
JOURNAL OF MATHRhlATICAL ANALYSIS AND APPLICATIONS 71, 1-17 (1979) 

Nonoscillatory Solutions of Higher Order Differential Equations 

K. E. FOSTER 

Department of Mathematics and Computer Science, Mount Allison University, 
Sackville, New Brunswick, Canada EOA 3C0 

AND 

R. C. GRIMMER 

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901 

Submitted by K. L. Cooke 

1. INTRODUCTION 

We want to consider the existence and growth of nonoscillatory solutions of 
the differential equation 

XC”) +f(t, x) = 0, 

where f is a continuous real valued function for t > 0 and x E R such that f (t, x) 
is nondecreasing in x for fixed t, and xf (t, x) > 0 if x # 0. We will show that 
under certain conditions, there exist solutions for this equation that grow like a 
polynomial of given degree. 

It is known (cf. [8]) that if a nonoscillatory solution x(t) dpes exist, then it may 
be continued to + co and satisfies the property that for some to , there is an inte- 
ger 8, 0 < G < n, which is odd if n is even and even if n is odd, such that for 
t 3 t, 3 x(t) xti)(t) > 0 for i = 0, l,..., /, and (-l)n+i x(t) xti)(t) < 0 for 
i = e+ 1, A-+ 2 )...) n. 

Such a solution is subsequently referred to as a function of degree Cfor t 2 to . 
(In [7], Kartsatos denotes this property for x(t) by saying that x(t) belongs to the 
class B(t,, , 5), while Lovelady [lo, 1 l] uses the notation e = j, .) 

A solution x(t) of the above nth order equation having degree L for t > to 

is bounded below by a polynomial of degree (! - 1) as t + co since x(!) > 0, 
#+l) < 0, and x’ > 0 for t > t, . Also, such a solution is bounded above by a 
polynomial of degree 8, and consequently a solution of degree / is bounded 
between two polynomials of degrees 8 - 1 and /. The question is whether a 
solution of degree 8 exists that grows like a polynomial of degree G - 1 in the 
sense that it is bounded between two polynomials of degree /’ - 1, or a solution 
exists that grows like a polynomial of degree E in that sense. 

1 
0022-247X/79/090001-17$02.00/0 

C opyright 6 1979 by AcademicPress, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82258322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 FOSTER AND GRIMMER 

Answers to this question have been given in a number of papers on the subject 
of oscillation and nonoscillation for various forms of the above equation. Most 
of these studies have considered a second order equation. In his 1955 paper [I], 
F.V. Atkinson gave a condition which guarantees the existence of nonoscillatory 
solutions of the equation xl” + p(t) x 2k+1 = 0, and it was noted by Moore and 
Nehari [12] that Atkinson’s proof shows that the nonoscillatory solution in fact 
converges to a constant. They then proved that another condition yields solu- 
tions that grow like t. Nehari provided similar results [13] for an equation that 
may be written in the form x” + f(t, x) = 0, and an extension of this result to a 
somewhat more general equation was given in a survey paper [15] on second 
order equations by Wong. An overview of such results regarding bounded and 
asymptotically linear or unbounded and asymptotically linear solutions of a 
second order equation was provided by Coffman and Wong in [3]. Finally, 
for the second order equation, Heidel has proved results on solutions that 
grow like fractional powers of d in [6J. 

Analogous theorems for the nth order equation must concern the existence of 
nonoscillatory solutions that are like a constant, like a linear function, a second 
degree polynomial, and so on, and should perhaps determine if such solutions are 
asymptotic to a polynomial of some degree. Note that no nonoscillatory solution 
of x(~) + f(t, X) = 0 can grow faster than a polynomial of degree n - 1 due to 
the sign condition on the function f(t, x). As already stated, a nonoscillatory 
solution must have degree 8 where 4 is even if n is odd and odd if n is even. 
Recently, Lovelady [ll] has given a condition for the existence of solutions 
having all odd degrees up to and including L of the even order superlinear 
equation ztn) + q(t) 1 xY 1 sgn(x) = 0, and he also gives an alternative condition 
implying that all nonoscillatory solutions grow no faster than a polynomial of 
degree G - 2. 

In this paper we study the more general nth order equation x(~) + f(t, X) = 0 
with the assumptions on f given above, but where n may be either even or odd. 
Applying the results for this equation to the equation x(%) + p(t) xY = 0, where 
for simplicity we assume y is the quotient of odd integers, in the case y > 1, we 
find conditions for the existence of nonoscillatory solutions of degrees (in steps 
of two) up to and including a given /, just as Lovelady found. In contrast, the 
case 0 < y < 1 yields solutions of degrees down to 8, that is, of degrees z?‘, 
t + 2,..., and fl- 1. This verifies the intuitive notion that for the superlinear 
equation, nonoscillatory solutions of lowest degree are the first to occur, while 
for the sublinear equation nonoscillatory solutions of highest degrees are first to 
occur. 

More in fact will be established than just the existence of nonoscillatory 
solutions of degree /. One condition (I[) is shown to imply the existence of a 
nonoscillatory solution x(t) of degree G that has its (r! - 1)st derivative bounded 
above by a constant. This means that x(t) is bounded above by a polynomial of 
degree L - 1, while it is also bounded below by a polynomial of degree e - 1 
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since x(t) has degree 8 Thus x(t) grows like a polynomial of degree P - 1. 
Another condition (&+J yields a solution x(t) of degree G with N(t) bounded 
below by a positive constant, and thus x(t) is seen to be bounded between two 
polynomials of degree 4. It is now clear that to say a nonoscillatory solution has 
degree L is not being sufficiently specific since such a solution may have one 
of two, or perhaps more, different rates of growth. However, we shall use this 
intuitive terminology for describing nonoscillatory solutions, and then addi- 
tionally specify that the solution grows like a polynomial of degree / - 1 or of 
degree e. 

2. PRELIMINARY RESULTS 

We begin by extending to odd order equations a result that was proved by 
Kartsatos [7, Lemma 2.11 for even order equations which thus provides a 
complete generalization of the initial result stated by Atkinson [2, Lemma 11. 
Another preliminary result then is proved which is again an nth order analogue 
of a standard theorem for second order equations (cf. [15, Theorem 31) on the 
existence of nonoscillatory solutions. The mian results then follow with the 
application to the special equation mentioned above. 

LEMMA (Kiguradze). Letf(t) b e a uric f f ion such that it and each of its deriva- 
tives up to order (n - 1) inclusive is absolutely continuous and of constant sign in an 
interval (t, , ~0). I f  n is even (odd) and f  en)(t) f  (t) < Ofor t >, t, , then there is an 
odd {even} integer 8, 0 < J < n - I, such that for t > t, 

(i) fik)(t) f(t) 3 0 for k = 0, l,..., C; 

(ii) (-l)“+“f(“)(t)f(t) < 0 for k = /+ 1, 8+ 2,..., n; 

(iii) (t - to) If(L-k)(t)l < (1 + k) 1 f(“-“-l)(t)/ for k = 0, l,..., e-- 1. 

The next lemma establishes the equivalence of the existence of nonoscillatory 
solutions of degree / for the nth order equation (1) and the corresponding nth 
order differential ineqiality (2), 

29 + f(t, x) = 0, (1) 

29 +f(t, z) < 0. (2) 

LEMMA I. Let x(t) be a solution of (2) that is positive for all large t. Then for 
some to , z(t) has degree efor t > to and for some integer 8 where 0 < 8 < n - 1, 
~isoddifniseven,and/isevenifnisodd. 

If 1 < 8 < n - 1 and zf x0 is such that 0 < x0 < z(t,), then there exists a 
solution x(t) of (1) with x(t,,) = x,, and satisfying for t >, to that 

0 < x(k)(t) < syt) for k = 0, l,..., /, 
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0 > (-l>,+k x’“‘(t) > (-l)la+rc z(K)(t) fork = e+ 1, e+ 2 ,..., n. 

I f  C = 0 when n is odd and if x, satisfies 0 < x, < z(m) then there exists a 
solution x(t) of (1) with limt+co x(t) = x, and satisfying 0 < (- 1)” xfk)(t) < 
(-l)k dk)(t) for k = 0, l,..., 71. 

Proof. If x(t) is a positive solution of (2) for all large t, then XZ(~) < 0 and 
the first part of the lemma follows from Kiguradze’s Lemma. The second part 
of this lemma was proven for the case that n is even by Kartsatos [7, Lemma I], 
and we now outline the proof for the case n = odd using essentially his argu- 
ment. 

Assume z(t) is a solution of (2) of d e g ree E for some &even (since n is odd) and 
for all t > to where t, is sufficiently large. Following the proof given in [7, 
Lemma 11, after k integrations from t to co we would get that for k = 1,2,..., n - 

(G+ I>, 

(- I)“-1 J$“-k) t) > ( , f  [(s - t)“-l f  (s, z(s))/(k - l)!] ds 

since for these values of k, z(+~)( CO) = 0. Letting k = n - (C + 1) and after 
another integration, we find that 

z@(t) > Jrn [(s - t)n-e-l f  (s, z(s))/@ - L - l)!] ds 
t 

s CD&, 2). 

Now if J > 0 then integrating this inequality &-times from to to t, we get 

On the other hand, if 8 = 0, then letting k = n - 1 and integrating once we 
have that 

z(t) >, x(m) + j-= [(s - t)‘+l f(s, z(s))/(n - l)!] ds 
t 

Now if 8 > 0, then by defininig the sequence {x%(t)} by 

x,(t) = z(t), %&+1(t) = x0 + ‘Ue(t, xnh n = 0, l,... 
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we see, as in [7, Lemma l] that lim xn(t) = x(t) exists and satisfies the integral 
equation 

x(t) = x0 + Yc(t, x), for t > to , 

and it follows that x(t)ihas the properties stated in the lemma. 
On the other hand, if / = 0, then by defininig {xn(t)} by 

it follows in a similar fashion that lim xn(t) = x(t) exists and is a solution of the 
integral equation 

x(t) = x, + Lrn [(s - it>“-lf(s, x(s))/(n - l)!] ds. 

We may conclude that x(t) has the properties stated in the lemma, thus com- 
pleting the proof. 

The next lemma is a generalization to higher order equations of a standard 
result for second order equations. The proof given is patterned after the proof 
of Wong [ 15, Theorem 31. 

LEMMA 2. (i) I f  n is even, then for each to suficiently large, (2) has a positive 
solution bounded above by a constant for t 3 to , if and only if, for some a > 0, and 

somec>O 

s 

m 
t”-lf (t, c) dt < 00. (11) 

a 

(ii) I f  n is odd, then for each to s@ciently large, (2) has a positive nonincreas- 
ing solution bounded below by a positive constant for t > to , if and only ;f, (Ii) holds 

for some a 2 0 and some c > 0. 

Proof. (i) If n is even and x(t) is a bounded positive solution of (2) for all 
large t, then z(t) has degree 1 for large t, and hence (---I)“-’ z(*)(t) > 0 for 
h = l,..., n and t large. Now by Taylor’s theorem and (2) it follows that 

n-1 

z(t) >, z(t,) + 2 (-l),+l (t - toy &‘(t)/j! 
j=l 

+ 1: [(s - t,Ff(s, .W/(n - I)!1 4 

and since the sign alternations of the derivatives of z imply that the summation 
term on the right is nonnegative, we may conclude that 

z(t) 2 4to> + ( [(s - to)“-If (s, z(s))/(n - l)!] ds. 
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The hypotheses on z(t) also allow that z( co) = lim,,, x(t) exists and is finite, 
and thus, letting t ---f co in the last inequality, we get that 

x(c0) >, j-r [(s - to)“--lf(s, x(t,))/(n - l)!] ds 

which establishes the necessity of (IJ. 
Conversely, if (II) holds for a 3 0 and c > 0, then it follows as in the proof 

given by Wong [15, Theorem 31 that there exists a bounded positive solution 
x(t) of 

x(t) = c - fc [(s - t)“-lf(s, x(s))/(n - l)!] ds 
s 

for all t sufficiently large. A solution of this integral equation is also a solution of 
(l), thus establishing the sufficiency of (IJ. 

(ii) If 71 is odd and z(t) is a positive nonincreasing solution of (2) that is 
bounded below by a positive constant, then z(t) must have degree zero and thus 
satisfy (-l)k P(t) > 0 for each K = 0, I,..., n and all large t. Arguing as in 
the proof of (i) we would find that 

x(t) < z(to) - j t [(s - tJ-lf(s, x(s))/(n - l)!] ds. 
to 

Now the hypotheses that x >, c for some positive c, and x’ 3 0 imply that 
x(03) = Km,,, x(t) exists and is positive with z(o3) < z(t,). Taking the above 
integral inequality to the limit, we get that 

4t,) 3 Frn [(s - t,Ff(s, +))/(n - l)!] ds 
* to 

> 2; [(@4n-1f(s, c)/@ - 1Yl ds s 

thus verifying the necessity of (IJ. 
The converse may be proven in the same way as in part (i) except that (IJ 

would be shown to imply the existence of a positive nonincreasing solution x(t) 
of the integral equation 

x(t) = (c - e) + jm [(s - t)“-lf(s, x(s))/(n - I)!] ds 
t 

where E > 0 is chosen so that c - E > 0, and then t is such that 
Jf +f(s, c) ds < E. I t o f 11 ows that x(t) is a solution of (1) satisfying c - E < 
x(t) < c for all sufficiently large t. This proves the sufficiency of (II) and comple- 
tes the proof of the lemma. 
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COROLLARY 1. (i) I f  n is even, then for t, large there exists a positive solution 

of (1) that is bounded above by a constant for t > to , if and only if, (I,) holds. 

(ii) I f  n is odd, then for t, large there exists a positive solution of (1) that is 
nonincreasing and bounded below by a positive constant for t 3 t, , ; f  and only if, 

(IJ holds. 

Proof. Lemma 2 establishes this result for (2) and the existence of such 
solutions for (2) implies the existence of such solutions for (1) via Lemma 1, 
proving this corollary. 

Indeed, there are many such nonoscillatory solutions of (1) {or (2)) if condition 
(I,) holds, and this is the content of the next proposition. 

COROLLARY 2. (i) Let n be even. If  (IJ holds for c > 0 and some a 3 0, then 
for each c’ with 0 < c’ < c, there exists a t, > 0 such that (2) ((1)) has a solution 

x(t) with 0 < x(t) < c’ for t 3 t, . 

(ii) Let n be odd. If  (Ir) h Id f  o s or c > 0 and a > 0, then for each 

c’, 0 < c’ < c, there is a t,, > 0 such that (2) ((1)) has a solution x(t) that is non- 
increasing and such that x(t) > c’fot t > t, . 

Proof. The proofs of (i) and (ii) of Lemma 2 establish that when (Ir) holds 
for c > 0 and a 3 0, then for < > 0 with c - c > 0, if to is sufficiently large so 
that sc t+lf (t, c) dt < E, then there is a soIution x((t) of (2) with the desired 
properties and satisfying c - E < x(t) < c for t >, to . Part (i) of this corollary 
follows by letting c’ take the role of c, while part (ii) follows by choosing E so that 
c’ = c- E. 

Remark. The referee has noted that in both parts (i) and (ii) of Corollary 2, 
the solution x(t) can be chosen so that x(t) -+ c’ as t + co. This follows from the 
fact that x(t) is a solution of an integral equation of the form x(t) = c’ f  

St” W, s, 4s)) ds. 

3. MAIN RESULTS 

THEOREM 1. Given t, 3 0, there exists a positive solution of (1) having 
degree = t!for all t > t, where e 2 1, ; f  and only if, there exists a positive solution 
having degree 1 for t > to of 

p-(+1) + f  (t, (t - q-1 y/e!) = 0. 0%) 

Proof. Let x(t) be a positive solution of (1) and assume that x(t) has degree / 
for t > t,, , where 8 is an odd {even> integer with 0 < 8’ < n - 1 when n is 
even {odd}. Now when the (G - I)-inequalities from part (iii) of Kiguradze’s 
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Lemma corresponding to the values k = 4’ - 1, P - 2,..., 1 are chained together, 
then we get that 

x(t) > (t - toy-1 &-“(t)/e!, for t > to . 

Combining this inequality with (1) and using the hypothesis that f(t, X) is 
nondecreasing in X, we get that x(t) is a solution of 

.(n)(t) + f(t, (t - &-J-l x’e-ytyt!) < 0, 

Therefore z(t) = d-l)(t) is a solution of 

t >, t, . 

Z(*-e+l) + f(t, (t - to)“-1 Z/C!) < 0, t 3 t, , 

and since x(t) has degree e, z(t) has degree 1. Now by Lemma 1 the existence of 
the solution z(t) of degree 1 of the above differential inequality of even order 
guarantees the existence of a positive solution y(t) of (E;) such that y(t) has 
degree 1 for t 3 t, . 

Conversely, assume that for t 2 t,, , y(t) is a solution of (Ei) having degree 1 
and y(t) > 0 for t > t, . Then 

w(t) E $ J*:/,;-’ *.* jt;y(sl) ds, ..* d& . 

has the properties that wtk)(t) 30 for k =O, l,..., e and (-l)la+kzO(t) <O 
for I2 = e + l,..., n when t > to , since y is positive, has degree 1 and w@l)(t) = 
y(t)/& Hence, w(t) is a function having degree G for t > t, , and moreover 
y’(t) > 0 implies 

w(t) < + ( .. . s,e r(t) 4 **. dsp-, = y(t) (t - toy-l/[! 

Now wtn) = Y(“-~+~)/z! < y(+e+l), and so for t > t, , 

w(n)(t) + f(t, w(t)) < y(n-t+l)(t) + f(t, (t - t,)e-‘y(t)/e!) 

showing that w(t) is a solution of (2) for t > t, since y is a solution of (E;). 
Finally, letting t, > t, then w(t) is a positive solution of (2) having degree 6’ 
for t > t, and so by Lemma 1, there exists a positive solution x(t) of (1) of 
degree 6’with initial value x(tl) = w(tJ. This completes the proof of the theorem. 

THEOREM 2. If n is even {odd} and 8 is odd {even} with 1 < I< n - 1, then 
there exists a positive nonoscillatory sohAm x(t) of degree P of (1) such that xfc-l)(t) 
is bounded above by a constant, if and only if, for some a’ > 0, c’ > 0, 

s 
m 

n, (t - to)n-ef (t, c’(t - Q-l) dt < CO (12 
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or equivaZently, for some a >, 0, c > 0 

I 

co 

P-yf(t, ct”-l) dt < 03. (Id 
a 

Proof. The equivalence of the integral conditions (L) and (I;) follows from 
the hypothesis that f  (t, x) is nondecreasing in X. Thus, on one hand (I[) implies 
(I;) since t >, t - t, where to 3 0, while on the other (I;) implies (4) since 
Qt < t - t, if t > 2t, . 

First assume (I;) holds for some a’ > 0 and some c’ > 0. Then, since 
(n - L + 1) is even, by the Corollary l(i), there is a solution y(t) of (Ej) which 
is positive, bounded, and of degree 1 for all t >, some to. Define the function 
w(t) by (3). Then it follows as in the proof of the converse of Theorem 1 that 
w(t) is a positive solution of degree / of (2) for t > t,, , and that for t, > 8, , 
there exists a solution x(t) of (1) with x(tl) = w(tJ such that x(t) has degree / 
and satisfying for t > t, 

x-)(t) < W-l)(t) = y(t)/rt < y(t). 

Thus, x(r-l)(t) is bounded above since y(t) is bounded above by a constant. This 
proves the sufficiency of the integral conditions. 

Conversely, assume that (1) h as a positive solution with degree / for t > t, 
and such that x(I-l) is bounded above by a constant. Then, as in the proof of 
Theorem 1, it follows that for t > t, x(t) = xtc-l)(t) is a solution of ~(~-~+l) + 
f  (t, (t - tJ-l x/t!) < 0. Now since (n - I + 1) is even and .@I) is assumed 
bounded, then z(t) is a bounded positive solution of this differential inequality of 
even order and hence by Lemma 2(i) there exists a’ > 0 and c’ > 0 such that 
(Ii) holds. This completes the proof of the converse and thus the proof of the 
theorem. 

COROLLARY 3. There exists a positive solution of (1) having degree e > 1 
and such that its (if - 1)st dmivative is bounded by a constant for all large t, 
if and only if, there exists a positive bounded solution of degree 1 of 

y(-t+l) + f(t, Ply) zz 0. w 

Proof. By Theorem 2 the existence of such a solution x(t) of (1) is equivalent 
to the integral condition (It), and by ‘Corollary l(i) this is equivalent to the 
existence of a bounded positive solution of (E,). 

THEOREM 3. I f  n is ewen {odd} and eis odd {even} where 0 < 6’ < n - 1, then 
there exists a positive nanoscillatory solution x(t) of (1) having degree e and such 
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that x(/)(t) is bounded below by a positive constant for all large t, if and only if, for 
some a 3 0, c > 0, 

s 

OT 
t”-“-‘f(t, cte) dt < co. (Ie+d a 

Proof. The case where C = 0 when n is odd was proven in the Corollary 
l(ii). Thus for e 3 1, assume a solution x(t) of (1) exists which has degree 8, 
and has xtC)(t) > LY > 0 for some 01 and all t > t, . By the Lemma of Kiguradze, 
if t, is sufficiently large, then 

x(t) 3 x(f)(t) (t - tJ/t! for t 3 t, , 

and then z(t) = xce)(t) satisfies for t >, t, , 

x(-e) + f(t, z(t) (t - t$/C!) < 0. 

Therefore, by Lemma 2(ii), since (n - e) is odd and x(t) is a positive nonincreas- 
ing function that is bounded below by a positive constant, then there exists 
a c’ > 0 and a > 0 such that 

s 
si 

v-L-If (t, c’(t - Q/l!) dt < co. 
a 

This is equivalent to (Ie+r) for some c > 0. 
Conversely assume that &+i) holds for some a’ > 0, c’ > 0. Then for c such 

that 0 < c < ~‘12, choose E so that 0 < E < c and T = T(E) so that for t, >, T 

s 
m 

tn-C-‘f(t, c’tf) dt < E. 
to 

Define the sequence of functions {xn(t)} for t >, t, by 

x0(t) = c(t - t,)t 
x,+,(t) = c(t - tcJe + Yld(t, XVL) 

where Ye(t, x) is the same functional defined in the proof of Lemma 1, that is 

This is an increasing sequence of functions since for n = 0 

x1(t) = c(t - t,y + Y(t, x&t)) > c(t - t,y = x,(t) for t > t, , 

while by induction, if xn(t) > x,+.i(t) for t > t, , then 

%+1(t) - x?%(t) = Ye@, xn) - K(t, x,-d* 
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Now, the right hand side of this equation depends for its sign through the 
quantity f(~, x,(s)) - f(s, x,-r(s)), and since f(t, x) is nondecreasing in x, then 
X%(S) > x,-r(s) implies this quantity is nonnegative for all s > to . Therefore, 
x,+,(t) > x,(t) for all t > t, . 

Furthermore, this is a sequence of functions each of which is bounded above 
by the function g(t) = c’(t - t,)!. To see this, recall that T was chosen SO 

that s; t+-rf(t, c’t”) dt < 6. Proceeding by induction, we have by definition 
that x,(t) = c(t - to)! < c’( - t# since c < c’/2. Assume that a$t) < 
c’(t - t#. Then xn(t) < c’te for t > t, , and SO 

%+1(t) = 4 - t,Y + Yet %> 
t (t-q-1 a, 

G C(t - tcije + 1, (e I l>! jv sn+f(s, ~‘8) ds dv 

< c(t - tJC + 6 j’ [(t - v)“-l/(8- l)!] dv 
to 

= (c + c) (t - t,)C. 

Finally, 0 < E < c < c’/2 implies that c + E < c’ and hence that xn+l(t) 4 
c’(t - to){. 

It also follows that {xn(t)} f orms an equicontinuous family since the derivative 
of each xn(t) is bounded by a function of the form c”(t - t,)c-l. In fact 

&+1(t) = cqt - tp + Yj(t, x,) 

< cG(t - toy-1 + c[(t - tp/(e- l)!] 

= (ct + (E/(6- - l)!)) (t - toy-1. 

Therefore on any compact interval [to, tJ both sequences {x,} and (x$} are 
uniformly bounded, the first by c’(t, - tJ and the second by c”(tl - tJ-l, 
and so (xJt)> is a uniformly bounded and equicontinuous family on a given 
interval [to , tl]. Therefore the limit x(t) = lim,,, xn(t) exists for t 2 t,, and by 
the Ascoli-Arzela theorem, xn(t) converges uniformly to x(t) on each [t,, , tl] 
showing that x(t) is continuous since by induction each zn(t) is continuous. 
Moreover by the Lebesque Monotone convergence theorem, x(t) satisfies 

x(t) = c(t - toy + Y!(t, x>. 
As in the proof of Lemma 1, this implies that x(t) is an n-times differentiable 
function which satisfies (1) and has degree G for t > t,, with x(f) > cl!. This 
completes the proof of the theorem. 
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4. AN EXAMPLE 

These results will now be applied to the equation 

x(n) + p(t) xy = 0 

wherep(t) is positive and continuous and y is the quotient of odd integers, 

THEOREM 4. Consider that fey some integer e, 0 < & < n - I, where G 
is odd (even} when n is even {odd), 

s m tn-t+-)p(t) dt < co. 

(i) If y > 1, then (5t) is necessary and su#cient for (4) to have positive 
solutions x9(t), of degree = j and such that xij-” is bounded above by a constant for 
all large t where j = I, 3, 5 ,..., ezfiiiisoddandniseven,andj=2,4,...,CifG 
is even when n is odd, while for the case n odd and C = 0, there exists a solution 
that is bounded below by a positive constant having degree = 0. 

(ii) I f  0 < y  < 1, then (5e) is necessary and su$Znt for (4) to have positive 

solutions x3(t) of degree = j and such that xy-” is bounded above for all large t where 
j = P, 8+ 2,..., n - 1 (whether EEis odd OY even) while for f  = 0, x0(t) will be a 
solution of degree = 0 which is bounded below by a positive constant. 

Remark. Lovelady [l l] has shown for n even and y > I that (5e) is necessary 
and sufficient for (4) to have a solution of degree e. It follows then from (i) above 
then that if (4) h as a solution of degree t, it must have a solution of degree C 
with x(e-l) bounded. These may not be the same solution, e.g. x” -1 (I,/4tS) x3 
= 0 has x(t) = t112 as a solution where n = 2 and C = 1. 

Proof. Since (4) has the form of (1) when f  (t, x) = p(t) XY then the integral 
in condition (L) becomes 

r 
m 

t”-y(t, cte-l) dt = 
s 

= Wp(t) [cte-l)]y dt 
‘a a 

= p j-m tn-“+d-*‘p(t) & 

a 

Therefore, (Ie) is equivalent to (5e) for (4). 
Now if y > 1, since $a-t+v(t-1) = tn-v+f(Y-11 > t%--Ytl(Y-1) = p-j+vW-1) for 

j < k, and in particular for j = z’, C- 2, P - 4 ,..., 6 - 2k, as long as e - 2k 
is positive. This means that (It) implies the integral conditions (L) also hold 
for these values of j. Therefore, part (i) follows from Theorem 2 for 8 2 1, and 
from the Corollary l(ii) for 1 = 0 (n odd). 
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n IfO<y<l,thent - t+y(e-l) > W++r) providedj > e, and so in particular 
for j = t, t+ 2,..., tl - 1 we see that (&) implies (I& Part (ii) of this theorem 
then follows from Theorem 2 and the Corollary l(ii) for the cases / >, 1, and 
8 = 0, respectively. This proves the theorem. 

THEOREM 5. Consider that JOY some integer !, 0 ,< & < n - 1, where 8 is odd 

{eoen> when n is evm (odd), 

s 
cc 

t”-c-l++(t) dt < co. (%+1) 

(i) If y > 1, then (6,+,) is necessary and suficient for (4) to have positive 
solutions x,(t) having degree = j and such that xi!)(t) is bounded below by a positive 

constant for all large t where j has each of the nonnegative values of the form 
j = /, t - 2 ,..., c! - 2k. 

(ii) I f  0 < y  < 1, then (6,+,) is necessary and su#icient for (4) to have positive 

solutions xj(t) having degree = j such that x(j)(t) is bounded below by a positive 
constant for all large t where j = 8, /+ 2,..., n - 1. 

Proof. (i) Arguing in the same way as in the proof of Theorem 4(i), we 
see that the integral conditions (L+i) will hold for each of the nonnegative values 
ofj = e-2k, k =O, l,..,. Therefore part (i) follows from Theorem 3 and the 
Corollary 1 (ii). 

(ii) Again, arguing as in the proof of Theorem 4(ii), we see that (Ij+l) 
holds for j = e, G + 2,..., n - 1 and so part (ii) follows from Theorem 3 and 
the Corollary l(ii). This proves the theorem. 

Remark. A form of the sublinear result Theorem 5(ii) was given by Lovelady 
in [lo] for even order equations. However, his result provides only for a solution 
of degree G and does not indicate that such a solution has its 8th derivative 
bounded below, that is, that the solution itself is bounded below by a poly- 
nomial of degree /. In a more recent paper [ 1 I] Lovelady has treated the super- 
linear equation of even order deriving the results of Theorem 5(i) and the 
second portion of Theorem 6(i) that follows, 

COROLLARY 4. (i) I f  y  > 1, then (4) has positive solutions xi(t) of degree j for 
j=e,e-2 ,... andj>Oandy,(t)ofdegreekfork=&‘-2,&-4 ,..., k>O 
such that x:‘-“(t) is bounded above by a constant and ykk’(t) is bounded below by a 
positiwe constant, if and only if, (5[) holds. 

(ii) Ij 0 < y < 1, then (4) has positive solutions x$(t) of degree j, j = 8, 
8 + 2 ,..., n - 1 and yk(t) of degree k, k = 8, G + 2 ,..., n - 1 such that x+lJ is 
bounded above and yr’ is bounded below by positive constants, if and only if, 
(SC) holds. 
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Proof. (i) If y < 1 then by Theorem 4, (5,) is necessary and sufficient for 
the existence of positive solutions xj , j = L’, C - 2,..., j > 0 such that &-l) < 
c, for some constants {c?}. On the other hand, Theorem 5 states that (kt-r) is 
n.a.s. for the existence of solutions yk , for k = G - 2, d- 4 ,..., K > 0. Now 
($) implies (6e-1) since for k = C - 2m, F-l++ < ~-~+-tv(~-l) if (and only if) 
2m(l - y) - 1 < --y, hence if 2m 3 1, since 1 - y < 0. Therefore m = 1 
or K = G - 2 suffices, and so (5e) implies (6k+l) when k = & - 2. This proves 
part (i). 

(ii) If 0 < y < 1, then (5[) is necessary and sufkient for the existence of 
the solutions xj , j = C, e + 2 ,..., n - 1 with ~j”‘) < cj for some constants 
(cj} by Theorem 4. Now condition (SC) implies that (6,,,) holds since y < 1 
implies n---l+~ye,<n----+$yd=n--+i-(d-l). Therefore 
by Theorem 5, (6,+,) is necessary and sufficient for the existence of solution yk , 
k = 4, d+ 2,..., n - 1, with yik’(t) 3 dk > 0 for all large t. The corollary is 
proved. 

COROLLARY 5. (i) .lf y > 1, then there exist positive solutions xj(t) and yk(t) 

ofdegreesjandkrespectiveZyof(4)forj=~,~-2,...,j~Oandk=~,~-2,..., 

k 2 0 such that x(!-') < Cj and yP’ 3 d k f o Y some positive constants {cj} and {d,}, 
if and only ift (6(+J holds. 

(ii) I f  0 < y  < 1, then there exist positive solution x, and yk of degrees j and 

k respectively for j = L’ + 2, G + 4 ,..., n - 1 and k = /, P + 2 ,..., n - 1 such 
that x:jA1) < cj , y  Lk’ > d, for some positive constants {q} and (4) and all large t, 

if and only if, (6(+J holds. 

Proof. Ify>1thenn-~-l+$‘~n-~+~(~-l)andso(6c+J 
implies (5!). Part (i) follows from Theorems 4 and 5. 

If O<y<l then n-t-l+$‘>n-((e+2m)+y(/+2m-1) if 
2m > 1 and so m = 1 suffices implying that if (6,,,) holds then (5,J holds for 
k = e + 2. Thus part (ii) follows from Thzorems 4 and 5 also, proving the 
corollary. 

THEOREM 6. (i) I f  y  > 1, then (4) h as a positive solution x(t) of highest 
degree 8’ with xtc-l)(t) bounded above by a constant, ; f  and only if, 

I 

m 

I 

co 
tn-C++l’p(t) dt < co and tn-c-l+vfp(t) dt = 03, 

while (4) has a positive solution of highest degree / such that x(/j is bounded below 
by a positiwe constant, if and only ;f, 

m m 
tn-r-l+YQ.(t) dt < co and tla-cf-z+vV+l)p(t) dt = ~0. 
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(ii) If 0 < y < 1, then (4) h as a positive solution x(t) with lowest degree C! 
with ~(~---l) bounded above by a constant, if and only if, 

s 
m 

s 
03 

t”-f++“‘p(t) dt < co and ~?a-t+l+vV-Wp(t)& = ~0, 

while (4) has a solution of lowest degree G with x w bounded below by a positive 
constant, if and only if, 

s 
00 

s 
m 

tn-@+“ef(t) dt < 00 and tn-t+y(f-l’p( t) dt = ~0, 

Proof. (i) There exists a positive solution of (4) of degree e with xcc-l)(t) < 
c, for all large t, if and only if, (5,) holds, and there is no solution of degree e 
with xce) bounded below by a positive constant if and only if (6!+J does not hold, 
that is, Jrn t+-l+v!p dt = co. Also there exists a solution x(t) of (4) with x([)(t) 3 
de > 0 iff (6e+l) holds, but no solution of higher degree (r! + 2K) if and only if 
($+a,) does not hold, in particular (5,+,): s m n (d+Z)+~((E+Zkl)p & = ~0. This t - 
proves the two claims in part (i). 

(ii) Equation (4) h as a positive solution x(t) of degree G with &-l’ < ctml , 
if and only if, (SC) holds but there can be no solution of degree < t, if and only if, 
there is no solution of degree (G - 2) that has x (t-2) bounded below and this is 
equivalent to (6ce-s)+r) = (6e-l) which is (6,+,) with e replaced by (C - 2). On 
the other hand, (4) h as a solution of degree G with x@) > c, > 0, if and only if, 
(6f,,) holds while there is no solution of degree G with xce-l) bounded above, if 
and only if, (SC) d oes not hold. This proves the theorem. 

Remark. The above results for the superlinear and sublinear cases of (4) 
can be generalized to equation (1) which is considered to be superlinear if 

forsomec > 1, 

x-‘f (t, x) >, Y-cf (t, y) for each t >, 0, x 3 y 

and is sublinear if 

for some E, 0 < E < 1, 

x-‘f (t, x) < r-‘f (4 y> fort 20, x>y. 

The generalizations of Theorems 4 and 5 are: 

THEOREM 7. (i) Zf (1) is superlinear, then (I!) is a n.a.s.c. for (1) to hawe 
positive solutions xj(t) of degree j with xy-l’ < ci fw j = 8, / - 2,..., and j > 0 
and x,(t) a solution of degree 0 with x0(t) 3 co > 0 ifj = 0. 

(ii) Zf (1) is sublinear, then (I,) is a n.a.s.c. for (1) to haoe positiwe solutions 

409/71/I-2 
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xj(t) of degree j, j = k, d + 2 ,..,, n - 1, with xj!--l) < q and when e = 0, x,,(t) 
is a solution of degree 0 with x,,(t) 3 co > 0. 

THEOREM 8. (i) I f  (1) is superlinear, then (b+l) is a n.a.s.c. for (1) to have 
positive solutions x3(t) of degree j with xii’(t) > cj > 0 for j = L’, 4 - 2,..., C - 2k 
andj >O. 

(ii) I f  (1) is sublinear, then (Ie+l) is a n.a.s.c. for (1) to have positive solutions 

x3(t) of degree j with x:?(t) > c, > 0 for j = 8, d+ 2,..., n - 1. 

The proofs of these theorems are similar to the proofs of Theorems 4 and 5. 
To see this for the superlinear case, note that if f(t, x) is superlinear, then for 
someE>l,ifx>y>O, 

f  (4 4 2 (4Y)‘f (4 Y). 

Thus to show that (L) implies (IJ for j = L; - 2k and j 3 0, it suffices to show 
that t+ef(t, CC--l) > @f(t, ctj-l). Now letting x = cte-l, y = ctj-l then 
j = f - 2k implies x 3 y and so 

t+ef(t, d-l) 2 tll-C[(ctC-ljctj-l)ff(t, d-l)] 

= p-e[t(e-3)Ef(t, Ctj-l)] 3 tn-e+zkf (t, ctj-1) 

= t”-‘f(t, ctj-1) 

sincer>l and e--j=r--(L-2k)=2k. 
A similar argument for the sublinear case will prove that (Id) implies (IJ 

for j = L + 2k, j < n - 1. Likewise it can be shown that (Ie+r) implies (L+r) 
for the appropriate j values in the two different cases. 

The two corollaries of Theorems 4 and 5 may now be stated for equation (1) 
instead of (4) when f(t, ) x is i su er inear or (ii) sublinear, and replacing (5e) ( ) p 1 
and (6e+1) by (Ie) and (Ic+r), respectively. Finally we would get the generalization 
of Theorem 6. 

THEOREM 9. (i) If (1) is superlinear then (1) h as a positive solution x(t) with 

highest degree P and such that 

d-l)(t) < ce < co e &) holds and (Ie+r) does not; 

x@)(t) > ++I > 0 o (Ie+l) holds but (Ite+z)) does not. 

(ii) If f  (t, x) is subtinear, then (1) has a positive solution x(t) with lowest degree 
G and such that 

xte-l) < c, < co o (10 holds but (Ite-2)+1) does not; 
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and 

x(e) 2 cc+1 > 0 9 (Ic+r) holds but (Ie) does not. 

Remark. Throughout we have considered only existence of positive solutions 
and stated results for such solutions. However, all statements are valid for 
negative solutions also due to the hypothesis that f(t, X) has the same sign as x. 
Thus, whenever a n.a.s. condition is given for the existence of a positive solution, 
it is also n.a.s. for the existence of a negative solution having the analogous 
properties. 
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