
f i(x)

)pa)))
= (

r1
(
x−1) + ((

f ∗
i (x)

)pa)
, . . . , rl

(
x−1) + ((

f ∗
i (x)

)pa))
.

By Corollary 1, the following theorem immediately follows.

Theorem 4. Let λ �= ±1 and let the decompositions of R
l
θ,λ and R

l
θ,λ−1 be as in Eqs. (2) and (9), respectively.

Let C be a (λ, l)-QT code of length lθ over Fq, i.e., an Rθ,λ-linear code. Suppose that the decomposition of C
is as in (3):

C 	
k⊕

i=1

Ci .

Then the decomposition of its dual code C ⊥Fq ⊆ R
l
θ,λ−1 is

C ⊥Fq 	
k⊕

i=1

φi
(
C

⊥Ri
i

)
.



Y. Jia / Finite Fields and Their Applications 18 (2012) 237–257 247
Given the decomposition of the code C ⊆ R
l
θ,λ , Theorems 3 and 4 give the decomposition of the

dual code C ⊥Fq ⊆ R
l
θ,λ−1 , for cases λ = ±1 and λ �= ±1 respectively.

5. Discrete Fourier transform

In order to deal with the repeated-root case, we introduce a generalized discrete Fourier transform
(GDFT) as in [4]. For our purpose, we define the Hasse derivative as follows.

Definition 9. (See [3].) For a polynomial g(x) = ∑
i gi xi ∈ Fq[x], the j-th Hasse derivative is defined as

g[ j](x) =
∑

i

(
i

j

)
gix

i− j.

Using the Hasse derivative, we define the generalized discrete Fourier transform (GDFT). Recall that
θ = pa θ̄ , where gcd(θ̄ , p) = 1.

Definition 10. If c(x) = ∑
i∈Z/θZ

ci xi ∈ Rθ,λ , then the generalized discrete Fourier transform (GDFT) of c(x)
can be described in terms of a matrix

ĉ =

⎡
⎢⎢⎢⎢⎣

ĉ0,0 ĉ0,1 · · · ĉ0,θ̄−1

ĉ1,0 ĉ1,1 · · · ĉ1,θ̄−1

...
...

...
...

ĉpa−1,0 ĉpa−1,1 · · · ĉpa−1,θ̄−1

⎤
⎥⎥⎥⎥⎦ , (12)

where

ĉg,h =
∑

i∈Z/θZ

(
i

g

)
ci

(
βξh)i−g

, for 0 � g � pa − 1, 0 � h � θ̄ − 1,

β is a θ̄-th root of λ̄,

and ξ is a primitive θ̄-th root of unity.

Notice that ĉg,h is exactly the value of the g-th Hasse derivative at βξh , a θ̄ -th root of λ̄. Let xθ −λ

be decomposed as in (1). Then for each 1 � h � θ̄ , there is an irreducible factor of xθ − λ, say f i(x),
such that βξh is a root of f i(x). Then ĉg,h is an element in Fq[x]/(( f i(x))pa

). Mimicking the method
in [5] and replacing the root ξh in [5] by βξh , then the explicit description of the inverse transform
is given. We give the inverse transform in the following theorem and omit the proof.

Theorem 5. The GDFT (12) is invertible. More precisely, the inverse formula of GDFT is

ci+ jpa = 1

θ̄

θ̄−1∑
h=0

(
βξh)− jpa

( pa−1∑
g=0

(
g

i

)(−βξh)g−i
ĉg,h

)
, (13)

for 0 � i � pa − 1 and 0 � j � θ̄ − 1, where β is a θ̄ -th root of λ̄ and ξ is a primitive θ̄ -th root of unity.

Since (βq−1)θ̄ = λ̄q−1 = 1 for λ̄ ∈ F
∗
q , βq−1 is a θ̄ -th root of unity. Then βq−1 can be expressed as

a power of the primitive θ̄ -th root of unity ξ , say



248 Y. Jia / Finite Fields and Their Applications 18 (2012) 237–257
βq−1 = ξδ,

where 0 � δ � θ̄ − 1.
By the definition of ĉg,h , it is easy to verify that, for 0 � g � pa − 1 and 0 � h � θ̄ − 1,

ĉq
g,h =

∑
i∈Z/θZ

(
i

g

)q

cq
i

[(
βξh)q]i−g

=
∑

i∈Z/θZ

(
i

g

)
ci

(
βξqh+δ

)i−g

= ĉg,qh+δ.

Given an irreducible polynomial f i(x), if βξ zi is a root of f i(x), so is βqξqzi = βξqzi+δ . Define a
map τ :

τ : Z/θ̄Z → Z/θ̄Z,

z �→ qz + δ.

As gcd(θ̄ ,q) = 1, it follows that the map τ is one-to-one. Therefore, the map τ defines an equiva-
lence relation ∼ on Z/θ̄Z where h1 ∼ h2 if and only if there exists an integer i such that h1 = τ i(h2).
Therefore, there is a one-to-one correspondence between the equivalence classes and the irreducible
factors f i ’s. For convenience, we call the equivalence classes orbits of τ . From each orbit Oi , we
can choose a representative, say zi . Then there is a one-to-one correspondence between the irre-
ducible factors f i(x)’s and the representatives zi ’s. We say the representative zi is corresponding to
the irreducible polynomial f i . In particular, when δ = 0, the equivalence classes are known as the
q-cyclotomic cosets modulo θ̄ .

Therefore, using the same notations above, the inverse formula of the GDFT can be further simpli-
fied as follows.

Theorem 6. The GDFT (12) is invertible as follows: for 0 � i � pa − 1 and 0 � j � θ̄ − 1,

ci+ jpa = 1

θ̄

pa−1∑
g=0

(
g

i

)
(−1)g−i

(
k∑

γ =1

Trγ
(
ĉg,zγ

(
βξ zγ

)g−i− jpa))
, (14)

where β is a θ̄ -th root of λ̄, ξ is a primitive θ̄ -th root of unity, zγ is a representative in the orbit corresponding
to fγ (x) and Trγ is the trace map on the field Fq[x]/( fγ (x)) down to Fq.

Although the choices of β and ξ in the formula (14) are not unique, the result of the formula (14)
is unique when ĉg,h ’s are given. The above theorem gives the trace description of QT codes.

6. Construction formula

Let C be a (λ, l)-QT code of length lθ . By Theorem 1, we know that

C 	
k⊕

i=1

Ci,

where Ci is a linear code over Ri of length l for each 1 � i � k.
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The ring Ri = Fq[x]
(( f i(x))pa

)
is a finite chain ring. Each element in Ri can be written in the following

canonical form:

a0(x) + a1(x) f i(x) + · · · + apa−1(x)
(

f i(x)
)pa−1

,

where a j(x) ∈ Fq[x]
( f i(x)) for 0 � j � pa − 1. Therefore,

Fq[x]
(( f i(x))pa

)
	 Fq[x]

( f i(x))
+ f i(x)

Fq[x]
( f i(x))

+ · · · + (
f i(x)pa−1) Fq[x]

( f i(x))
.

Let di = deg f i(x) and let βξ zi be a root of f i(x). Then we have the following field isomorphism:

Fq[x]
( f i(x))

	 Fq + (
βξ zi

)
Fq + · · · + (

βξ zi
)di−1

Fq,

r(x) ↔ r
(
βξ zi

)
.

Then we have the following proposition.

Proposition 3. The following map is a ring isomorphism:

σ : Ri → (
Fq + (

βξ zi
)
Fq + · · · + (

βξ zi
)di−1

Fq
) + u

(
Fq + · · · + (

βξ zi
)di−1

Fq
)

+ · · · + upa−1(
Fq + · · · + (

βξ zi
)di−1

Fq
)
,

r(x) �→ r
(
βξ zi + u

)
,

where upa = 0 and βξ zi is a root of f i(x).

Proof. For convenience, denote f i(x) by f (x), d = deg( f (x)) and βξ zi by η. Suppose that f (x) =∑d
i=0 ai xi . Since η is a root of f (x) and upa = 0, we have

σ
((

f (x)
)pa) = (

f (η + u)
)pa

=
d∑

i=0

apa

i

(
ηpa + upa)i

=
d∑

i=0

apa

i ηpai

= (
f (η)

)pa

= 0.

Therefore, this map is well defined.
Since η is a root of the irreducible polynomial f (x), ηθ̄ r̄ = λ̄r̄ = 1, where r̄ is the order of λ̄ ∈ F

∗
q .

Since r̄ divides q − 1, r̄ is coprime to pa . Since θ̄ is coprime to pa too, pa and θ̄ r̄ are coprime. Then
there exist integers N1 and N2 such that

pa N1 + N2θ̄ r̄ = 1.
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Then we have ηpa N1 = η.
It follows that xpa N1 is mapped to η and x − xpa N1 is mapped to u. Hence, the map σ is a ring

isomorphism. �
For simplicity, we denote by J i the chain ring

(
Fq + (

βξ zi
)
Fq + · · · + (

βξ zi
)di−1

Fq
) + u

(
Fq + · · · + (

βξ zi
)di−1

Fq
) + · · ·

+ upa−1(
Fq + · · · + (

βξ zi
)di−1

Fq
)
.

Then we have

Rθ,λ 	
k⊕

i=1

J i,

and

C 	
k⊕

i=1

Ci,

where Ci is a code over J i of length l.
Then a codeword xi of Ci over J i can be written as

xi = (
xi,0,0 + (

βξ zi
)
xi,0,1 + · · · + (

βξ zi
)di−1

xi,0,di−1
)

+ u
(
xi,1,0 + (

βξ zi
)
xi,1,1 + · · · + (

βξ zi
)di−1

xi,1,di−1
) + · · ·

+ upa−1(xi,pa−1,0 + (
βξ zi

)
xi,pa−1,1 + · · · + (

βξ zi
)di−1

xi,pa−1,di−1
)
,

where, for each 1 � i � k, 0 � j � pa − 1 and 0 � w � di − 1, xi, j,w is a row vector over Fq of length l.
We vertically joint all the above row vectors xi, j,w as

x̃i = (xi,0,0, . . . ,xi,0,di−1,xi,1,0, . . . ,xi,1,di−1, . . . ,xi,pa−1,0, . . . ,xi,pa−1,di−1)
T .

Then x̃i is a matrix of size padi × l. We vertically joint all the above matrices as

x = (x̃1, x̃2, . . . , x̃k)
T . (15)

Then x is in fact a matrix of size θ × l because
∑k

i=1 padi = θ .
By Theorem 5, a codeword in a QT code can be given if the component codewords are known.

With the same notations as above, we have the following result about the construction of a QT code.

Theorem 7. Let θ = pa θ̄ with gcd(p, θ̄ ) = 1, where p is the characteristic of Fq. Then, for any positive integer
l and any λ ∈ F

∗
q , the (λ, l)-QT codes over Fq of length lθ are precisely given as follows:

1. Write λ = λ̄pa
where λ̄ ∈ F

∗
q .

2. Write xθ̄ − λ̄ = f1(x) f2(x) · · · fk(x), where for 1 � γ � k, fγ (x) are monic irreducible polynomials
over Fq.

3. Write Fq[x]/(( fγ (x))pa
) = Rγ and deg fγ (x) = dγ .
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4. Let Oγ denote the orbit corresponding to fγ (x) and fix zγ ∈ Oγ .
5. For each 1 � γ � k, let Cγ be a linear code of length l over Rγ . For xγ ∈ Cγ , write

xγ = (
xγ ,0,0 + (

βξ zγ
)
xγ ,0,1 + · · · + (

βξ zγ
)dγ −1

xγ ,0,dγ −1
)

+ u
(
xγ ,1,0 + (

βξ zγ
)
xγ ,1,1 + · · · + (

βξ zγ
)dγ −1

xγ ,1,dγ −1
) + · · ·

+ upa−1(xγ ,pa−1,0 + (
βξ zγ

)
xγ ,pa−1,1 + · · · + (

βξ zγ
)dγ −1

xγ ,pa−1,dγ −1
)
,

where, for each 1 � γ � k, 0 � g � pa −1 and 0 � w � dγ −1, xγ ,g,w is a row vector over Fq of length l.
6. For each 0 � i � pa − 1 and 0 � j � θ̄ − 1, let

ci+ jpa = 1

θ̄

pa−1∑
g=0

(
g

i

)
(−1)g−i

(
k∑

γ =1

( dγ −1∑
w=0

(
xγ ,g,w Trγ

((
βξ zγ

)g−i− jpa+w))))
, (16)

and hence the codewords xγ ∈ Cγ , 1 � γ � k give a vector (c0, c1, . . . , cθ−1).

Then when the codeword xγ runs through all the codewords in Cγ for each γ , the collection of all the vectors
(c0, c1, . . . , cθ−1) given by Eq. (16)

C = {
(c0, c1, . . . , cθ−1)

}
is a (λ, l)-QT code over Fq of length lθ . Conversely, every QT code over Fq of length lθ is obtained through this
construction. Moreover, the construction can be expressed as follows:

(c0, c1, . . . , cθ−1)
T = A · x,

where x is defined as in (15), A is a θ × θ matrix over Fq such that, for 0 � i � pa − 1, 0 � j � θ̄ − 1, 0 � g �
pa −1, 1 � γ � k, 0 � w � dγ −1, the entry in the (i + jpa +1)-th row and (pa ∑γ −1

h=1 dh + gdγ + w +1)-th
column, i.e., the coefficient in front of xγ ,g,w is

A

(
i + jpa + 1, pa

γ −1∑
h=1

dh + gdγ + w + 1

)
= 1

θ̄
(−1)g−i

(
g

i

)
Trγ

((
βξ zγ

)g−i− jpa+w)
.

Proof. By the isomorphism in Proposition 3, ĉg,γ in Eq. (14) can be written as
∑dγ −1

w=0 (βξ zγ )w xγ ,g,w ,
and the γ -th component of c(x) is ĉ0,γ + uĉ1,γ + · · · + upa−1ĉpa−1,γ . Then the theorem follows from
Eq. (13). Obviously, the matrix A is over Fq because the entries are obtained by the respective trace
maps down to Fq . �
7. Examples

The examples in this section are computed by MAGMA [2].
The following example gives a self-dual (2,2)-QT code of length 24 over F3. We can see that its

decomposition satisfies Eq. (11) given in Theorem 3.
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Example 1. Factorize x12 − 2 over F3 as follows

x12 − 2 = (
x4 + 1

)3

= (
x2 + x + 2

)3(
x2 + 2x + 2

)3

:= h(x)h∗(x).

Denote by H the ring F3[x]
((x2+x+2)3)

, and denote by H
∗ the ring F3[x]

((x2+2x+2)3)
.

Let C be a self-dual (2,2)-QT code of length 24 over F3 with generator (h(x),h∗(x)). Then C can
be decomposed as the direct sum of the following two component codes, C1 and C2, where:

1. C1 is generated by (0,h∗(x) mod h(x)) over H and
2. C2 is generated by (h(x) mod h∗(x),0) over H

∗ .

Since h(x) and h∗(x) are coprime, the vector (0,1) is also a generator of C1 over H. For the same
reason, (1,0) is a generator of C2 over H

∗ .
It is easy to observe that the dual code C ⊥H

1 of C1 over H is with generator (1,0) over H. Since
the isomorphism between H

2 and (H∗)2 is

φ′ : H
2 → (

H
∗)2

,(
r1(x) + (

h(x)
)
, r2(x) + (

h∗(x)
)) �→ (

r1
(
x−1) + (

h∗(x)
)
, r2

(
x−1) + (

h(x)
))

,

the image of (1,0) over H is (1,0) over H
∗ . Therefore, the image of C ⊥H

1 under φ′ is generated by
(1,0) over H

∗ , which is exactly C2 over H
∗ . Therefore, Eq. (11) given in Theorem 3 is satisfied.

The next example gives a QT code over F5 as well as that of its dual code where λ �= ±1. We can
see that they satisfy Eq. (5) in Theorem 2 and their decompositions satisfy Eq. (6) in Corollary 1.

Example 2. Factorize x15 − 2 over F5 as follows

x15 − 2 = (
x3 + 3

)5

= (x + 2)5(x2 + 3x + 4
)5

:= (
f1(x)

)5(
f2(x)

)5
.

Then

F5[x]
(x15 − 2)

	 F5[x]
((x + 2)5)

⊕ F5[x]
((x2 + 3x + 4)5)

.

Denote the ring F5[x]
(x15−2)

by R15,2, denote the ring F5[x]
((x+2)5)

by R1 and denote the ring F5[x]
((x2+3x+4)5)

by R2.
Since 2−1 = 3 in F5, by Eq. (8), we have

R15,3 	 R
∗
1 ⊕ R

∗
2,

where
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R15,3 := F5[x]
(x15 − 3)

,

R
∗
1 := F5[x]

((x + 3)5)
,

R
∗
2 := F5[x]

((x2 + 2x + 4)5)
.

Let

G1(x) = x2 + 4x + 4 = (x + 2)2,

and

G2(x) = x6 + 4x5 + 4x4 + 4x3 + x2 + 4x + 4 = (
x2 + 3x + 4

)3
.

Let C be a (2,2)-QT code of length 30 over F5 with generator (G1(x), G2(x)). Then we can decompose
C as the direct sum of the following two component codes, C1 and C2, where

1. C1 is generated by (G1(x) mod ( f1(x))5, G2(x) mod ( f1(x))5) and
2. C2 is generated by (G1(x) mod ( f2(x))5, G2(x) mod ( f2(x))5).

Then C ⊥F5 is a (3,2)-QT code of length 30 over F5 with generator (g1(x), g2(x)) (over the ring
R15,3) where

g1(x) = 3x12 + 3x11 + 2x10 + 4x9 + 4x8 + 2x7 + 2x6 + 2x4 + 3x3 + 4x2 + 4x + 1

= (
x2 + 2x + 4

)3(
x6 + 2x3 + 3

)
,

g2(x) = 4x8 + 4x7 + 2x4 + 2x2 + 4

= 4(x + 3)2(x3 + x2 + 4x + 1
)(

x3 + 4x2 + 3x + 4
)
.

The generator (g1(x), g2(x)) of C ⊥F5 over R15,3 is mapped to (g′
1(x), g′

2(x)) over R15,2 under the
isomorphism defined as in Definition 6, where

g′
1(x) = 2x14 + 2x13 + 4x12 + x11 + x9 + x8 + 2x7 + 2x6 + x5 + 4x4 + 4x3 + 1,

g′
2(x) = x13 + x11 + 2x8 + 2x7 + 4.

Then the image of C ⊥F5 can be decomposed as the direct sum of the following two component codes,
D1 and D2, where

1. D1 is generated by (g′
1(x) mod ( f1(x))5, g′

2(x) mod ( f1(x))5) and
2. D2 is generated by (g′

1(x) mod ( f2(x))5, g′
2(x) mod ( f2(x))5).

Notice that

g′
1(x)G1(x) + g′

2(x)G2(x) ≡ x19 + 4x18 + 3x4 + 2x3 mod
(
x15 − 2

)
≡ 0 mod

(
x15 − 2

)
.

Therefore, Eq. (5) in Theorem 2 is satisfied.
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Since both ( f1(x))5 and ( f2(x))5 are divisors of (x15 − 2) over F5, we have

〈(
g′

1(x), g′
2(x)

)
,
(
G1(x), G2(x)

)〉
R15,2

= (
g′

1(x)G1(x) + g′
2(x)G2(x)

)
mod

(
x15 − 2

)
= 0,〈(
g′

1(x) mod
(

f1(x)
)5

, g′
2(x) mod

(
f1(x)

)5)
,
(
G1(x) mod

(
f1(x)

)5
, G2(x) mod

(
f1(x)

)5)〉
R1

= (
g′

1(x)G1(x) + g′
2(x)G2(x)

)
mod

(
f1(x)

)5

= 0,〈(
g′

1(x) mod
(

f2(x)
)5

, g′
2(x) mod

(
f2(x)

)5)
,
(
G1(x) mod

(
f2(x)

)5
, G2(x) mod

(
f2(x)

)5)〉
R2

= (
g′

1(x)G1(x) + g′
2(x)G2(x)

)
mod

(
f2(x)

)5

= 0.

Therefore, the decomposition of the image of C ⊥F5 satisfies Eq. (6) in Corollary 1.

The following example shows the decomposition of a (2,2)-QT code of length 30 over F3 using
GDFT.

Example 3. Factorize x15 − 2 over F3 as follows

x15 − 2 = (
x5 + 1

)3 = (x + 1)3(x4 + 2x3 + x2 + 2x + 1
)3

. (17)

Let

G1(x) = (x + 1)2(x4 + 2x3 + x2 + 2x + 1
)
,

and

G2(x) = (x + 1)
(
x4 + 2x3 + x2 + 2x + 1

)2
.

Therefore,

F3[x]
(x15 − 2)

	 F3[x]
(x + 1)3

⊕ F3[x]
(x4 + 2x3 + x2 + 2x + 1)3

	 (
F3 + uF3 + u2

F3
) ⊕ (

F34 + uF34 + u2
F34

)
.

For simplicity, denote F3[x]
(x15−2)

by R, (F3 + uF3 + u2
F3) by J1 and (F34 + uF34 + u2

F34 ) by J2.

Set a root of x5 + 1: β = 2. Let ξ be a 5-th primitive root of unity.
Since β3−1 = 1 = ξ5, the map

τ : Z/5Z → Z/5Z,

z �→ 3z + 5,
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defines two orbits: O1 = {0} and O2 = {1,3,4,2}. It is easily checked that β is the root of x + 1 while
βξ , βξ2, βξ3, βξ4 are the roots of x4 + 2x3 + x2 + 2x + 1. Therefore, the orbit O1 corresponds to the
polynomial x + 1 while the orbit O2 corresponds to the polynomial x4 + 2x3 + x2 + 2x + 1 in (17).

Let C be the (2,2)-QT code of length 30 over F3 and let the generator of its corresponding
R-submodule of R

2 be (G1(x), G2(x)). Then C can be decomposed as direct sum of a code over J1
and another code over J2.

For the codeword (G1(x), G2(x)) ∈ C , Ĝ1, Ĝ2 are two matrices of size 3 × 5 as defined in Eq. (12),
where

Ĝ1 =
⎡
⎣0 0 0 0 0

0 2 + 2(2ξ) + (2ξ)2 + 2(2ξ)3 1 + (2ξ)3 1 + 2(2ξ)2 1 + (2ξ)

2 (2ξ)3 2ξ 1 + 2(2ξ) + (2ξ)2 + 2(2ξ)3 2(2ξ)2

⎤
⎦ ,

and

Ĝ2 =
⎡
⎣ 0 0 0 0 0

1 0 0 0 0

2 1 + (2ξ) + (2ξ)3 1 + (2ξ) + 2(2ξ)2 2 + 2(2ξ) + (2ξ)2 2 + 2(2ξ) + 2(2ξ)3

⎤
⎦ .

Let C1 be the J1-linear code of length 2 with the generator

(
2u2, u + 2u2)

over J1 and let C2 be the J2-linear code of length 2 with the generator

((
2 + 2(2ξ) + (2ξ)2 + 2(2ξ)3)u + (

(2ξ)3)u2,
(
1 + (2ξ) + (2ξ)3)u2)

over J2. Then C 	 C1 ⊕ C2.

The following example shows the construction of C from C1 and C2 where C , C1 and C2 are as
in Example 3.

Example 4. Given the generator (2u2, u + 2u2) ∈ C1, its associated matrix x̃1 defined as in (15) is

x̃1 =
⎡
⎣ 0 0

0 1

2 2

⎤
⎦ .

The matrix x̃2 associated to the generator

((
2 + 2(2ξ) + (2ξ)2 + 2(2ξ)3)u + (

(2ξ)3)u2,
(
1 + (2ξ) + (2ξ)3)u2) ∈ C2

is

x̃2 =
[

0 0 0 0 2 2 1 2 0 0 0 1

0 0 0 0 0 0 0 0 1 1 0 1

]T

.

Then

x =
[

0 0 2 0 0 0 0 2 2 1 2 0 0 0 1

0 1 2 0 0 0 0 0 0 0 0 1 1 0 1

]T

.
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By Theorem 7, the matrix A is given as follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 2 2 1 2 1 2 1 2 1 2 1 1

0 2 1 0 0 0 0 2 2 1 2 2 1 2 1

0 0 2 0 0 0 0 0 0 0 0 2 2 1 2

1 1 1 2 1 2 2 2 1 1 1 2 2 2 1

0 1 2 0 0 0 0 2 1 2 2 1 2 2 2

0 0 1 0 0 0 0 0 0 0 0 2 1 2 2

2 2 2 1 1 1 2 2 2 1 2 1 2 1 2

0 2 1 0 0 0 0 1 1 1 2 1 1 2 1

0 0 2 0 0 0 0 0 0 0 0 1 1 1 2

1 1 1 2 1 2 1 2 1 2 2 2 1 1 1

0 1 2 0 0 0 0 2 1 2 1 1 2 1 1

0 0 1 0 0 0 0 0 0 0 0 2 1 2 1

2 2 2 1 2 2 2 1 1 1 2 2 2 1 2

0 2 1 0 0 0 0 1 2 2 2 2 2 2 1

0 0 2 0 0 0 0 0 0 0 0 1 2 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then

Ax =
[

1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

1 2 1 2 1 1 2 1 2 1 0 0 0 0 0

]T

,

whose columns are exactly the coefficients of G1(x) and G2(x), respectively. (G1(x), G2(x)) is the
generator of the quasi-twisted code C in the previous example.

8. Conclusion

In this paper, we study the quasi-twisted (QT) codes both in the nonrepeated-root and repeated-
root cases. Based on the factorization of the polynomial xθ − λ over Fq , the decomposition of a
(λ, l)-QT code of length lθ over Fq is given as a direct sum of linear codes over the component
rings. Furthermore, the connection between the decomposition of a QT code and that of its dual
code is explicitly described. In particular, the decomposition of a self-dual QT code is given. We
also study the generalized discrete Fourier transform (GDFT) and its inverse formula, which are ap-
plied to both the nonrepeated-root and repeated-root cases. Finally, by the inverse formula of GDFT,
we produce a formula to construct a QT code from linear codes over rings, as shown in Exam-
ple 4.
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