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In this study, we assessed the genetic integrity of over 400 samples of human multipotent stem cells using
gene expression data sets. Our analysis reveals that neural and mesenchymal stem cells acquire character-
istic large chromosomal aberrations at a similar, or somewhat lower, frequency to that seen in pluripotent
stem cells, sometimes within a few passages in culture. Some of the identified chromosomal abnormalities
can also be detected in human tumors of the respective tissues.
Human embryonic stem cells (hESCs)

acquire chromosomal aberrations in cul-

ture, in a process known as culture adap-

tation (Baker et al., 2007; Mayshar et al.,

2010). These aberrations may increase

the tumorigenicity of the cells (reviewed

in Ben-David and Benvenisty, 2011) and

disrupt their differentiation capacity (Har-

rison et al., 2007). While they are assumed

to be acquired stochastically, specific

aberrations provide selective advantage,

and are thus detected at a much higher

frequency than others. Recently, chromo-

somal aberrations were also documented

in human induced pluripotent stem cells

(hiPSCs) (Hussein et al., 2011; Laurent

et al., 2011; Mayshar et al., 2010).

While chromosomal aberrations in

pluripotent stem cells (PSCs) have been

extensively studied and characterized

(Baker et al., 2007; Hussein et al., 2011;

Laurent et al., 2011; Mayshar et al., 2010),

the phenomenon of culture adaptation in

human multipotent stem cells is much

less explored. Individual cases of chromo-

somal aberrations have been detected

in both human neural stem cells (NSCs)

(Sareen et al., 2009) and human mesen-

chymal stem cells (MSCs) (Buyanovskaya

et al., 2009; Takeuchi et al., 2009), but no

comprehensive study of the genomic sta-

bility of multipotent stem cells has been

carried out to date. Furthermore, even in

cases where the chromosomal integrity of

human multipotent stem cells was docu-

mented, such analyses were mostly per-

formed at early passages of their growth.

Thus, multipotent stem cells, as opposed

to PSCs, are generally considered to be

genetically stable (Bernardo et al., 2007;
De Filippis et al., 2007; Meza-Zepeda

et al., 2008; Villa et al., 2004), and are

currently used in clinical trials in humans.

We recently developed a method for

detecting chromosomal aberrations in hu-

man PSCs, based on the gene expression

patterns of these cell lines (Mayshar et al.,

2010). Here, we expanded our analysis of

human PSCs, and in addition applied the

samemethodology to carry out a compre-

hensive analysis of large chromosomal

aberrations in 144 samples of MSCs,

97 samples of NSCs, and 177 samples

of hematopoietic stem/progenitor cells

(HSPCs), from 45 independent studies

(Figure 1A). We focused on the analysis

of the genomic integrity of whole chro-

mosomes or chromosome arms. Only

aberrations that met the stringent criteria

for statistical significance in both of

the bioinformatic tools applied are pre-

sented and discussed (see Supplemental

Experimental Procedures).

Analysis of Large Chromosomal
Aberrations in PSCs
We initially completed a comprehensive

analysis of chromosomal aberrations in

PSCs. Formerly, we identified three

sources for chromosomal aberrations in

hiPSCs: aberrations of somatic origin,

aberrations that occur during reprogram-

ming, and aberrations acquired in culture

(Mayshar et al., 2010). Here, we greatly

expanded our published analysis of the

PSC data sets, studying 39 additional

hESC samples and 65 additional hiPSC

samples from 13 recent studies (see

Table S1). Although the most common

autosomal aberrations in hESCs are tri-
Cell Stem Ce
somies 12 and 17 (Baker et al., 2007;May-

shar et al., 2010), previous studies failed

to detect trisomy 17 in hiPSCs, and sug-

gested this might be a difference between

these cell types (Mayshar et al., 2010;

Taapken et al., 2011). In the current anal-

ysis of PSCs, we detected further cases

of previously described aberrations (Fig-

ure 1B), and identified trisomy 17 in

hiPSCs in cell lines generated through re-

programming with synthetic mRNA mole-

cules (Figure 1C). Because this trisomy

was not identified in the parental somatic

cell line (Warren et al., 2010), and because

it appeared in culture at an early passage

of the hiPSCs, it appears to be an example

of a genomic aberration arising through

selective pressure during or immediately

following the reprogramming process.

This finding also supports the notion that

hiPSCs are prone to chromosomal aber-

rations regardless of the reprogramming

method used (Ben-David and Benvenisty,

2011; Ben-David et al., 2010), becausewe

previously identified aberrations in cell

lines reprogrammed with integrating vi-

ruses, episomal vectors, and recombinant

proteins. An ideogram of the chromo-

somal aberrations identified in PSCs is

presented as Figure 2A, and a full analysis

of the aberrations detected can be found

in Table S1. Large chromosomal aberra-

tions were identified in �9% of all the

samples analyzed, consistent with our

previous report (Mayshar et al., 2010).

Analysis of Large Chromosomal
Aberrations in Adult Stem Cells
Chromosomal aberrations are known to

accumulate in various cell types in culture.
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However, their accumulation in cultures of

adult stem cells is still a matter of open

debate. Although previous studies have

identified chromosomal aberrations in

cultured human MSCs (Røsland et al.,

2009; Ueyama et al., 2011), these reports

analyzed a rather small number of MSC

lines from bone marrow origin only, and

were thus limited in their ability to detect

recurrent chromosomal aberrations in

various types of MSCs. Other studies re-

ported that human MSCs retained chro-

mosomal stability following long-term cul-

ture in vitro (Bernardo et al., 2007; Zhang

et al., 2007). Here we analyzed published

expression profiles for MSCs from five

distinct origins. The MSC data set con-

sisted of 135 human MSC samples and

9 hESC-derived MSCs, all from 22 inde-

pendent studies. Because human MSCs

from various sources (such as bone mar-

row, adipose, and umbilical cord) clus-

tered together with each other and with

hESC-derived MSCs in an unsupervised

hierarchical clustering (Figure 1A), all the

MSC types could be analyzed using a

single common baseline. The analysis de-

tected two monosomies of chromosome

13 (from two independent studies), as

well as four monosomies of chromosome

6q (from two independent studies) (Fig-

ures 1D, 2B, and S1A). None of these

aberrations was reported in the respec-

tive original study. Our analysis also iden-

tified one line that acquired gains of chro-

mosomes 7q and 17q (Figure 1E) and one

line that acquired trisomy 19 (Figure S1B).

The latter aberrations have not been pre-

viously identified in MSCs. An ideogram

of the chromosomal aberrations identified

in MSCs is presented as Figure 2B, and

a full analysis of the detected aberrations

can be found in Table S1. Overall, we

report a frequency of aberrations of

�4% for MSCs, which could possibly
Figure 1. Gene Expression Patterns Reveal Ch
(A) Unsupervised hierarchical clustering of theMSCs (g
current study (Affymetrix HG-U133plus2 platform). The
origins of the samples inside each stem cell group are
(B–G) Moving average plots of gene expression levels
hESC line, hES-T3, cultured in various conditions, dem
different studies (hESC_HD83_p24 and hESC HS235
dH1F_RiPS_1.6, demonstrate trisomy of 17q (red lin
(D) Fetal liver-derived MSC line, Liver_1, demonstrate
controls (blue lines). (E) Bone marrow-derived MSC li
passage 9 (three replicates, blue lines), the trisomy is
(three replicates, red lines, p = 2 3 e�7 and p = 1 3 e�

trisomy 7 (red line, p = 23 e�8). This trisomywas previo
(blue line). (G) Fetal-derived NSC line acquired trisom
acquired the trisomy by passage 19 (red line, p = 1 3
See also Figure S1 and Table S1.
account for the failure of previous smaller

studies to detect them.

The NSC data set comprised 58 human

NSC samples and 39 hESC-derived NSC

samples, all from 11 independent studies.

The analysis identified a trisomy of chro-

mosome 7 (Figure 1F) and recurrent cases

of trisomy 19 (Figures 2C and S1C), aber-

rations that have been previously de-

scribed to occur in NSCs (Sareen et al.,

2009). One of the detected aberrations

had been reported in the original study

(Sareen et al., 2009), while the others

had not. The analysis of the NSCs also re-

vealed a trisomy and a monosomy of

chromosome 18 (Figures 1G and 2C)

and a trisomy of chromosome 10 (Fig-

ure 2C), which had not been previously re-

ported in NSCs. The analysis of the hESC-

derived NSCs also revealed a trisomy of

chromosome 20q, which had not been

previously identified in NSCs (Figure 2c).

Because trisomy 20q is a common aber-

ration in hESCs (Lefort et al., 2008; Spits

et al., 2008), this aberration probably

arose prior to the differentiation of the

hESCs. Thus, not surprisingly, hESC-

derived NSCs seem to be susceptible to

both the typical PSC aberrations and the

typical NSC aberrations. The nature of

the acquired aberrations in each cell line

would probably depend on the time it

spent in culture in each of these states.

An ideogram of the chromosomal aberra-

tions identified in NSCs is presented as

Figure 2C, and a full analysis of the

detected aberrations can be found in

Table S1. Overall, we report a frequency

of aberrations of �9% for NSCs, a similar

frequency to the one observed for PSCs.

Finally, we analyzed a data set of 177

CD34+ HSPC samples from 12 indepen-

dent studies. Of these, 55 samples were

from healthy individuals, and 122 were

from karyotyped myeloid dysplasia syn-
romosomal Aberrations in Human Stem Cells
reen branches), NSCs (blue branches), HSPCs (purple
distinct groups of stem cells cluster apart from each ot
color-coded.
along the whole genome of PSCs (B and C), MSCs (D
onstrate trisomy of chromosome 12 in this cell line (re
) are presented as controls (blue lines). (C) Synthetic
es, p = 6 3 e�26). Fourteen other samples from the s
s monosomy 13 (red line, p = 3 3 e�10). Six other MS
ne, #4F1560, acquired trisomies of 7q and 17q during
already evident at passage 21 (two replicates, orange
7 for trisomies 7q and 17q, respectively). (F) Fetal cor
usly identified in this cell line. The diploid NSC line from
y 18 during its passaging in culture. The cells were n
e�9).
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drome (MDS) patients that we could use

as controls (Pellagatti et al., 2010). Be-

cause CD34+ samples from various sour-

ces (bone marrow, peripheral blood, and

umbilical cord blood) clustered together

with each other and with samples from

MDS patients in an unsupervised hierar-

chical clustering (Figure 1A), all the

HSPC types could be readily analyzed

using a single common baseline. Our

analysis correctly detected 34 out of the

36 reported aberrations in the patient-

derived HSPCs (the remaining two were

identified by only one of the bioinformatic

tests). A full analysis of the detected aber-

rations can be found in Table S1, and an

example is shown in Figure S1D. In con-

trast to the other stem cells analyzed,

and to the HSPCs derived from MDS

patients, we could not detect any aberra-

tion in the 55 samples of healthy donor-

derived HSPCs. Unlike NSCs and MSCs,

HSPCs are not routinely propagated

in vitro for multiple passages. Hence,

the absence of aberrations in these cells

does not necessarily suggest that they

are less susceptible to chromosomal ab-

errations in comparison with other multi-

potent stem cells; rather, it suggests that

adult stem cells are generally euploid

in vivo, and may acquire large chromo-

somal aberrations upon in vitro adapta-

tion to culture.

The Frequency, Rapidity,
and Specificity of the Acquisition
of Chromosomal Aberrations
A comparison of the frequency of chro-

mosomal aberrations in the different

types of stem cells reveals a rather similar

frequency of aberrations in all the stem

cell types that are propagated in culture:

24 aberrations in 19 out of 208 sam-

ples (�9%) in PSCs, 9 aberrations in

9 out of 97 samples (�9%) in NSCs, and
branches), and PSCs (red branches) analyzed in the
her, andwere thus analyzed separately. The various

and E), and NSCs (F and G). (B) Six samples of the
d lines, p = 5 3 e�39). Two normal hESC lines from
mRNA-induced hiPSC lines, dH1F_RiPS_1.3 and
ame study are presented as controls (blue lines).
C samples from the same study are presented as
its passaging in culture. The cells were normal at
lines), and it took over the culture by passage 28

tex-derived NSC line, M031 CTX +7, demonstrates
the same study, M031CTX, is presented as control
ormal at passage 9 (two replicates, blue lines), but
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Figure 2. Different Types of Stem Cells Acquire Distinct Chromosomal Aberrations
(A–C) Ideograms representing the chromosomal aberrations identified in (A) PSCs, (B) MSCs, and (C) NSCs. Bars to the right of the chromosome represent gains,
and bars to the left of the chromosome represent deletions. In the ideogram of PSCs (A), red and orange represent hESCs and hiPSCs, respectively. The PSC
aberrations identified in the current study are shown together with the aberrations previously identified by Mayshar et al. (2010). Chromosomal aberrations in
samples from similar cells from the same study are interconnected by a line, and were considered as a single aberration for the purpose of statistical analysis.
(D–F) Some of the recurrent aberrations detected in stem cells are the most common aberrations in tumors of the same tissue origin. The frequency of chromo-
somal aberrations in various types of tumors was calculated using the National Cancer Institute ‘‘Recurrent Chromosomal Aberrations in Cancer Database
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9 aberrations in 6 out of 144 samples

(�4%) in MSCs. Thus, based on the data

set we have analyzed, it seems that NSCs

acquire large chromosomal aberrations

at a similar frequency to that seen in

PSCs, while MSCs acquire large chromo-

somal aberrations at a somewhat lower

frequency.

The chromosomal aberrations are not

uniformly distributed among the chromo-

somes (p = 0.043, Chi-square goodness-

of-fit test), and the specific aberrations

a cell line is likely to acquire depend on

the stem cell group to which it belongs

(p = 0.007, Fisher’s exact test). While

PSCs and NSCs tend to acquire trisomies

(100% and 89% of the aberrations, re-

spectively), MSCs tend to acquire mono-

somies (�67% of the aberrations, p =

0.012, Fisher’s exact test), in line with pre-

vious reports (Buyanovskaya et al., 2009).

Most of the identified aberrations are

recurrent in a specific cell type, such as

trisomy 12 for PSCs, monosomies 6q

and 13 for MSCs, and trisomy 19 for

NSCs. Moreover, multipotent stem cells

that are derived from PCSs also harbor

the risk of acquiring the typical chromo-

somal aberrations of PSCs (such as tri-

somy 20), probably during their pluripo-

tent stage in culture. Taken together,

these data demonstrate that chromoso-

mal aberrations are a common feature

of stem cells propagated in vitro, and

further suggest that each type of stem

cell is prone to acquire a unique set of

chromosomal aberrations (illustrated in

Figure S2).

It is important to stress that the frequen-

cies of the aberrations identified in this

study refer only to aberrations that en-

compass whole chromosomes or chro-

mosome arms, and thus constitute an

underestimation of the possible total

number of genomic abnormalities in adult

stem cells. Recent studies have revealed

small copy number variations (CNVs) and

coding mutations in hiPSCs, some of

which were shown to exist in the fibro-

blasts of origin and were selected for
Searcher.’’ (D) The relative frequency of trisomies, gain
the most common aberration in mature and immature
ovary (11/87). (E) The relative frequency ofmonosomie
most frequent aberration in lipomas (36/88), skeletal o
(F) The relative frequency of trisomies, gains, and isoch
astrocytomas (256/1107), and is also frequently found
common aberration in medulloblastomas. Arrows ind
tumors of the same tissue, revealing a possible corre
for MSCs and mesenchymal tumors, and marginal for
See also Figure S2 and Table S1.
during reprogramming, while others arose

de novo during this process or after the

growth of the cells in culture (Gore et al.,

2011; Hussein et al., 2011; Laurent et al.,

2011). It is therefore reasonable to assume

that CNVs and point mutations would also

arise during the culture propagation of

multipotent stem cells.

We recently reported that trisomy

12 accumulates in PSC cultures rapidly,

and could take over the culture within

as few as five passages (Mayshar et al.,

2010). In this study, two cell lines that ac-

quired chromosomal aberrations in cul-

ture were also analyzed at earlier time

points. Thus, we show that in MSCs chro-

mosomal aberrations can take over the

culture in as few as seven passages

(Figure 1E), and in NSCs, in as few as

six passages (Figure 1G). We conclude,

therefore, that multipotent stem cells are

prone to acquire advantageous chromo-

somal aberrations, which enable them to

rapidly outgrow the normal cell popula-

tion, at a similar rate as that previously re-

ported for PSCs.

An Analysis of Lineage-Specific
Chromosomal Aberrations In Vitro
and In Vivo
We next looked at the relationship be-

tween the chromosomal aberrations we

detected in stem cell cultures and those

seen in human tumors. In order to perform

an unbiased quantification of the aberra-

tions in different types of tumors, we gath-

ered data from thousands of tumors of the

same tissues as the various stem cells

analyzed, using a well-established data-

base of chromosomal aberrations in can-

cer (Mitelman et al., 2007, 2011). A calcu-

lation of the frequency of chromosomal

aberrations in these tumors revealed a

partial correlation between the lineage-

specific aberrations that arise in stem

cell cultures and the ones most common

in tumors of the respective tissue. The

association is most prominent in PSCs:

trisomy 12 is themost common aberration

in PSC cultures, and is by far the most
s, and isochromosomes of each chromosome in three
teratomas (found in 182/827 cases), seminomas of the
s and deletions of each chromosome in three types of tu
steosarcomas (49/694), and dedifferentiated chondro
romosomes in three types of neural tumors. Trisomy 7 i
in medulloblastomas (29/280). Trisomy 17, which wa
icate chromosomes that were identified in stem cell c
lation between the two (the correlation is most evide
NSCs and neural tumors).

Cell Stem Cel
common aberration in three types of

tumors of germ cell tissues (teratomas,

seminomas, and ovarian adenomas) (Fig-

ure 2D). In MSCs, two aberrations were

found to recur in independent studies;

one of them, monosomy 13, is also stron-

gly related to mesenchymal tumors, be-

cause it was found to be a frequent mono-

somy in bone and soft tissue tumors

(lipomas, as well as chondrosarcomas

and osteosarcomas) (Figure 2E). In NSCs,

the association is weaker: trisomy 19

was found to arise recurrently, but trisomy

7 is the most prevalent in various brain

tumors (gliomas, astrocytomas, and me-

dulloblastomas) (Figure 2F). Trisomy 7

was reported to recur in NSCs (Sareen

et al., 2009), but was identified only once

in the current analysis.

The associations between chromo-

somal aberrations in stem cell cultures

and in tumors of the same tissues do not

necessarily mean that stem cells that

acquired these aberrations would be

more tumorigenic; they do imply, how-

ever, that specific aberrations at least

confer growth advantage in a cell line-

age-specific manner, both to stem cells

in vitro and to tumors in vivo. If this were

true, we would expect these two phe-

nomena to share at least some of the

genes involved. Supporting this notion,

Retinoblastoma (RB1), which is located

on 13q14, was found to be downregu-

lated in many mesenchymal tumors with

chromosome 13 deletion (Dahlén et al.,

2003; Yamaguchi et al., 1996), and was

also significantly downregulated in the

two lines detected in our analysis to

harbor monosomy 13 (2.2-fold and 5.3-

fold decrease, p = 0.015, Student’s t test).

Concluding Remarks
Transplantation of human adult stem cells

may result in tumor formation (Amariglio

et al., 2009; Casalbore et al., 2009). In

the current analysis we identified stem

cell-specific chromosomal aberrations,

and compared the frequency, the iden-

tity, and the acquisition rate of these
types of tumors of germ cell tissues. Trisomy 12 is
testis and the ovary (91/479), and adenomas of the
mors ofmesenchymal tissues.Monosomy 13 is the
sarcomas (9/89).
s themost common aberration in gliomas (9/43) and
s not detected in the analysis of NSCs, is the most
ultures of a specific type and are also frequent in
nt for PSCs and germ cell tumors, less significant
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aberrations between different types of

stem cells. We found that (1) NSCs and

MSCs acquire large chromosomal aber-

rations in culture at a similar (for NSCs)

or somewhat lower (for MSCs) frequency

to that seen in PSCs; (2) different stem

cell types acquire distinct chromosomal

abnormalities; and (3) once these aberra-

tions occur, they take over the culture

rapidly. Thus, we conclude that, as for

pluripotent cells, the genomic stability of

multipotent stem cells in culture should

also be analyzed carefully and regularly.

Large chromosomal aberrations might

also arise in HSPCs, once the required

conditions for their routine in vitro propa-

gation are finally discovered. Chromo-

somal aberrations in PSCs have been

previously suggested to increase their

tumorigenicity (Ben-David et al., 2010);

such aberrations might affect the safety

of aberrant multipotent stem cells as

well. Thus, validating the genomic integ-

rity of stem cells of all types in culture is

crucial, both for the correct interpretation

of biological results and for their safe im-

plementation in cell therapy.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes
two figures, one table, and Supplemental Experi-
mental Procedures and can be found with this
article online at doi:10.1016/j.stem.2011.06.013.
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M., Killick, S., Verma, A., Norbury, C.J., et al.
(2010). Leukemia 24, 756–764.

Røsland, G.V., Svendsen, A., Torsvik, A., Sobala,
E., McCormack, E., Immervoll, H., Mysliwietz, J.,
Tonn, J.C., Goldbrunner, R., Lønning, P.E., et al.
(2009). Cancer Res. 69, 5331–5339.

Sareen, D., McMillan, E., Ebert, A.D., Shelley, B.C.,
Johnson, J.A., Meisner, L.F., and Svendsen, C.N.
(2009). PLoS ONE 4, e7630.

Spits, C., Mateizel, I., Geens, M., Mertzanidou, A.,
Staessen, C., Vandeskelde, Y., Van der Elst, J.,
Liebaers, I., and Sermon, K. (2008). Nat. Biotech-
nol. 26, 1361–1363.

Taapken, S.M., Nisler, B.S., Newton, M.A., Samp-
sell-Barron, T.L., Leonhard, K.A., McIntire, E.M.,
and Montgomery, K.D. (2011). Nat. Biotechnol.
29, 313–314.

Takeuchi, M., Takeuchi, K., Ozawa, Y., Kohara, A.,
and Mizusawa, H. (2009). In Vitro Cell. Dev. Biol.
Anim. 45, 290–299.

Ueyama, H., Horibe, T., Hinotsu, S., Tanaka, T.,
Inoue, T., Urushihara, H., Kitagawa, A., and Kawa-
kami, K. (2011). J. Cell. Mol. Med., in press. 10.
1111/j.1582-4934.2011.01303.x.

Villa, A., Navarro-Galve, B., Bueno, C., Franco, S.,
Blasco, M.A., and Martinez-Serrano, A. (2004).
Exp. Cell Res. 294, 559–570.

Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li,
H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D.,
Meissner, A., et al. (2010). Cell Stem Cell 7,
618–630.

Yamaguchi, T., Toguchida, J., Wadayama, B.,
Kanoe, H., Nakayama, T., Ishizaki, K., Ikenaga,
M., Kotoura, Y., and Sasaki, M.S. (1996). Anti-
cancer Res. 16 (4A), 2009–2015.

Zhang, Z.X., Guan, L.X., Zhang, K., Wang, S., Cao,
P.C., Wang, Y.H., Wang, Z., and Dai, L.J. (2007).
Cell Biol. Int. 31, 645–648.

http://dx.doi.org/doi:10.1016/j.stem.2011.06.013
http://cgap.nci.nih.gov/Chromosomes/Mitel_Search
http://cgap.nci.nih.gov/Chromosomes/Mitel_Search

	 Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells
	 Analysis of Large Chromosomal Aberrations in PSCs
	 Analysis of Large Chromosomal Aberrations in Adult Stem Cells
	 The Frequency, Rapidity, and Specificity of the Acquisition of Chromosomal Aberrations
	 An Analysis of Lineage-Specific Chromosomal Aberrations In Vitro and In Vivo
	 Concluding Remarks
	 Supplemental Information
	 Acknowledgments
	 References




