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1. INTRODUCTION

We want to consider the existence and growth of nonoscillatory solutions of
the differential equation

x® 4 (¢, x) =0,

where f is a continuous real valued function for # 2> 0 and x € R such that f(¢, x)
is nondecreasing in x for fixed ¢, and xf(¢, x) > 0 if x 7 0. We will show that
under certain conditions, there exist solutions for this equation that grow like a
polynomial of given degree.

It is known (cf. [8]) that if a nonoscillatory solution x(¢) does exist, then it may
be continued to -+ oo and satisfies the property that for some ¢, , there is an inte-
ger £, 0 < £ <n, which is odd if # is even and even if 2 is odd, such that for
t=ty, x(@)x9() >0 for i=0,1,.,4 and (—1)"* ()29 <0 for
i=¢+ 1,4+ 2,..,n.

Such a solution is subsequently referred to as a function of degree £ forz == ¢, .
(In [7], Kartsatos denotes this property for x(¢) by saying that x(¢) belongs to the
class B(t,, £), while Lovelady [10, 11] uses the notation £ = §, .)

A solution x(¢) of the above nth order equation having degree ¢ for ¢ > ¢,
is bounded below by a polynomial of degree (£ — 1) as t — oo since 2’ > 0,
x4+ < 0, and «" > 0 for £ > ¢, . Also, such a solution is bounded above by a
polynomial of degree ¢, and consequently a solution of degree £ is bounded
between two polynomials of degrees £ — 1 and /. The question is whether a
solution of degree £ exists that grows like a polynomial of degree £ — 1 in the
sense that it is bounded between two polynomials of degree £ — 1, or a solution
exists that grows like a polynomial of degree 7 in that sense.
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Answers to this question have been given in a number of papers on the subject
of oscillation and nonoscillation for various forms of the above equation. Most
of these studies have considered a second order equation. In his 1955 paper [1],
F.V. Atkinson gave a condition which guarantees the existence of nonoscillatory
solutions of the equation x” + p(¢) #?%+* = 0, and it was noted by Moore and
Nebhari [12] that Atkinson’s proof shows that the nonoscillatory solution in fact
converges to a constant. They then proved that another condition yields solu-
tions that grow like #. Nehari provided similar results [13] for an equation that
may be written in the form x” + f(¢, x) = 0, and an extension of this result to a
somewhat more general equation was given in a survey paper [15] on second
order equations by Wong. An overview of such results regarding bounded and
asymptotically linear or unbounded and asymptotically linear solutions of a
second order equation was provided by Coffman and Wong in [3]. Finally,
for the second order equation, Heidel has proved results on solutions that
grow like fractional powers of ¢ in [6].

Analogous theorems for the ath order equation must concern the existence of
nonoscillatory solutions that are like a constant, like a linear function, a second
degree polynomial, and so on, and should perhaps determine if such solutions are
asymptotic to a polynomial of some degree. Note that no nonoscillatory solution
of £ 4 f(t, x) = 0 can grow faster than a polynomial of degree n — | due to
the sign condition on the function f(¢, ¥). As already stated, a nonoscillatory
solution must have degree £ where ¢ is even if  is odd and odd if # is even.
Recently, Lovelady [11] has given a condition for the existence of solutions
having all odd degrees up to and including ¢ of the even order superlinear
equation x™ 4 g(t) | x| sgn(x) = 0, and he also gives an alternative condition
implying that all nonoscillatory solutions grow no faster than a polynomial of
degree £ — 2.

In this paper we study the more general nth order equation x® - f(¢, x) =0
with the assumptions on f given above, but where # may be either even or odd.
Applying the results for this equation to the equation x™ + p(t) x¥ = 0, where
for simplicity we assume y is the quotient of odd integers, in the case y > 1, we
find conditions for the existence of nonoscillatory solutions of degrees (in steps
of two) up to and including a given ¢, just as Lovelady found. In contrast, the
case 0 <<y <1 yields solutions of degrees down to 7, that is, of degrees ¢,
£+ 2,..., and n — 1. This verifies the intuitive notion that for the superlinear
equation, nonoscillatory solutions of lowest degree are the first to occur, while
for the sublinear equation nonoscillatory solutions of highest degrees are first to
occur,

More in fact will be established than just the existence of nonoscillatory
solutions of degree 7. One condition (I;) is shown to imply the existence of a
nonoscillatory solution x(t) of degree ¢ that has its (£ — 1)st derivative bounded
above by a constant. This means that x(¢) is bounded above by a polynomial of
degree £ — 1, while it is also bounded below by a polynomial of degree £/ — 1
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since x(t) has degree /. Thus x(¢) grows like a polynomial of degree / — 1.
Another condition (I,,) yields a solution x(¢) of degree ¢ with x“X(t) bounded
below by a positive constant, and thus x(¢) is seen to be bounded between two
polynomials of degree 7. It is now clear that to say a nonoscillatory solution has
degree ¢ is not being sufficiently specific since such a solution may have one
of two, or perhaps more, different rates of growth. However, we shall use this
intuitive terminology for describing nonoscillatory solutions, and then addi-
tionally specify that the solution grows like a polynomial of degree £ — | or of
degree £.

2. PReLIMINARY RESULTS

We begin by extending to odd order equations a result that was proved by
Kartsatos [7, Lemma 2.1] for even order equations which thus provides a
complete generalization of the initial result stated by Atkinson [2, Lemma 1].
Another preliminary result then is proved which is again an nth order analogue
of a standard theorem for second order equations (cf. [15, Theorem 3]) on the
existence of nonoscillatory solutions. The mian results then follow with the
application to the special equation mentioned above.

Lemma (Kiguradze). Let f(t) be a function such that it and each of its deriva-
tives up to order (n — 1) inclusive is absolutely continuous and of constant sign in an
interval (t, , o0). If n is even {odd} and f ™(t) f(t) < O for t > t,, then there is an
odd {even} integer £, 0 < £ < n — 1, such that for t > t,

@) fONfE) =0 for k=0,1,..,7¢;
(i) (=D fOfE)<0fork=¢+ 1,4+ 2,..,n;
i)t — 1) | SO < (L4 B) | FEHD)] for k=0, 1,..0, £ — 1.
The next lemma establishes the equivalence of the existence of nonoscillatory

solutions of degree £ for the nth order equation (1) and the corresponding nth
order differential inegiality (2),

2 4 f(t, x) =0, (1)
M - f(t, 2) < 0. {2)

LeMMA 1. Let 2(t) be a solution of (2) that is positive for all large t. Then for
some t, , 2(t) has degree £ for t > t, and for some integer £ where 0 < £ <n — 1,
£1s odd if n is even, and ¢ is even if n is odd.

If1</<n—1 and if x, is such that 0 < xq < 2(t,), then there exists a
solution x(t) of (1) with x(t,) = x, and satisfying for t > t, that

0 < #W(2) < 5M(2) Jork=0,1,.,7
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and

0 > (—1)mtt xt0(t) > (— 1)+ 2®(t)  fork=¢+ 1,4+ 2., .

If £ =0 when n is odd and if x,, satisfies 0 < x,, < 2(c0) then there exists a
solution x(t) of (1) with lim,,, x(t) = %, and satisfying 0 < (—1)* x®(#) <
(—1)% 2%)(2) for k =0, 1,..., n.

Proof. 1f z(t) is a positive solution of (2) for all large ¢, then 23! < 0 and
the first part of the lemma follows from Kiguradze’s Lemma. The second part
of this lemma was proven for the case that # is even by Kartsatos [7, Lemma 1],
and we now outline the proof for the case n = odd using essentially his argu-
ment.

Assume 2(¢) is a solution of (2) of degree ¢ for some ¢ even (since # is odd) and
for all ¢ > ¢, where ¢, is sufficiently large. Following the proof given in {7,
Lemma 1}, after & integrations from ¢ to o0 we would get thatfork =1, 2,...,n —

7+ 1),

(— 1)t 2n=0(2) > L L5 — 081, 2R — 1)1 ds

since for these values of %, 2"#(o0) = 0. Letting k =z — (£ + 1) and after
another integration, we find that

201 = [ [fs — 0y s, 2(o)n — £ — )] ds
= (D[(t, z)

Now if £ > 0 then integrating this inequality Z-times from ¢, to ¢, we get

K

t vy 1
WOty + [ [ [ Ol ) dvder oy

= 2(t,) + Welt, 2).

On the other hand, if £ = 0, then letting £ = n — | and integrating once we
have that

(0 > #(e0) + [ [ — 9" fs, s (n — 1)) ds

Now if £ > 0, then by defininig the sequence {x,(t)} by

%o(t) = 2(t),  Xnpa(t) = %o -+ Felt, %),  m=0,1,...
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we see, as in [7, Lemma 1] that lim x,(¢) = %(t) exists and satisfies the integral
equation
x(t) = xy + Pilt, x), fort >1t,,

and it follows that x(¢)fhas the properties stated in the lemma.
On the other hand, if £ = 0, then by defininig {x,(¢)} by

xo(2) = 2(2), X a(t) = % + P2, %),

it follows in a similar fashion that lim x,(¢) = x(t) exists and is a solution of the
integral equation

) =+ [ 16— 0 2f( e — 1) e

We may conclude that x(f) has the properties stated in the lemma, thus com-
pleting the proof.

The next lemma is a generalization to higher order equations of a standard
result for second order equations. The proof given is patterned after the proof
of Wong [15, Theorem 3].

LemMma 2. (i) If nis even, then for each t sufficiently large, (2) has a positive
solution bounded above by a constant for t > t, , if and only if, for some a > 0, and
some ¢ >0

[ ® 1 (1, ) dt < oo (1)

a

(i) If nis odd, then for each t, sufficiently large, (2) has a positive nonincreas-
ing solution bounded below by a positive constant for t > t, , if and only if, (1,) holds
for some a = 0 and some ¢ > 0.

Proof. (i) If nis even and 2(2) is a bounded positive solution of (2) for all
large t, then 2(t) has degree 1 for large #, and hence (—1)¥-1 2%%)(¢) > 0 for
k =1,...,n and t large. Now by Taylor’s theorem and (2) it follows that

o) > #(t) + 3. (—1p™ (¢ — 1) ()

+ [ 16— w6 5600 — D1

and since the sign alternations of the derivatives of z imply that the summation
term on the right is nonnegative, we may conclude that

30) = a(t) + [ 6 — )£ (s, ()itn — 1] ds.
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The hypotheses on 2(t) also allow that 2(c0) = lim,_,, 2(t) exists and is finite,
and thus, letting # — oo in the last inequality, we get that

() = f:f [(s — 2)" £ (s, 3(8))/(n — 1)1] ds

which establishes the necessity of (I,).

Conversely, if (I,) holds for @ >> 0 and ¢ > 0, then it follows as in the proof
given by Wong [15, Theorem 3] that there exists a bounded positive solution
x(t) of

) = c— [ lle— 0P f s 2(o)/ln — 1)

for all ¢ sufficiently large. A solution of this integral equation is also a solution of
(1), thus establishing the sufficiency of (I,).

(ii) If n is odd and 2(2) is a positive nonincreasing solution of (2) that is
bounded below by a positive constant, then 2(¢) must have degree zero and thus
satisfy (—1)¥ 2%)(t) > 0 for each £ =0, 1,..., n and all large . Arguing as in
the proof of (i) we would find that

() < 300 — | [6— 0 £ () n — D1 ds

Now the hypotheses that 2 > ¢ for some positive ¢, and 2" > 0 imply that
2(00) == lim,_, 2(¢) exists and is positive with 2(o0) < 2(t,). Taking the above
integral inequality to the limit, we get that

[

s(t0) > [ 1 — ) f (s 26 — 1)1 ds

> (/2" (s, &)i(n — 1)1] ds

thus verifying the necessity of (I;).

The converse may be proven in the same way as in part (i) except that (I,)
would be shown to imply the existence of a positive nonincreasing solution x(z)
of the integral equation

x(t) = (¢ — ) + ftw [(s — )" f (s, 2(s)/(m — 1)!] ds

where € > 0 is chosen so that ¢ — e >0, and then ¢ is such that
& s*73f(s, €) ds < e. It follows that x(t) is a solution of (1) satisfying ¢ — € <
x(t) < c for all sufficiently large ¢. This proves the sufficiency of (I,) and comple-
tes the proof of the lemma.
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CoroLLARY 1. (i) If nis even, then for t, large there exists a positive solution
of (1) that is bounded above by a constant for t > t, , if and only if, (1,) holds.
(ii) If n is odd, then for t, large there exists a positive solution of (1) that is
nonincreasing and bounded below by a positive constant for t > t, , if and only if,
(1,) holds.

Proof. Lemma 2 establishes this result for (2) and the existence of such
solutions for (2) implies the existence of such solutions for (1) via Lemma 1,
proving this corollary.

Indeed, there are many such nonoscillatory solutions of (1) {or (2)} if condition
(L) holds, and this is the content of the next proposition.

CoroLLARY 2. (i) Let n be even. If (1,) holds for ¢ > 0 and some a = 0, then
for each ¢’ with 0 < ¢’ < c, there exists a t, = 0 such that (2) {(1)} has a solution
x(t) with 0 < x(2) < ¢ for t > 1.

(i) Let n be odd. If (1)) holds for ¢ >0 and a >0, then for each
¢, 0 < ¢ <c, there is a ty = 0 such that (2) {(1)} has a solution x(t) that is non-
tncreasing and such that x(t) = ¢’ fot t > t,.

Proof. The proofs of (i) and (ii) of Lemma 2 establish that when (I,) holds
for ¢ > 0 and a == 0, then for ¢ > 0 with ¢ — € > 0, if £, is sufficiently large so
that f:: (2, ¢) dt < e, then there is a solution x{t) of (2) with the desired
properties and satisfying ¢ — e <{ x(t) < ¢ for t > ¢, . Part (i) of this corollary
follows by letting ¢ take the role of ¢, while part (ii) follows by choosing € so that

¢ =c—e

Remark. The referee has noted that in both parts (i) and (ii) of Corollary 2,
the solution x(¢) can be chosen so that x(¢) — ¢’ as t — co. This follows from the
fact that x() is a solution of an integral equation of the form x(¢) = ¢ +

[y F(t, s, %(5)) ds.
3. MaN ResuLts
THEOREM 1. Given t, > 0, there exists a positive solution of (1) having

degree = { for all t > t, where ¢ > 1, if and only if, there exists a positive solution
having degree 1 for t > t, of

y(n—£+1) +f(t, (t _ to)f—l y/ﬂ) = 0. (Eé)

Proof. Let x(t) be a positive solution of (1) and assume that x(¢) has degree £
for t > t,, where £ is an odd {even} integer with 0 <L/ <Cn — 1 when n is
even {odd}. Now when the (£ — 1)-inequalities from part (iii) of Kiguradze’s
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Lemma corresponding to the values &k = £ — 1, / — 2,..., 1 are chained together,
then we get that

x() = (t — o)1 D)4, fort >4, .

Combining this inequality with (1) and using the hypothesis that f(¢, x) is
nondecreasing in ¥, we get that x(¢) is a solution of

™) + f(t, (t — L)L 2 V()/4N) <0, t=t,.
Therefore 2(¢) = x“~1)(2) is a solution of
2=t L f(g (— ) B4 <0, t >4,

and since x(f) has degree 7, 2(t) has degree 1. Now by Lemma 1 the existence of
the solution 2(t) of degree 1 of the above differential inequality of even order
guarantees the existence of a positive solution y(t) of (E;) such that y(f) has
degree 1 for t > ¢,.

Conversely, assume that for > #,, ¥(t) is a solution of (E,) having degree 1
and y(¢) > 0 for t > t;. Then

1 t 8¢
1) =— dsy - ds, . 3
w(?) && L(msl St 3)
has the properties that w®(t) >0 for 2 =0, 1,..., £ and (—1)** w®(t) <0
fork = ¢+ 1,..,nwhent >t since y is positive, has degree 1 and wV(¢) =
y(t)/¢. Hence, w(t) is a function having degree ¢ for ¢ >1t,, and moreover
¥'(t) = 0 implies

l t Sy
wt) < 7 [ o [ w0 ds e dea =300 (0 — Y0
Now @® = yin—4+1 £ < yln~¢+1} and so for £ > ¢,

w™(t) + (¢, w(t)) <yt 4 f(1 (= 2 T ()2

showing that w(t) is a solution of (2) for ¢ => ¢, since y is a solution of (Ey).
Finally, letting #, > ¢, then w(f) is a positive solution of (2) having degree £
for t > t; and so by Lemma 1, there exists a positive solution x(t) of (1) of
degree £ with initial value x(¢,) = w(t,). This completes the proof of the theorem.

THEOREM 2. If n is even {odd} and £ is odd {even} with 1 < £ <n — 1, then

there exists a positive nonoscillatory solution x(t) of degree £ of (1) such that x'¢-1(2)
is bounded above by a constant, if and only if, for some & >0, ¢’ >0,

f (=t — 1Y) dt < o0 )
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or equivalently, for some a >0, ¢ >0

[ " tf (2, ct*1) dt < . (1)

a

Proof. The equivalence of the integral conditions (L) and (I7) follows from
the hypothesis that f(#, x) is nondecreasing in x. Thus, on one hand (I,) implies
(I,) since ¢ >t — t, where t, >0, while on the other (I;) implies (I,) since
<t —tift = 2.

First assume (I;) holds for some &' > 0 and some ¢’ > 0. Then, since
(n — £ -+ 1) is even, by the Corollary 1(i), there is a solution y(¢) of (E;) which
is positive, bounded, and of degree 1 for all ¢ > some f, . Define the function
=(2) by (3). Then it follows as in the proof of the converse of Theorem 1 that
w(t) is a positive solution of degree £ of (2) for t > t,, and that for £, > ¢,
there exists a solution x(¢) of (1) with x(¢,) = w(t,) such that x(¢) has degree ¢
and satisfying for t > t;

D) < () = y(B)]F < H(D)-

Thus, x¢-1(¢) is bounded above since () is bounded above by a constant. This
proves the sufficiency of the integral conditions.

Conversely, assume that (1) has a positive solution with degree ¢ for ¢t = ¢,
and such that x-1 is bounded above by a constant. Then, as in the proof of
Theorem 1, it follows that for ¢ > ¢, 2(f) = x'“-D(¢) is a solution of 24+ |
f(&, (2 — )1 2/¢1) < 0. Now since (n — I + 1) is even and x~V is assumed
bounded, then 2(t) is a bounded positive solution of this differential inequality of
even order and hence by Lemma 2(i) there exists a’ > 0 and ¢’ > 0 such that
(I;) holds. This completes the proof of the converse and thus the proof of the
theorem.

CorOLLARY 3. There exists a positive solution of (1) having degree £ > 1
and such that its (¢ — 1)st derivative is bounded by a constant for all large t,
if and only if, there exists a positive bounded solution of degree 1 of

YO L (1, 179) = 0. (E)
Proof. By Theorem 2 the existence of such a solution x(¢) of (1) is equivalent

to the integral condition (I,), and by Corollary 1(i) this is equivalent to the
existence of a bounded positive solution of (E,).

TueoreMm 3. If nis even {odd} and £ is odd {even} where 0 < £ < n — 1, then
there exists a positive nonoscillatory solution x(t) of (1) having degree { and such
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that x)(t) is bounded below by a positive constant for all large ¢, if and only if, for
some a > 0, ¢ > 0,

f : tn=imif (8, ctf) dt << o0, (Iz1q)

Proof. The case where £/ = 0 when 7 is odd was proven in the Corollary
1(ii). Thus for £ > 1, assume a solution x(¢) of (1) exists which has degree ¢,
and has x¥)() > o > 0 for some « and all # > ¢, . By the Lemma of Kiguradze,
if #, is sufficiently large, then

x(t) = xO(t) (t — t)jf! fort =1,
and then 2(t) = x)(¢) satisfies for ¢ > ¢, ,
S0 4 f(t, 3(0) (t — )]0 <O

Therefore, by Lemma 2(ii), since (n — ¢) is odd and 2(¢) is a positive nonincreas-
ing function that is bounded below by a positive constant, then there exists
a ¢ >0 and a > 0 such that

| T, et — 1))eY) dt < oo

This is equivalent to (I,,,) for some ¢ > 0.
Conversely assume that (I,,,) holds for some @’ > 0, ¢’ > 0. Then for ¢ such
that 0 < ¢ < /2, choose € so that 0 < e < ¢ and T = T(e) so that for t, > T

f M (8, ) dE < e
to

Define the sequence of functions {x,(t)} for t >> ¢, by

xo(t) = et — to)f
Knga(t) = et — 1)’ + VoL, %)

where ¥,(t, x) is the same functional defined in the proof of Lemma 1, that is

— o)t (s — 7))

Po(t, x) = J;: (z{ —5r | )'f(s x(s)) ds dv.

This is an increasing sequence of functions since for n =0
x,(8) = (t — to)f + P, %4(1)) = c(t — to) = x(t) fort > t,,
while by induction, if x,(¢) = %,.4(t) for t = t,, then

xn+l(t) — xn(t) = IPf(t: xn) - '{It(ta xn——l)'



NONOSCILLATORY SOLUTIONS 11

Now, the right hand side of this equation depends for its sign through the
quantity (s, x,(s)) — f(s, xn_(s)), and since f(t, x) is nondecreasing in x, then
%,(8) = %,_4(s) implies this quantity is nonnegative for all s > #,. Therefore,
(D) Z 2 () forallt = ¢,.

Furthermore, this is a sequence of functions each of which is bounded above
by the function g(t) = ¢'(t — t,). To see this, recall that T was chosen so
that [ t"~¢-f(t, ¢'t’) dt < e. Proceeding by induction, we have by definition
that xy(f) = c(t — 1) < ' — tpff since ¢ < c¢'j2. Assume that x,(f) <
&t — to). Then x,(t) < 't for t > 1y, and so

Xnpp(t) = et — ) + P2, x,)

cormur [ O

® n—{—1 ol d-
I L smt=1f (s, ¢'st) ds dv

Selt—tof + e ] [t — 0¥ — 1)) do

—(c+ ot —1t).

Finally, 0 < ¢ < ¢ < ¢'[2 implies that ¢ + ¢ <¢’ and hence that x,,(t) <
o't — t,).

1t also follows that {x,(z)} forms an equicontinuous family since the derivative
of each x,(¢) is bounded by a function of the form ¢"(t — #,)*~2. In fact

Xp(2) = cf(t — 1)+ W2, %)
el — tof 1 + (2 — ) (£ — D]
= (cf 4 (e/(£ — 1)N) (¢ — 1.

Therefore on any compact interval [, ¢,] both sequences {x,} and {x,} are
uniformly bounded, the first by ¢'(¢, — )’ and the second by ¢"(t; — ¥,
and so {x,()} is a uniformly bounded and equicontinuous family on a given
interval [¢,, #,]. Therefore the limit x(#) = lim, x,(t) exists for ¢ >> ¢, and by
the Ascoli-Arzela theorem, x,(t) converges uniformly to x(t) on each [¢,, #]
showing that x(t) is continuous since by induction each x,(t) is continuous.
Moreover by the Lebesque Monotone convergence theorem, x(¢) satisfies

x(t) = c(t — 1) + P2, x).
As in the proof of Lemma 1, this implies that %(¢) is an n-times differentiable

function which satisfies (1) and has degree ¢ for # > #, with x¥’ > /1. This
completes the proof of the theorem.
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4, AN ExaMPLE

These results will now be applied to the equation
™ 4 p(f)a” =0

where p(z) is positive and continuous and y is the quotient of odd integers,

THEOREM 4. Consider that for some integer (, 0 </ <n— |, where ¢
15 odd {even} when n is even {odd},

fw fr=C+AE-Dp(s) dt < o0.

(@) If y > 1, then (5;) is necessary and sufficient for (4) to have positive
solutions x,(t), of degree = j and such that x™") is bounded above by a constant for
all large t where j = 1,3, 5,..., £ if £ is odd and n is even, and j =2, 4,..., £ if £
is even when n is odd, while for the case n odd and £ =0, there exists a solution
that is bounded below by a positive constant having degree = 0.

(i) IfO <y << 1, then (5;) is necessary and sufficient for (4) to have positive
solutions x,(t) of degree = j and such that x{=" is bounded above for all large t where
j=14 0+ 2,...,n— 1 (whether £ is odd or even) while for { = 0, xy(t) will be a
solution of degree = 0 which is bounded below by a positive constant.

Remark. Lovelady [11] has shown for # even and y > 1 that (5,) is necessary
and sufficient for (4) to have a solution of degree Z. It follows then from (i) above
then that if (4) has a solution of degree / it must have a solution of degree £
with x4~ bounded. These may not be the same solution, e.g. x" -+ (1/42%) x3
= ( has x(¢) = #1/2 as a solution where 7 == 2 and ¢ = 1.

Proof. Since (4) has the form of (1) when f(t, x) = p(t) x” then the integral

in condition (I;) becomes

( ) (e, ety dt = f ) t7=0p(t) [ett V] dt

ra a

= v fm tn——!+'y({’—-1)P(t) dt.

a

Therefore, (I,) is equivalent to (5,) for (4).

Now if y > 1, since pr—tvid-1) — gn—v+Ly-1) = gr—viaty=1) - pn-j4vii-1) for
j < {, and in particular for j =/, £ — 2,/ — 4,..., £/ — 2k, as long as £ — 2k
is positive. This means that (I;) implies the integral conditions (I;) also hold
for these values of . Therefore, part (i) follows from Theorem 2 for £ > 1, and
from the Corollary 1(ii) for { = 0 (n odd).
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If0 < y < 1, then #-¢+¥(¢-1) > gn—i+¥li-1) provided j 2> £, and so in particular
for j = ¢, £+ 2,...,n — 1 we see that (I,) implies (L;). Part (ii) of this theorem
then follows from Theorem 2 and the Corollary 1(ii) for the cases £ > 1, and
¢ = 0, respectively, This proves the theorem.

Tueorem 5. Consider that for some integer £, 0 < £ < n — 1, where £ is odd
{even} when n is ever {odd},

foc gn—t-Ltvp(8) dt < 0. (641)

@) If y > 1, then (6,,,) is necessary and sufficient for (4) to have positive
solutions x,(t) having degree = j and such that x"(t) is bounded below by a positive
constant for all large t where j has each of the nonnegative values of the form

=t~ 2, {— 2k

(i) IfO <<y << 1, then (6,,,) is necessary and sufficient for (4) to have positive
solutions x,(t) having degree = j such that x9(t) is bounded below by a positive
constant for all large t where j = £, £ 4 2,...,n — 1.

Proof. (i) Arguing in the same way as in the proof of Theorem 4(i), we
see that the integral conditions (I;,,) will hold for each of the nonnegative values
of j = £ — 2k, k =0, 1,.... Therefore part (i) follows from Theorem 3 and the
Corollary 1(it).

(i) Again, arguing as in the proof of Theorem 4(ii), we see that (I,,,)
holds for j = ¢, £/ 4+ 2,...,n — 1 and so part (ii) follows from Theorem 3 and
the Corollary 1(ii). This proves the theorem.

Remark. A form of the sublinear result Theorem 5(ii) was given by Lovelady
in [10] for even order equations. However, his result provides only for a solution
of degree £ and does not indicate that such a solution has its fth derivative
bounded below, that is, that the solution itself is bounded below by a poly-
nomial of degree Z. In a more recent paper [11] Lovelady has treated the super-
linear equation of even order deriving the results of Theorem 5(i) and the
second portion of Theorem 6{1) that follows.

CoroLrarY 4. (i) Ify > 1, then (4) has positive solutions x,(t) of degree j for
J=£40—2,...and j >0 and y,{t) of degree k for k=¢—2,(—4,..,k 20
such that x{"~(t) is bounded above by a constant and y\¥(£) is bounded below by a
positive constant, if and only if, (5,) holds.

(i) If 0 <y <1, then (4) has positive solutions x(t) of degree j, j == ¢,
£+ 2,...,n— 1 and y,(t) of degree k, k = ¢, £ + 2,...,n — 1 such that x-V {s
bounded above and y{¥' is bounded below by positive constants, if and only if,
(5,) holds.
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Proof. (i) If y <1 then by Theorem 4, (5,) is necessary and sufficient for
the existence of positive solutions x;, j = 4, £/ — 2,..., j = 0 such that x{? <
¢, for some constants {¢,}. On the other hand, Theorem 5 states that (6,_,) is
n.a.s. for the existence of solutions y,, for A =¢—2,¢/—4,...,k > 0. Now
(5,) implies (6,_;) since for k = £ — 2m, tn—F-1+vk < gn—£+v(-1) if (and only if)
2m(1 —y) — 1 < —v, hence if 2m > 1, since 1 — y < 0. Therefore m = 1
or k = ¢ — 2 suffices, and so (5;) implies (6;,,) when & = ¢ — 2. This proves
part (i).

(i) If 0 <y <1, then (5;) is necessary and sufficient for the existence of
the solutions x;, j =4, £+ 2,..,n — 1 with 2™ < ¢; for some constants
{t;} by Theorem 4. Now condition (5,) implies that (6,,,) holds since y < 1
implies n — £ —14+y/<n—{—y+yl=n— ¢+ y({— 1). Therefore
by Theorem 5, (6,.,) is necessary and sufficient for the existence of solution v, ,
k={¢+2,.,n—1, with y(£) > d, > 0 for all large ¢. The corollary is
proved.

CoroLLARY 5. (i) Ify > 1, then there exist positive solutions x,(t) and y,(t)
of degrees j and k respectively of (4) forj = ¢, { — 2,....j = 0andk = £, £ — 2,...,
k = 0 such that ™" < c; and y{¥ > d,, for some positive constants {c;} and {d,},
if and only if, (6,.,) holds.

(i) If O <y <1, then there exist positive solution x, and y, of degrees j and
k respectively for j =4+ 2,/ +4,...,n—1 and k=1, + 2,....n — | such
that x{~V < ¢;, y & = dy, for some positive constants {c;} and {d,} and all large t,
if and only if, (6,,,) holds.

Proof. fy>1thenn—¢—14yf2=2n— £+ y(f— 1) and so (6,,,)
implies (5,). Part (i) follows from Theorems 4 and 5.
IfO0<y<lthenn—f¢—1+4+ylz2zn—(+2m) 4w+ 2m—1) if
2m > 1 and so m == 1 suffices implying that if (6,;) holds then (5,) holds for
k = ¢+ 2. Thus part (ii) follows from Thzorems 4 and 5 also, proving the
corollary.

Turorem 6. (i) If v > 1, then (4) has a positive solution x(t) of highest
degree £ with x~1(t) bounded above by a constant, if and only if,

on tn—l+v(f~1)p(t) dt < oo and J-oo tn—t—l+vlp(t) dt = 00,

while (4) has a positive solution of highest degree £ such that x9) is bounded below
by a positive constant, if and only if,

J- i rot-1vip(t) dt < oo and _[m tn-2HEp(t) dt = 0.
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(i) If0 <y <1, then (4) has a positive solution x(t) with lowest degree {
with x4~V bounded above by a constant, if and only if,

J.czo tn-—l+v(€—l)P(t) dt < co and f tn—t’+1+v(£’—-2)P(t) dt = o0,

while (4) has a solution of lowest degree £ with x\*) bounded below by a positive
constant, if and only if,

f “ trt-1+vip(t)dt < o0 and J. ’ tn—t+EDp(t) dt = oo.

Proof. (i) ‘There exists a positive solution of (4) of degree £ with x“-1(¢) <
¢; for all large ¢, if and only if, (5,) holds, and there is no solution of degree £
with x¥) bounded below by a positive constant if and only if (6,.,,) does not hold,
that is, [ t*¢-1+¥p dt = c0. Also there exists a solution x(¢) of (4) with x)(¢) >
d, > 0 iff (6,,;) holds, but no solution of higher degree (£ + 2k) if and only if
(5.421) does not hold, in particular (5.,5): [© tn-¢+B+v(42-Dp gt — co. This
proves the two claims in part (i).

(ii) Equation (4) has a positive solution x(#) of degree £ with a*“-1' < ¢, ,,
if and only if, (5,) holds but there can be no solution of degree < ¢, if and only if,
there is no solution of degree (£ — 2) that has x'“~* bounded below and this is
equivalent to (6(_y),1) = (6,_,) which is (6,,,) with ¢ replaced by (£ — 2). On
the other hand, (4) has a solution of degree £ with 29 > ¢, > 0, if and only if,
(6;41) holds while there is no solution of degree £ with 4“1 bounded above, if
and only if, (5,) does not hold. This proves the theorem.

Remark. The above results for the superlinear and sublinear cases of (4)
can be generalized to equation (1) which is considered to be superlinear if

for some € > 1,
xf(t, x) = y<f(t, ¥) foreacht =0, x>y
and is sublinear if
for some ¢, 0 < e < 1,
(%) <yf(t,y) fort =0, x>y

The generalizations of Theorems 4 and 5 are:

THeorREM 7. (i) If (1) is superlinear, then (I,) is a n.a.s.c. for (1) to have
positive solutions x(t) of degree j with ™ < ¢;forj=1¢,{— 2,..., and j >0
and x(t) a solution of degree O with x(t) > ¢, > 0ifj = 0.

(1) If (1) is sublinear, then (1;) is a n.a.s.c. for (1) to have positive solutions

409/71[1-2
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x{t) of degree j, j = £, £+ 2,....,n — 1, with ™ < ¢; and when £ =0, x,2)
is a solution of degree O with x,(t) > ¢, > 0.

Tueorem 8. (i) If (1) is superlinear, then (I,,,) is a n.as.c. for (1) to have
positive solutions x,(t) of degree j with x(t) = ¢; >0 forj=£,{ — 2,..,{ — 2k
andj = 0.

(i) If (1) is sublinear, then (1,,,) is a n.a.s.c. for (1) to have positive solutions
x,(t) of degree j with x(t) >¢, >0 for j =4, £+ 2,..,n — 1.

The proofs of these theorems are similar to the proofs of Theorems 4 and 5.
To see this for the superlinear case, note that if f(¢, ») is superlinear, then for
somee >1,if x >y >0,

f(t ) = (®[y) f (5, 9).

Thus to show that (I,) implies (I;) for j == £/ — 2k and j >> 0, it suffices to show
that ~f(t, ct/1) = t"f (2, ct/71). Now letting x = ct’), y = ct’' then
j={¢— 2k implies x 2>y and so

t"‘[f(t, L‘tt"l) > ln-f[(ctf—l/ctj—l)ef(t, ct]’#l)]
— tn—f[t(t—J)ef(t’ Ctj"l)] > tn—¢’+2kf(t, cti—l)
= f(t, ctY)

since e >1 and £ — j = ¢ — (£ — 2k) = 2k.

A similar argument for the sublinear case will prove that (I,) implies (I,)
for j = £+ 2k, j <<n — 1. Likewise it can be shown that (I,,;) implies (I;,,)
for the appropriate j values in the two different cases.

The two corollaries of Theorems 4 and 5 may now be stated for equation (1)
instead of (4) when f(¢, ) is (i) superlinear or (ii) sublinear, and replacing (5;)
and (6,.,) by (I,) and (I,,,), respectively. Finally we would get the generalization
of Theorem 6.

TreoreM 9. (1) If (1) is superlinear then (1) has a positive solution x(t) with
highest degree ¢ and such that

(1) < ¢, << 0 <= (L) holds and (1,,,) does not;
and

() = ¢y >0 = (Ip44) holds but (1(,,5) does not.

(it) Iff(t, x) is sublinear, then (1) has a positive solution x(t) with lowest degree
¢ and such that

x40 L g, << 00 = (1) holds but (I,_y),,) does not;
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d
20 = >0 < (Ip,) holds but (I,) does not.

Remark. Throughout we have considered only existence of positive solutions

an
ne,

d stated results for such solutions. However, all statements are valid for
gative solutions also due to the hypothesis that f(t, x) has the same sign as x.

Thus, whenever a n.a.s. condition is given for the existence of a positive solution,

it
pr

10.

11.

12.

14.
15.

is also n.a.s. for the existence of a negative solution having the analogous
operties.
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