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SUMMARY

The emergence of antibiotic resistance places a
sense of urgency on the development of alternative
antibacterial strategies, of which targeting virulence
factors has been regarded as a ‘‘second generation’’
antibiotic approach. In the case of Pseudomonas
aeruginosa infections, a proteolytic virulence factor,
LasB, is one such target. Unfortunately, we and
others have not been successful in translating
in vitro potency of LasB inhibitors to in vivo efficacy
in an animal model. To overcome this obstacle, we
now integrate in silico and in vitro identification of
the mercaptoacetamide motif as an effective class
of LasB inhibitors with full in vivo characterization
ofmercaptoacetamide prodrugs usingCaenorhabdi-
tis elegans. We show that one of our mercaptoaceta-
mide prodrugs has a good selectivity profile and high
in vivo efficacy, and confirm that LasB is a promising
target for the treatment of bacterial infections. In
addition, our work highlights that the C. elegans
infection model is a user-friendly and cost-effective
translational tool for the development of anti-viru-
lence compounds.

INTRODUCTION

Pseudomonas aeruginosa is a nosocomial, opportunistic, Gram-

negative bacteria causing various diseases including acute in-

fections in immunocompromised patients and chronic lung infec-

tions in individuals with cystic fibrosis (Mesaros et al., 2007;

Cohen and Prince, 2012). At the clinical level, P. aeruginosa is

able to rapidly develop antibiotic resistance and form biofilms,

thus it is extremely difficult to treat infected patients (Breidenstein

et al., 2011).Moreover,P. aeruginosa infections are usually asso-

ciated with a high morbidity and mortality rate ranging from 20%

to 75%, despite improvements in hospital care. This undeniable

medical challenge brings a sense of urgency to the development

of alternative antibacterial strategies to currently available medi-

cations (El Solh and Alhajhusain, 2009; El-Solh et al., 2012).
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The targeting of bacterial virulence factors as an effective

means to control bacterial infections holds particular promise

(Barczak and Hung, 2009; Clatworthy et al., 2007). Pathogenic

bacteria produce virulence factors such as adhesion molecules,

secretion systems, and other toxic factors including proteases

to enhance their ability to cause disease and damage the host’s

tissues (Clatworthy et al., 2007). Indeed, P. aeruginosa pathogen-

esis presents itself through coordination of the expression of a

plethora of virulence factors (Mesaros et al., 2007). Elastase B,

also known as pseudolysin (LasB), is a zinc metalloprotease

encoded by the lasB gene (Morihara et al., 1965). LasB has

beenshown tobehighly toxic to thehost through itsenzymaticac-

tivity to degrade numerous components of innate and adaptive

immune systems (Wretlind and Pavlovskis, 1983; Schultz and

Miller, 1974; Mariencheck et al., 2003; Alcorn and Wright, 2004;

Parmely et al., 1990). LasB can cause host tissue damage via

hydrolysis of various components of the extracellular matrix and

by breaching endothelial and epithelial barriers by attacking

intercellular tight junctions (Azghani, 1996; de Bentzmann et al.,

2000). Furthermore, proteomic analyses of laboratory and clinical

P. aeruginosa strains have revealed that LasB production is

increased in isolates fromcritically ill patients and ventilator-asso-

ciated pneumoniae, and LasB activity is directly connected to the

pro-inflammatoryeffectsofP.aeruginosa infection (LeBerreet al.,

2008; Bergamini et al., 2012). There are also reports of LasBbeing

linked to P. aeruginosa biofilm formation and swarming (Tielen

et al., 2010; Cathcart et al., 2011; Reimmann et al., 2002), sug-

gesting a role in bacterial elution from the host’s immune system.

Current animal models of P. aeruginosa infection include acute

and chronic infections in mice and rats (Pavlovskis andWretlind,

1979). Using these mammalian models, mitigation of bacterial

virulence through disruption of LasB function has been demon-

strated, suggesting that LasB is a promising therapeutic target

(Kessler et al., 1983; Burns et al., 1990). Intriguing as the idea

of virulence targeting is, a number of sobering fundamental

challenges need to be addressed en route to the development

of a viable LasB inhibitor. Foremost is that no LasB inhibitor

has had its in vitro potency translate to in vivo efficacy in an

animal model (Lewis, 2013). This discourse has led us to pursue

a more practical non-mammalian animal model, C. elegans, for

LasB inhibition optimization. Importantly, the strategies we

disclose here for LasB in vivo targeting should be readily appli-

cable to other bacterial virulence factors.
483–491, April 23, 2015 ª2015 Elsevier Ltd All rights reserved 483

mailto:kdjanda@scripps.edu
http://dx.doi.org/10.1016/j.chembiol.2015.03.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chembiol.2015.03.012&domain=pdf


Figure 1. Hits Identified from In Silico and In Vitro Studies

Compounds identified from molecular docking studies and shown to inhibit

LasB in vitro. Compounds 1, 2, and 3 possessed IC50 values of 156 ± 8, 27.4 ±

2.5, and 15.7 ± 3.1 mM, respectively.

Figure 2. LasB Inhibitor Docked in the Active Site of Metalloprotei-

nase

Compound 13 is shown docked using the Autocorrelator-derived model from

the 3DBK structure. The docked orientation shows a close proximity between

the thiol and zinc, a hydrogen bond between the amide of 13 and Asn112,

and the phenyl ring shielding a collection of hydrophobic residues consisting

of Phe129, Leu132, Val137, Ile190, and Leu197. Distance displayed in ang-

stroms.
RESULTS

Virtual and In Vitro Screening against LasB
To initiate our screening efforts, virtual screening of all commer-

cially available molecules from eMolecules containing a thiol

appendage was performed. Restricting the search to molecules

containing a thiol was done to increase the number of active

molecules, as sulfur is known to act as a good ligand for zinc.

To carry out the virtual screening, molecules were conformation-

ally enumerated and docked using the defaults in Omega (v2.4.6.

OpenEye Scientific Software; http://eyesopen.com) and Fred

(v2.2.5 OpenEye Scientific Software; http://eyesopen.com), res-

pectively (Hawkins et al., 2010; Hawkins and Nicholls, 2012;

McGann, 2011). The ten highest scoring virtual candidates with

a thiol within 5 Å from the catalytic zinc were selected for

in vitro evaluation (Table S1).

The peptides found by Cathcart et al. (2011) were used to

construct a model for potency with the Autocorrelator. This

model was generated after the Autocorrelator used all available

crystal structures of LasB, Omega (v2.4.6), and Fred (v2.2.5)

to generate conformations. The Autocorrelator-derived model

was then used as the basis for scaffold expansion experiments

(see Supplemental Information) (Lardy et al., 2012).

This sub-library was screened using an in vitro LasB inhibition

assay based on a LasB-cleavable fluorescence resonance en-

ergy transfer peptide substrate (see Supplemental Information)

(Nishino and Powers, 1980). Of these compounds, three showed

dose-dependent inhibition of LasB with half maximal inhibitory

concentration (IC50) values ranging from 15 to 160 mM (Figure 1).

Interestingly, all active compounds (1, 2, and 3) contained an

aromatic core with a mercaptoacetamide side chain, which sug-

gests that this moiety plays an important role as a Zn2+ metal-

binding chelator. We hypothesized that the thiol group and

the electron-rich oxygen are critical for chelating the zinc atom

of LasB, whereas the hydrophobic aromatic core fits in the

ligand-binding cavity of the receptor pocket (Figure 2). Encour-

aged by our initial screening, a small series of compounds based

on the activemercaptoacetamide motif were synthesized. These

compounds contain a diverse array of substituents on the aro-

matic ring, including alkyl, halogens, ethers, and benzylamines.

In addition, we varied the methylene chain length between the
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amide and thiol. The results from the LasB inhibition assay are

summarized in Tables S2–S6.

Synthesis of Mercaptoacetamide Prodrugs
Following initial screening of our newly synthesized mercaptoa-

cetamides, we successfully identified ten hits that demonstrated

LasB antagonism (Table 1). Compounds 11, 12, and 13were the

most active with IC50 values ranging from 1.78 mM to 5.94 mM.

We were excited by the potent in vitro activity of the hits identi-

fied, but it is well known that the thiol functionality is prone to

oxidation in vivo. We sought to improve the stability of the com-

pounds using a prodrug approach via acetylation of the thiol. As

shown in SchemeS1, the commercially available aromatic amine

was treated with chloroacetyl chloride to afford the a-chloro

amide intermediate, which was then treated with potassium thi-

oacetate to yield thioesters 11a, 12a, and 13a. These prodrugs

were subsequently hydrolyzed with potassium carbonate before

performing the in vitro LasB inhibition assay.

Modulation of LasB Function in a C. elegans Infection
Model
Having established several potent compounds that modulate

LasB activity in vitro, we sought a simple animal model to provide

us with a foundation for further development of these com-

pounds in vivo. C. elegans has been increasingly used and stud-

ied for its potential as an intermediate model system for drug

discovery between in vitro testing and a mammalian model

(O’Reilly et al., 2014; Ewbank and Zugasti, 2011; Squiban and

Kurz, 2011). C. elegans can succumb to human disease by sim-

ply feeding the worm with the respective pathogen, in converse

worm infectivity can then be ‘‘cured’’ with common antibiotics at

concentrations typically used to treat humans. Moreover, the

C. elegans infection model has many practical advantages,

such as being amenable to low-cost, large-scale in vivo

screening and it does not raise any of the ethical concerns for

drug testing at the early stages of development (Mahajan-Miklos
Ltd All rights reserved
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Table 1. Lead Mercaptoacetamides Identified In Vitro

Compound Structure IC50 (mM)

4 6.98 ± 0.07

5 5.99 ± 0.11

6 7.61 ± 0.03

7 8.19 ± 0.22

8 9.90 ± 0.09

9 7.33 ± 0.02

10 6.90 ± 0.01

11 3.56 ± 0.04

12 1.78 ± 0.01

13 5.94 ± 0.02

Chemistry & Biology 22,
et al., 1999; Tan et al., 1999a, 1999b; Kurz and Ewbank, 2000;

Tan and Ausubel, 2000).

We first determined the effect of LasB on the ability of

P. aeruginosa PAO1 to kill C. elegans, our reasoning here being

that C. elegans has been used to compare the global variations

of virulence in a P. aeruginosa ‘‘slow-killing’’ assay. In a typical

C. elegans slow-killing assay, bacterial strains to be tested are

used as a lawn on slow-killing agar plates, substituting in place

of the normal feeding bacterium, Escherichia coli OP50. By sim-

ply ingesting pathogenic bacteria, worms can become infected,

primarily in the intestine although exceptions have been

observed (Dorer and Isberg, 2006). A comparison of median le-

thal time (LT50) values in our present study confirmed that

LasB activity significantly increased P. aeruginosa-induced viru-

lence in a toxic infection compared with a genetic knockout (r <

0.001, Figure 3A). Our data indicate that when C. elegans is fed

with wild-type PAO1, theworms survive up to 9 dayswith an LT50
of 3.9 ± 0.2 days, whereas the lasB-knockout-exposed animals

survive up to 11 days with an LT50 of 6.5 ± 0.5 days. The

extended lifespan observed in animals exposed to the lasB

knockout provides strong evidence that using the C. elegans

slow-killing assay is a valid model to evaluate LasB function in

P. aeruginosa infections. Moreover, the assay can be used to

quickly test and characterize the efficacy of in vitro LasB inhibi-

tors in a whole-animal infection model.

With the C. elegans LasB assay at our beckoning, we next

sought the importance of the inhibitors discovered in our

in vitro assay. The most potent compounds (11, 12, and 13)

and their corresponding thioester prodrugs (11a, 12a, and 13a,

Table 2) were individually supplemented in slow-killing agar

plates at 50 mM. Some of the administered compounds were

able to modestly extend worm half-life, but none were as effec-

tive as 13a. Mercaptoacetamide 13 demonstrated attenuation of

P. aeruginosa virulence only at the early stages of infection with

an LT50 of 4.3 ± 0.1 days. However, when 13 was masked as the

thioacetate, 13a, the half-life of the nematode was extended to

6.2 ± 0.1 days (Figure 3A). As observed in the supplemental bac-

terial cell viability minimum inhibitory concentration assay and

mammalian cell cytotoxicity assay, 13 and 13a had no effect

on bacterial survival ormammalian cell viability at concentrations

up to 50 mM, the highest concentration administered in the

C. elegans slow-killing assay.

Accordingly, we further demonstrated that 13a inhibited

P. aeruginosa infection in C. elegans in a dose-dependent

manner. At 25 mM, the LT50 of infected C. elegans was signifi-

cantly increased to 1.5 days longer than that of wild-type

PAO1 (r < 0.001, Figure 3B). However, when C. elegans was

fed with wild-type PAO1 on plates supplemented at lower com-

pound concentrations (5 and 10 mM), the virulence attenuation

effect was diminished (DLT50 = 0.6 days). Thus, 13a provides a

protective effect from the progression of P. aeruginosa infection

in C. elegans through specific inhibition of LasB function.

Metalloenzyme Selectivity
Metalloproteins play an enormous role inmodulating awide array

of functions in vivo, thus many laboratories are actively pursuing

strategies that can modulate this class of proteins (Raeside and

Strickland, 2012). At a clinical level, a contemporary goal of

any successful therapeutic candidate is that it must possess
483–491, April 23, 2015 ª2015 Elsevier Ltd All rights reserved 485



Figure 3. LasB Deletion and Treatment with

13a Extends C. elegans LT50 in a Dose-

Dependent Manner

Survival rate of P. aeruginosa-infected C. elegans

improves upon lasB deletion and supplementation

of 13a in the slow-killing assay.

(A) 13a extends worm LT50 to 6.2 ± 0.1 days re-

sulting in no significant difference between worm

LT50 (6.5 ± 0.5 days) when fed lasB knockout

P. aeruginosa (r R 0.05).

(B) Dose-dependent effect of 13a on survival of

P. aeruginosa-infected C. elegans over time in the

slow-killing assay. lasB knockout (LT50 = 8.3 ±

0.1 days), 25 mM (LT50 = 7.8 ± 0.1 days), 10 mM

(LT50 = 7.0 ± 0.1 days), 5 mM (LT50 = 7.0 ± 0.1 days), 1 mM (LT50 = 6.4 ± 0.1 days), 0.5 mM (LT50 = 5.9 ± 0.1 days), wild-type PAO1 (LT50 = 6.3 ± 0.2 days).

LT50 data were analyzed by ANOVA followed by Tukey’s multiple comparison method to determine significance. Error bars represent SEM values (n = 3). WT,

wild-type.
selectivity for the target of interest. Accordingly successful

targeting of a singular metalloprotein appears chemically chal-

lenging, as it is estimated that approximately one third of all pro-

teins aremetalloproteins (Holm et al., 1996).Mercaptoacetamide

13 contains a metal-binding group that could incite promiscuity

with other metalloproteases. To test this notion we screened 13

at 50, 25, and 12.5 mM against two ubiquitous metalloenzymes:

matrix metalloproteinase 2 (MMP-2) and a Zn2+-dependent

histone deacetylase (HDAC, encompassing class I and IIb).

MMP-2 is a Zn2+-dependent endopeptidase that is capable of

breaking down connective tissue including native and denatured

collagens and elastin. Class I and IIb HDACs are known to regu-

late cellular processes via hydrolysis of the acetyl functionality

embedded within protein matrices containing acetyl lysines.

LasB and MMP-2 possess similar characteristics but HDAC

operates under a different mechanism, thus inhibitor selectivity

against these two enzymes would provide a measure of selec-

tivity assurance. As shown in Figure 4, 13 did not inhibit enzyme

activity of HDAC or MMP-2 at a dose range up to 50 mM.

Bioaccumulation and Metabolism of LasB Inhibitors in
C. elegans

As an additional metric of the future potential of these mercap-

toacetamides, we investigated their adsorption and metabolism

in C. elegans. Accordingly, mercaptoacetamides 11, 12, and 13

and their respective prodrugs were examined as a means to

correlate compound bioaccumulation with their bioactivity as

seen in the slow-killing assays. Previous literature has docu-

mented howC. elegans could be resistant to a variety of pharma-

cological perturbations, so that the bioavailability of drug and

drug metabolites in the worm is highly dependent on the drug’s

chemical structure and the drug delivery method (Zheng et al.,

2013; Burns et al., 2010). Therefore, we used the same killing

assay set up for the bioaccumulation test and collected the

worms infected with P. aeruginosa 24 hr after seeding on the

slow-killing assay plate supplemented with individual com-

pounds. Collected worms were washed and homogenized for

liquid chromatography-mass spectrometry (LC-MS) analysis,

and the results are summarized in Table 2. In brief, mercaptoace-

tamides 11 and 11a were not detected in the worm samples

collected, indicating little or no accumulation of these two com-

pounds. Mercaptoacetamides 12 and 12a were also not identi-

fied in the worm homogenates, however, the disulfide form of
486 Chemistry & Biology 22, 483–491, April 23, 2015 ª2015 Elsevier
12 was observed in both samples. Interestingly, the metabolism

of 13a in C. elegans was more complex compared with 11a and

12a. The first stage of metabolism for 13a was hydrolysis to

generate the active thiol 13, which was further oxidized to form

the corresponding disulfide. Of the three thioacetates, only 13a

readily accumulated in C. elegans and metabolized to the active

thiol form, and in so doing inhibited the function of LasB and

extended the lifespan of C. elegans. It is noteworthy that these

results match the bioactivity assay data as only 13a significantly

attenuated P. aeruginosa virulence in the slow-killing assay,

providing support for our hypothesis that a prodrug strategy

greatly improves the availability of active drug in the host

organism.

Transmission Electron Microscopy
We used transmission electron microscopy (TEM) to visualize

P. aeruginosa colonization, including virulence associated with

LasB and its attenuation from 13a treatment. Orchestrating this

ensemble of events, we could examine the C. elegans intestine

as a means to evaluate pathogenic progression at 48 hr post

infection with/without LasB inhibitor treatment. Bacterial accu-

mulation resulting in penetration of the intestinal lumen was clas-

sified as an unhealthy worm; worms without accumulation (and

intact lumen) were classified as healthy. Using this outline to

judge the infection rate, we scored worms based on frequency

of encounter throughout the respective sample. Visualization of

wild-type PAO1 infection indicated grossly distended intestinal

lumen, widespread shortening of the microvilli, and direct con-

tact of bacterial cells with the microvillar surface (Figure 5A).

In 43% of cross sections (n = 7), we found bacterial cells

that were not in the intestinal lumen (Figure 5B), indicating that

P. aeruginosa cells had penetrated the intestinal wall and

invaded other tissues.

In stark contrast with the P. aeruginosa wild-type, the lasB

knockout exhibited lower levels of host tissue damage in

C. elegans (Figure 5C). Analyzing cross sections, we encoun-

tered less than 20% (n = 10) of intracellular invasion and evaded

bacterial cells in lasB mutant-infected animals compared with

wild-type P. aeruginosa. Most promising was that in C. elegans

treated with 13a, less than 20% (n = 10) of the cross sections

examined had tissue damage, which is comparable with the

lasB mutant-infected worms, suggesting an alleviation in bacte-

rial pathogenesis advancement (Figure 5D). As a control, we
Ltd All rights reserved



Table 2. Characterization of Structural Metabolites from LasB Inhibitors in C. elegans

Compound Parent Compound Identified Identified Metabolites Identified Metabolites

11

nd nd nd

11a

nd nd nd

12

nd nd

12a

nd nd

13

Yes nd

13a

Yes

nd, none detected.
visualized worms fed with E. coli OP50 and observed normal in-

testinal lumina and microvilli structure (Figure S5). Complement-

ing these findings, we also observed that lipid droplets filled

in intestinal epithelial cells characterizing the intestine tissues

from healthy worms (data not shown).

DISCUSSION

Developing a screening platform for antibiotic discovery that will

eventually lead to molecules worthy of translational evaluation

has been a challenge. At the clinical level, one must contend

with the outbreak of resistant bacteria and diminishing returns

from antibiotic research (Lewis, 2013). To address the increasing

challenges in treating antibiotic-resistant bacterial infections, a

range of alternative antibacterial strategies have been proposed.

Of these tactics, investigation of virulence factors has been re-

garded as an emerging second generation antibiotic approach

(Barczak and Hung, 2009; Clatworthy et al., 2007). The wisdom

here is that virulence factors are not essential for cell viability,

hence targeting such factors would impose weak or no selective

pressure for the development and selection of drug resistance
Chemistry & Biology 22,
(Theuretzbacher, 2009). Arguably, it might be more prudent to

inhibit transcription factors that control a number of virulence

factors, rather than a single target. Taking this stance, LasR is

a transcription factor found in P. aeruginosa and thought to be

a major regulator of a plethora of virulence factors, including

LasB (Kalia, 2013). Yet, strategically targeting LasR also has

drawbacks as, under stress conditions, a signaling pathway

termed IQS can supersede LasR and control a subset of

quorum-controlled genes and thus proteins including LasB

(Lee et al., 2013). Thus, efforts targeting LasR are highly valued;

however, if P. aeruginosa engages the IQS circuitry, then inhibi-

tors of LasR would not disengage LasB. At least for the case of

LasB, wewould argue that singular targeting of a virulence factor

may be more effective.

A viable in vivo assay is especially crucial to overcome the

substantial hurdles in bacterial drug development. Typically,

cultured mammalian cells are used to simulate the potential

host for bacterial infection. Using this approach, antibiotic effi-

ciency and selectivity can be simultaneously determined by

measuring the viability of bacterial and mammalian cells. How-

ever, targeting a virulence factor, in this case LasB, no significant
483–491, April 23, 2015 ª2015 Elsevier Ltd All rights reserved 487



Figure 4. Selectivity of Compound 13 for LasB

Compound 13 was shown to be inactive against the metalloenzymes HDAC

and MMP-2.

(A) MMP-2 retains activity in the presence of compound 13 (up to 50 mM).

N-Isobutyl-N-(4-methoxyphenylsufonyl)-glycylhydroxamic acid (NNGH) is a

known MMP-2 inhibitor and was used as a positive control.

(B) HDAC retains activity in the presence of compound 13 (up to 50 mM). Tri-

chostatin A is a knownHDAC inhibitor andwas used as a positive control. Error

bars represent SEM values (n = 3). Data were analyzed by ANOVA followed by

Tukey’s multiple comparison method to determine significance (*significantly

different compared with the positive control, r < 0.0001).
bactericidal response is expected. Indeed, none of the mercap-

toacetamides tested displayed toxicity toward P. aeruginosa or

HeLa cells when tested at concentrations upward of 50 mM.

Furthermore, the major host tissue damage caused by LasB

is through the digestion of extracellular matrix proteins, rupturing

cell connections, which renders the suitability of using a

cultured single-cell mixture as an assay model ineffective. A

whole-animal model such as the nematode C. elegans is multi-

cellular with differentiated tissues and distinct organs, thus it is

complex enough to address higher level biological questions

while being simultaneously experimentally tractable. Using this

enabled logic, we recapitulated LasB-induced pathogenesis in

C. elegans, as shown in the nematode intestine TEM cross-sec-

tion data and the extended worm lifespan with lasBmutant bac-

terial infection.

Our laboratory and others have reported several in vitro LasB

inhibitors with micromolar IC50 values and nanomolar competi-
488 Chemistry & Biology 22, 483–491, April 23, 2015 ª2015 Elsevier
tive inhibition constants (Ki) (Cathcart et al., 2011; Garner et al.,

2012; Fullagar et al., 2013). Seeking to improve upon this

research initiative, we used molecular docking to discover a

mercaptoacetamide motif that inhibits the LasB protease. To

improve upon inhibition, a series of molecules were prepared,

which highlight how this scaffolding and its potency could be

improved. Yet, a liability of the mercaptoacetamide motif is

that it is prone to oxidation. Subsequently, we demonstrated

how we could mask the thiol moiety as the thioacetate prodrug,

which is ultimately hydrolyzed by xenobiotic esterases. Having

established that C. elegans is a valuable disease model as

defined by LasB, we examined how our small-molecule inhibi-

tors of LasB would affect P. aeruginosa toxicity in C. elegans.

Excitingly, 13 in its prodrug form was shown to be a highly effi-

cient inhibitor of LasB function at the infection site, exhibiting

the same level of virulence attenuation as the lasBmutant. More-

over, 13 presented a selectivity measure as shown by the lack of

inhibitory activity observed against HDAC and MMP-2.

As ameans to correlate our in vitro and in vivo data, we studied

the metabolism and bioaccumulation of selected LasB inhibi-

tors. Worm lysate was extracted, separated, and visualized by

LC-MS to analyze compound accumulation and metabolism in

the worm, partially mimicking ADME (absorption, distribution,

metabolism, and excretion) studies in animal models. Mercap-

toacetamide 13, as anticipated, was oxidized thus abrogating

in vivo efficacy. However, when 13 was masked in the form of

a prodrug, 13a, we observed the release of the active compound

in the host organism and thus extended worm LT50. When

masked as prodrugs the other mercaptoacetamides, 11 and

12 showed minimal effect on alleviating bacterial virulence and

were either not detected or observed only in the inactive disulfide

form. Presumably, these mercaptoacetamides have different

molecular interactions with the esterases inC. elegans, which re-

sults in different metabolism profiles of these three compounds.

In total, the highly correlated data between IC50, LT50, TEM, and

bioaccumulation substantiate the pertinence of a worm-based

in vivo model system.

In summary, through a virtual screening effort we discovered a

core unit (the mercaptoacetamides) that could inhibit the metal-

loprotease LasB at a non-toxic concentration. Focusing upon

this architecture, a series of molecules were prepared, three of

which potently disabled the protease. The mercaptoacetamides

discovered, while excellent in vitro inhibitors, possessed a

serious liability, a thiol capable of being oxidized. We were

thus led to askwhether a prodrug approachmight serve as a bet-

ter in vivo surrogate. Using a prodrug approach to mask the

reactive thiol, we were successful in translating an initial in vitro

lead into a more drug-like molecule with in vivo efficacy. We

have established how C. elegans can be used to understand

the impact of a bacterial virulence factor and how host-pathogen

interactions betweenC. elegans and P. aeruginosa readily model

the disease state seen in mammalian models. Importantly, this

C. elegans animal infection model has allowed us to systemati-

cally investigate the bioaccumulation of metabolites from an

active compound, thus showing that this model can be used to

study how compounds are metabolized in vivo. It is interesting

to note that compounds that did not translate into in vivo efficacy

did not accumulate in the nematode. From amedicinal chemistry

prospective, this study opens new avenues for the rapid
Ltd All rights reserved



Figure 5. C. elegans Intestine Cross Sec-

tions as Viewed by Transmission Electron

Microscopy

Cross sections of bacterial accumulation in

C. elegans intestine used for invasion frequency

experiments.

(A) Worms fed with PAO1 demonstrate bacterial

cell accumulation in the lumen and shortened

microvilli due to bacterial penetration.

(B) Worms fed with PAO1 have punctured intestinal

walls.

(C) Worms fed with lasB knockout have normal in-

testinal structure.

(D) Image of PAO1-fed worm treated with 13a,

showing intact intestinal lumen and reversal of

bacterial pathogenesis. Arrows indicate the object

of relevance. Scale bar represents 1 mm.
development of novel anti-infective strategies that target specific

virulence mechanisms.

SIGNIFICANCE

Utilizing a lasB genetic knockout, the relevance of this viru-

lence factor in a P. aeruginosa infection model of the nema-

todeC.eleganswasvalidated.Molecular dockingstudies led

to the discovery of the mercaptoacetamide class of non-

peptidic small-molecule inhibitors of LasB. We were able to

show that C. elegans is an excellent translational tool for

the medicinal chemist seeking to develop anti-virulence

compounds, as an in vitro leadwas shown to have in vivo ac-

tivity. Also marshaled through this research was that com-

pound bioaccumulation andmetabolism could be readily as-

sessed in a user-friendly animalmodel. Indeed, this infection

model enables the screening of anti-virulence compounds at

minimal cost comparedwith its expensivemammalian coun-

terparts. Lastly,wewere able to visualize the immediate anti-

virulence restorative effect of a LasB inhibitor using electron

microscopy, as the phenotype mirrored that of the lasB

knockout strain. Importantly, our studies provide not only

tools to expand our understanding of the relevance of bacte-

rial metalloproteases inP. aeruginosa pathogenesis but also

the first steps toward a contemporary goal of validating pro-

teolytic virulence factors, includingLasB, asnew therapeutic

targets for the development of effective treatments for bac-

terial infections.

EXPERIMENTAL PROCEDURES

In Vitro Fluorescence Assay for LasB Activity

LasB was purchased from Elastin Products Company and used as received.

The LasB pro-fluorescent substrate, Abz-Ala-Gly-Leu-Ala-p-nitro-benzyl-

amide (SAG-3905-PI), was purchased from Peptides International and used

as received. An in vitro fluorescence-based peptide cleavage assay was
Chemistry & Biology 22, 483–491, April 23, 2015
adapted from a previously reported assay and per-

formed in 96-well microtiter plates (Corning Costar,

black with clear bottom). Assays were performed in

100 ml of assay buffer (50 mM Tris-HCl, 2.5 mM

CaCl2, 1% dimethylformamide [pH 7]) containing

2 mg/ml LasB, 250 mM Abz-Ala-Gly-Leu-Ala-p-

nitro-benzyl-amide substrate, and varying concen-
tration of inhibitors. The reaction system was pre-incubated at 37�C for 30 min

before the addition of peptide substrates and monitored by measuring the in-

crease in fluorescence for 30 min (lex = 340 nm, lem = 415 nm) at 37�C on a

SpectraMax M2e microplate reader (Molecular Devices). LasB activity was

evaluated by the slope during the linear phase of the cleavage as units of fluo-

rescence per unit time. The activities obtained at different compound concen-

trations were analyzed by GraphPad Prism 5 to afford the IC50 values for each

inhibitor identified.

In Vitro Fluorescence Assay for HDAC and MMP-2 Activity

AFluorogenicHDACAssayKit (Green)waspurchased fromBPSBioscienceand

used according to the manufacturer’s instructions. The MMP-2 Fluorometric

DrugDiscovery Kitwas purchased fromEnzo Life Sciences andused according

to themanufacturer’s instructions, with a slight modification as described previ-

ously (Day and Cohen, 2013). Following inhibitor and enzyme incubation (37�C
for 30 min), the substrate was added to initiate the reaction. The change in fluo-

rescence (lex = 305 nm, lem = 405 nm) was monitored for 30 min on a Spectra-

Max M2e microplate reader (Molecular Devices). Control wells containing

enzyme and substrate (no inhibitor) were designated as negative controls wells.

The increase in fluorescence in the inhibitor wells was compared with that in the

negative control wells and is presented as a percentage. The negative control

wells were set to 100% enzyme activity and inhibitor wells were normalized

against this value. All assays were performed in triplicate.

C. elegans Slow-Killing Assays

C. elegans slow-killing assays were performed following a previous protocol

with minor modifications. The wild-type C. elegans (Bristol) N2 hermaphrodite

strain was used in the slow-killing assays. Worms were synchronized by hypo-

chlorite treatment of gravid adults. Synchronized worms were grown to L4 or

young adult stage by incubating them at 25�C in Nematode Growth Medium

(NGM) as stock for the killing assays. 3.5-cm slow-killing agar plates were

made following the published recipe with the addition of 0.3% DMSO or the

designated testing compounds at 50 mM. One-day-old agar plates were inoc-

ulated with 10 ml of an overnight culture in lysogeny broth medium of

P. aeruginosa PAO1 or lasB knockout (lasB�) or E. coli OP50 and incubated

at 37�C for 24 hr and at 25�C for another 24–48 hr to form a lawn of bacteria.

Nematodes were washed off the stock plates and suspended in a minimal vol-

ume of M9 buffer (pH 6.5). 20–30 L4 stage or adult hermaphrodite worms were

placed on each slow-killing plate for evaluation of bacterial infection. Plates

were incubated at 25�C and scored for live worms every 24 hr. A worm was

considered dead when it no longer responded to touch when picked up by a
ª2015 Elsevier Ltd All rights reserved 489



sterile platinum wire loop. Killing curves represent the mean of three separate

replicate plates per condition.

C. elegans Bioaccumulation Assays

Sample preparation and analysis of worm homogenates were carried out as

reported previously (Gooyit et al., 2014). Mass spectrometry acquisition was

performed in negative electrospray ionization mode with the following param-

eters: capillary voltage = 3.5 kV, nebulizer pressure = 20 psig, drying gas flow =

7 l/min, and gas temperature = 350�C. Worm homogenate samples were

analyzed on a Zorbax SB-C18 column (3.5 mm, 1 3 150 mm; Agilent Technol-

ogies). The mobile phase consisted of elution at 0.10 ml/min starting with 70%

A/30% B for 1 min, followed by a 5-min linear gradient to 100% B, and then

100% B for 12 min. The mass filters used for extracting ion chromatograms

were as follows: m/z = 333.910–333.950 for 13a, m/z = 291.900–291.940 for

13, m/z = 584.780–584.850 for the disulfide of 13, m/z = 299.700–300.100

for 11a, m/z = 257.900–258.100 for 11, m/z = 516.700–517.100 for the

disulfide form of 11, m/z = 367.600–368.200 for 12a, m/z = 325.600–326.100

for 12,m/z = 650.400–651.000 for the disulfide form 12. Identification of com-

pounds in theworm homogenateswas confirmed by comparison of high-pres-

sure liquid chromatography retention time and mass spectrum with those of

authentic synthetic standards (Figure S4).

Electron Microscopy

C. elegans infection sample preparation for electron microscopy was the same

as described for the slow-killing assay. After 48 hr incubation at 25�C, animals

were collected and incubated in fixation buffer (2.5% glutaraldehyde, 1.0%

paraformaldehyde in 0.05 M sodium cacodylate buffer (pH 7.4) plus 3.0% su-

crose). During the initiation of fixation, animals were cut in half with a surgical

blade in a drop of fixative under a dissecting microscope, fixed overnight at

4�C, rinsed in 0.1 M cacodylate buffer, post-fixed in 1.0% osmium tetroxide

0.1 M cacodylate buffer, rinsed in buffer and water, and stained en bloc in 2%

aqueous uranyl acetate. After rinsing in water, animals were embedded in 2%

agarose in PBS, dehydrated through a graded series of ethanol washes to

100%, then 100%propylene oxide, and finally 1:1 propylene oxide/EPON over-

night. Blockswere infiltrated in 100%EPON and then embedded in fresh EPON

overnight at 60�C. Thin sections were cut on a Reichert Ultracut E ultramicro-

tome and collected on formvar-coated gold grids. Sections were post-stained

with uranyl acetate and lead citrate and viewed using a JEOL 1011 transmission

electronmicroscopeat 80kVwithanAMTdigital imaging system (AdvancedMi-

croscopy Techniques). For each observation, whenever possible at least ten

cross sections were evaluated and representative images were chosen.

Computational Methodology

Three different structures of LasB (PDB codes 3DBK, 1EZM, 1U4G) were used

in Autocorrelator runs to construct computational models of potency against

LasB (Lardy et al., 2012). While all three structures are reasonably similar,

with subtle differences between them in the catalytic cleft, there was a prefer-

ence by the Autocorrelator for the 3DBK structure. The correlation coefficients

(R2) for the strongest models built with 3DBK, 1EZM, and 1U4G were 0.61,

0.49, and 0.47, respectively.

The model found with the 3DBK structure of LasB employed Omega 2.4.6

(using a maximum of 280 conformations per molecule and a 10-kcal energy

window cutoff) and Fred 2.2.5 (with the chemscore scoring function, shape-

gauss optimization, no MMFF (Merck molecular force fields) refinement,

16.0 Å added to the bounding box containing the co-crystalized inhibitor, a

clash_scale of 0.8, a low contour quality, rotational and translational step

size of 1.2, and chemgauss 2 for exhaustive scoring) (Hawkins et al., 2010;

Hawkins and Nicholls, 2012; McGann, 2011). The Autocorrelator turns off all

the pose_select options in Fred by default. The scoring function produced

from the LARS methodology in R contains terms for the metal interaction, hy-

drophobic interactions, and rotatable bonds (McGann et al., 2003; Efron et al.,

2004). The scoring function is shown in Equation 1:

predIC50 = 2:84+Chemscore:RB3 0:36+Chemscore:LIPO

3 � 0:115+Chemscore:METAL3 0:0785;
(Equation 1)

A total of 39,816 thiol-containing purchasable molecules were virtually

screened by this method and were ranked using Equation 1.
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