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Abstract

We construct interacting quantum fields in 1+1 space-time dimensions, representing charged
or neutral scalar bosons at positive temperature and zero chemical potential. Our work is based
on prior work by Klein and Landau andddgh-Krohn. Generalized path space methods are used
to add a spatially cutoff interaction to the free system, which is described in the Araki-Woods
representation. It is shown that the interacting KMS state is normal w.r.t. the Araki-Woods
representation. The observable algebra and the modular conjugation of the interacting system
are shown to be identical to the ones of the free system and the interacting Liouvillean is
described in terms of the free Liouvillean and the interaction.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Thermal quantum field theory is supposed to unify both quantum statistical mechanics
and elementary particle physics. The formulation of the general framework should be
wide enough to allow a QED description of ordinary matter. It should also provide the
necessary tools for the QCD description of several experiments currently envisaged with
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the new large hadron collider (LHC) at CERN. While the general theory of thermal
quantum fields has made substantial progress in recent years, the actual construction
of interacting models, which fit into the axiomatic setting, has not yet started (with the
exception of the very early contributions by Hgegh-KrdhihK1] and Frohlich[Fr2]).

Let us briefly recall the formal description of charged scalar fields in physics. Exam-
ples of scalar particle—antiparticle pairs are the mesohsrt—, K+, K, or K9, KO.
(In the last case the ‘charge’ is strangeness). One starts with the classical Lagrangian
density

, A
L= (0y9) (0" ¢*) — m*pp* — 2 (™).

Here (¢, x) is a complex scalar field over space-time. The Lagrangian dedsity)
is invariant under the global gauge transformatigns—> €%, o € R. By Noether's
theorem this invariance leads to a conserved current

Jy = i(0*0vp — @dy™), v=0,...,3

and to a conserved charge

q= / d3x jo(t, x).

The next step, according to the physics literature, is to setup real or imaginary time
perturbation theory.

The state of art of perturbative thermal field theory is covered in three recent books by
Kapusta[Ka], Le Bellac[L-B] and UmezawdU]. The authors concentrate on theoretical
efforts to understand various hot quantum systems (e.g., ultra-relativistic heavy-ion
collisions or the phase transitions in the very early universe) and various physical
implications (e.g., spontaneous symmetry breaking and restoration, deconfinement phase
transition).

Constructive thermal field theory allows one to circumvent (at least in lower space—
time dimensions) the severe problems (see, e.g., Steinf&frof thermal perturbation
theory, which can otherwise only be removed partially by applying certain “resummation
schemes”.

A class of models representing scalar neutral bosons with polynomial interactions
in 1+1 space-time dimensions was constructed by Hgegh-KfBahK1] more than
20 years ago. As he could show, thermal equilibrium states for these models exist
at all positive temperatures. For neutral particles, the particle density (and the energy
density) adjust themselves to the given temperature; contrary to the non-relativistic
case, a chemical potential adjusting the particle density cannot be introduced, since
the mass is no longer a conserved quantity. Shortly afterwards, several related results
on the construction and properties of selfinteracting thermal fields in 1+1 space—time
dimensions were announced by Frohligtr2].

Our goal in this and a subsequent pajieeJ] was twofold: firstly, we wanted to fully
understand the neutral scalar thermal field with polynomial interaction as constructed
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by Hgegh-Krohn[H-K1], with the aim to study thermal scattering theory, using the
framework introduced by Bros and BuchhqBB1,BB2]. Secondly, we wanted to
generalize this construction to charged fields. This would allow us to study the system
at different temperatures and chemical potentials, i.e., different charge densities. A
possibility to change the charge density would put this model closer to non-relativistic
models, where the mass is a conserved quantity, giving rise to the existence of a
chemical potential.

The construction of the full interacting thermal quantum field without cutoff&GiaJ]
includes several of the original ideas of Hgegh-KrdhhK1], but instead of starting
from the interacting system in a box we start from the Araki-Woods representation
for the free system in infinite volume. Using a general method developed by Klein
and LandayKL1] to treat spatially cutoff perturbations of the free system in infinite
volume, we can eliminate some cumbersome limiting procedures due to the introduction
of boxes, when we remove the spatial cutoff.

The present paper is devoted to the construction of neutral and charged thermal fields
with spatially cutoffinteractions in 1+1 space—time dimensions, using the method of
Klein and LandauKL1]. Although the excellent papdKL1] is rather selfcontained,
it did not include the discussion of examples. Twenty years ago it might have been
evident for the experts in the field how to apply their method to thermal quantum
fields, but we find it worthwhile to present this application in some detail.

A difference between this paper afidL1] is the use of generalized path spaces as
in [K], instead of stochastic processes. This compact formulation is convenient for our
applications. In addition, we prove several new results concerning the interacting KMS
systems obtained by perturbations of path spaces.

1.1. Content of this paper

Our paper can be divided into several parts. The first part, presented in Section
2, discusses the description of neutral and charged scalar fields in terms of operator
algebras. Its application to Klein—Gordon fields is discussed in Se8tié&s usual the
starting point is a real symplectic spac¥, ¢), which allows the construction of the
Weyl algebral3(X, o). The next step is to introduce @X, o) a Kahler structure, i.e., a
compatible Hermitian structure. For charged scalar fields, the symplectic sfaeg
possesses also a canonical ‘charge’ complex structure j and a ‘charge’ sesquilinear
form ¢, such thate = Imgqg. The mapsX > x — e/*x for « € R generate the
gauge transformationsGiven a regular CCR representation, complex quantum fields
are defined.

This leads to the notion of aharged Kéhler structurecorresponding to the in-
troduction of another complex structure i and of ttiearge operator ¢ relating the
two complex structures. Finally, the notion ofiarge conjugations discussed in this
abstract framework.

For Klein—Gordon fields, a conjugation inducing charge—time reflections is used to
distinguish an appropriate abelian sub-algebra of the Weyl algebra to which the inter-
action terms considered later on will be affiliated.
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Section 3 recalls the characterization of a thermal equilibrium state by the KMS
property. The GNS representation associated to a KMS state has a humber of interest-
ing properties which are briefly recalled. For instance, the GNS vector is cyclic and
separating for the field algebta (in our case the weak closure of the Weyl algebra in
the GNS representation), and therefore one can always go over to the weak closure of
the relevant operator algebras, and we will do so in the sequel. Since a KMS state is
invariant under time translations, a Liouvillean implementing the time evolution is al-
ways available. As has been shown by Araki, the KMS condition allows us to introduce
Euclidean Green’s functions. The notion stbchastically positive KMS systemse to
Klein and Landau is presented. This notion rests on the introduction of a distinguished
abelian subalgebr&/ of the field algebraZ. In physics, this algebra is the algebra
generated by the time-zero fields. It is also shown that stochastically positive KMS
systems are invariant undertime reversaltransformation.

In Section 4, we recall the notion of a quasi-free KMS system associated to a
positive selfadjoint operator acting on the one-particle space. The GNS representation
for a quasi-free KMS system has been analyzed by Araki and Woods. We briefly recall
this framework and its connection to the Fock representation in a modern notation.
It is shown that the field algebr& is generated by the time-translates of the abelian
algebral{. The observable algebra, consisting of elements of the field algebra which are
invariant under gauge transformations, is introduced. In Sedtibiit is shown that the
KMS system for the (quasi-)free charged thermal field is indeed stochastically positive,
if the chemical potential vanishes. However, if the chemical potential is non-zero, then
the charge distinguishes a time direction, and consequently, the system is no longer
invariant under time reversal. Thus it fails to be stochastically positive too, as we show
in Section8.3,

Following Klein and Landau, a cyclicity property of the Araki-Woods representation,
which will imply the so-calledMarkov propertyfor the free system later on, is shown.
The Markov property has the consequence that the physical Hilbert space can naturally
be considered as ah2-space.

Section5 recalls the notion of @eneralized path spacdoth for the O-temperature
case and the case of positive temperature. We follow [i€r&L1]. Although the
O-temperature case is not needed in this paper, it will be useful later ¢Gad]

A generalized path space consists of a probability sgareX, i), a distinguished-
algebraXy, a one-parameter group— U (¢) and a reflectiorR. We recall the definition
of OS-positivityand theMarkov propertyfor both cases.

Section 6 is devoted to a discussion of the Osterwalder—Schradeonstruction
theoremin the framework of generalized path spaces. This reconstruction theorem
associates to g-periodic, OS-positive path space a stochastically posifiv€eMS
system.

In Section7, we recall from[KL1] how to deal with a class of perturbations, which
are given in terms oFeynman—Kac—Nelson kernelghe main examples of FKN kernels
are those obtained from a selfadjoint operatawn the physical Hilbert spacH, where
V is affiliated toi/.

We show that for a class of perturbatiols considered in[KL1], the perturbed
Hilbert space can be canonically identified with the free Hilbert space in such a way
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that the interacting algebrg, ¢/ and the modular conjugatiahcoincide with the free

ones. Moreover, we prove that the perturbed Liouvillégnis equal toL +V — JV J,
if L is the free Liouvillean. Heregd denotes the closure of a linear operakbr

Finally, we show that the Markov property of a generalized path space is preserved
by the perturbations associated to FKN kernels.

In Section8, we apply the framework of Sectiorsand 4 to charged and neutral
Klein—Gordon fields at positive temperature. The case of the neutral Klein—Gordon
field is well known and reviewed only for completeness. We give more details on the
charged Klein—Gordon field which provides an example of a charge symmetric Kéhler
structure. We also compare our setup with the one used in physics textbooks. Using the
results of Sectiod, we present the quasi-free KMS system describing a free charged or
neutral Klein—Gordon field at positive temperature. Note that the conjugation used in the
definition of the abelian algebid corresponds to time reversal in the neutral case and to
the composition of time-reversal and charge conjugation in the charged case. We show
that the KMS system for the charged Klein—Gordon field is not stochastically positive,
if the chemical potential is unequal to zero. The physical reason is that the dynamics
of charged particles is only invariant under the combination of time reversal and charge
conjugation. A non-zero chemical potential introduces a disymmetry between particles
of positive and negative charge and hence breaks time reversal invariance, which itself
is a property shared by all stochastically positive KMS systems.

In Section9, we consider Klein—Gordon fields at positive temperature with spatially
cutoff interactions in B 1 space-time dimensions. In the neutral case we will treat
the P(¢)2 and the &%, interactions (the later being also known as theegh-Krohn
model). In the charged case we treat the (gauge invari&ti¢), interaction.

The UV divergences of the interactions are eliminated by Wick ordering, which is
discussed in detail in Sectiors1 and 9.2 As it turns out, the leading order in the
UV divergences is independent of the temperature. Thus it is a matter of convenience
whether one uses thermal Wick ordering or Wick ordering w.r.t. the vacuum state.

The L?-properties of the interactions needed to apply the abstract results of Section
7 are shown in Section8.3-9.5,

Finally, the main results of this paper, namely the construction and description of a
KMS system representing a Klein—Gordon field at positive temperature with spatially
cutoff interactions, is given in Sectiob.6.

In a forthcoming paper, we will consider the translation invari&itp), model at
positive temperature. Following again ideas of Hgegh-KrpiiK1], Nelson symmetry
will be used to establish the existence of the model in the thermodynamic limit.

2. Real and complex quantum fields

In this section, we present real and complex quantum fields in an abstract framework.
Usually in the physics literature complex quantum fields are described in the case of
Klein—Gordon fields. Although the results of this section are probably known, we have
not found them in the literature.



162 C. Gérard, C.D. Jakel/Journal of Functional Analysis 220 (2005) 157-213
2.1. Notation

Let X be a real vector space. X is equipped with a complex structure i, then we
will denote by (X, i) the complex vector space If (X, i) is equipped with a hermitian
form (., .), then we will denote by X,i, (., .)) the Hermitian spac&. If it is clear
from the context which complex or Hermitian structure is used,i) or (X,i, (., .))
will simply be denoted byX. As a rule the complex structure of a Hermitian space
will be denoted by the letter i. Sometimes another ‘charge’ complex structure appears;
it will be denoted by the letter j.
2.2. Real fields

We start by recalling the formalism of real quantum fields.

CCR AlgebraLet (X, o) be a real symplectic space. L#¥8(X, o) be the (uniquely
determined)C*-algebra generated by non-zero elemeitér), x € X, satisfying

W (x1) W (x2) = €17C132/2W (xq + xp),

W*(x) = W(—x),  W(O) = 1.

MW(X, o) is called theWeyl algebraassociated tqX, o).
Regular representationd et 7 be a Hilbert space. We recall that a representation

T W(X, 0) > W(x) = Wr(x) e U(H)
is called aregular CCR representatioif
t — Wr(tx) is strongly continuous for any € X.

One can then defingeld operators

. d
G (x) = —i @ Wr(tx) , x€X,
t t=0

which satisfy in the sense of quadratic forms D¢ (x1)) N D(¢,(x2)) the commu-
tation relations

[¢r(x1), Pr(x2)] =l0(x1, x2), x1, x2 € X. (1)

Kéahler structures Let (X, o) be a real symplectic space and i a complex structure
on X. The spaceX, i, o) is called aKahler spaceif

o(ix1, x2) = —o(x1,ix2) and a(x, ix) is positive definite



C. Gérard, C.D. Jéakel/Journal of Functional Analysis 220 (2005) 157-213 163

If (X,i,0) is a Kahler space, the(X, i, (., .)) is a Hermitian space for
(x1, x2) 1= o(x1, ix2) +i0(x1, x2).

The typical example of a Kahler space is a Hermitian spéxei, (., .)) with its
natural complex structure and symplectic form=Im (., .).

Creation and annihilation operatordf = is a regular CCR representation of the Weyl
algebrall3(X, o), and (X, o) is equipped with a Kahler structure, then ttreationand
annihilation operatorsare defined as follows:

ai(x) = 7 (Pr(x) —igpp(ix)),  an(x):= 7 (pp(x) + i (ix)).
Clearly,
¢ (x)—i(a*(x)+a (X)), xeX
T - \/i T s 3 .

The operatorsu’(x) and ap(x) with domain D(¢,(x)) N D(¢,(ix)) are closed and
satisfy canonical commutation relations in the sense of quadratic forms:

lan(x1), ay(x2)] = (x1, x2)A,  [az(x2), ax(x1)] = [a(x2), a*(x1)] = 0.

2.3. Complex fields

Let (X,]) be a complex vector space. Let us assume ¥as equipped with a
sesquilinear, symmetric non-degenerate faymif a € L(X), we say thata is iso-
metric (resp. symmetric, skew-symmetric) [, j] = 0 and q(ax1, ax2) = q(x1, x2)
(resp. q(ax1, x2) = q(x1, ax2), qlaxy, x2) = —q(x1, axp)). Clearly (X,Imq) is a real
symplectic space. The quadratic fomnis called thecharge quadratic form

Gauge transformationsThe mapsX > x — e/*x € X for « € R are calledgauge
transformations They are symplectic oiX, Im q) and isometric on(X, q). We have

q(x1, x2) = Im q(x1, jx2) + ilm q(x1, x2). 2

Complex fieldsLet now = be a regular CCR representation $8(X, Imq) on a
Hilbert space?{ and let¢(x) be the associated field.
Using the complex structure j, we can define tmwmplex fields

Pr() = 75 (¢n(0) = 1d(j2))
Pr() = 75 ($n(0) +1(j2))
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with domainsD(¢,(x)) N D(¢p,(jx)). The mapsX > x +— @i(x) (resp.x — @, (x))
are j-linear (resp. j-antilinear).

Lemma 2.1. The operatorsg%(x) are closed. In the sense of quadratic forms on
D(¢,(x)) ND(¢,(jx)) they satisfy the commutation relations

[0r(x1), @5 (x2)] = q(x1, x2)A,  [@r(x1), @ (x2)] = [@5(x1), " (x2)] = 0.

Proof. The commutation relations are easily deduced frdn (et u € D(¢,(x)) N
D(¢,(jx)). To prove that(p,ﬁt(x) is closed, we write

2110 (ull? = Pz ull® + 1 (f)ull® — qlx, jx) |ull?.

This easily implies thatp (x) is closed. The case ap:(x) is treated similarly. [

2.4. Charge operator

Definition 2.2. Let (X, ], q) be as in Sectior2.3 and i another complex structure on
X. Then (X, j, 1, q) is called acharged Kahler spacd& [i,j] =0 and (X,i,Imgq) is a
Kahler space.

Let (X,j,i,q) be a charged Kahler space. Then i is antisymmetric dpri.e.,
q(x1, ix2) = —q(ix1, x2), and j is antisymmetric for., .).
We can introduce theharge operatar

q:=—ij.

Note that[q,i] =[qg,j] =0, ¢ = 1 and that g is symmetric and isometric both fpr
and (., .). Since i=jq we have & = €9 and the gauge transformations— elx,
o € R, form a unitary group on(X, i, (., .)) with infinitesimal generator q.

The typical example of a charged K&éhler space is a Hermitian sp&ce (., .))
with a distinguished symmetric operator ¢ such th&at=gl. Let us denote by* :=
Ker (qF 1) the spaces of positive (resp. negative) charge ang*bthe orthogonal pro-
jection of x € X onto X*. If we setq(x1, x2) = (x;, x3) — (x5, x7), then(X, g, i, q)
is a charged Kahler space. Note tat or X~ may be equal tqO0}.

Using the fact that q is symmetric far., .) andq, we see that the spaces" are
orthogonal both for(., .) and q. If we setx® = %(x + qx), then the map

U:. X — XtoXx™

X xtex™
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is unitary from (X,i,(.,.)) to (X*,i,(., ) ® (X7,i,(.,.)) and isometric from
(ijs Q) to (X+’I9(v ))®(X71_|’_(7 ))
If 7:MW(X,Imq) — U(H) is a regular CCR representation on a Hilbert spate

then we can introduce, just as in Secti®r2, creation and annihilation operators

L
NE:

(6o (6) — ioiv) . an(r) = % (b2 () + (i) .

ay(x) =

with domainsD(¢,(x)) N D(¢p,(ix)). The mapsX > x +— ai(x) (resp.az(x)) are
i-linear (resp. i-antilinear). Ifc = x™ + x—, with x* € X*, then

0r(¥) = az(x) +ai(x7) and i) = ai(x) + an(x).

Note that this is consistent with fact that the maps x — ¢k (x) (resp.x — @ (x))
are j-linear (resp. j-antilinear).

2.5. Charge conjugation

Let (X.],i,q) be a charged Ké&hler space. Assume that there exists samg(&)
such that

=1, ci=ic, cq=—qc, (x1,Cx2) = (Cx1, x2), x1,x2 € X. ©)

l.e., ¢ is a symmetric involution fof. , .), which anticommutes with the charge operator
g. An operator c¢ satisfying3] is called acharge conjugation Charge conjugations
exist in charge-symmetric quantum field theories. A charged Kéahler 9pg&gei, q, ¢)
equipped with a charge conjugation ¢ will be calledharge-symmetric Kahler space

It follows from (3) that q(x1, Cx2) = —q(Cx1, x2), i.e., € is antisymmetric foq. Since
cg= —qc, we see that ¢ is a unitary map froi¥—,i, (., .)) to (X, i, (., .)).

3. Stochastically positive KMS systems
In this section, we recall the notion of stochastically positive KMS systedue

to Klein and LandayKL1]. We prove that stochastically positive KMS systems are
invariant under time-reversal.

3.1. KMS systems

Let § be aC*-algebra and(t;},cg a group of*-automorphisms ofy. Let w be a
(z, p)-KMS stateon §, i.e., a state such that for eaeh B € § there exists a function
F4 p(z) holomorphic in the strifz € €| 0 < Imz < f} and continuous on its closure
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such that
Fy () = w(A1(B)), Fapt+if)=ow(t,(B)A), teR.

A triple (&, 7, w) such thatw is a (z, f)-KMS state is called g-KMS system
Let us now recall some standard facts about KMS systems. By the GNS construction,
one associates ¢, 7, ) a Hilbert spaceH,,, a representatiom, of § on H,, a
unit vectorQ,,, cyclic for ., and a strongly continuous unitary grofg "%},.g such
that

(A) = (Q, T(A)Qy),  Tey(1,(A)) = €'Fny(A)e™ "t LQ, =0.

The KMS condition implies tha®,, is separating for the von Neumann algehia &)”,
ie., AQ, = 0= A =0 for A € n,(&)". Consequently, the image ¢ under r,
is isomorphic tog; it will therefore not be distinguished fror§y. Moreover, we will
identify an elemenA of & with its imagen,(A).

The selfadjoint operatot is called theLiouvillean associated to the KMS system
(&, 7, w). It is the unique selfadjoint operator whose associated unitary group generates
the dynamicsr and such that.Q,, = 0 (see e.g[DJP, Proposition 2.14]

Proposition 3.1. Let §1 C & be the set ofA € § such thatt:r — 1,(A) is C! for
the strong topology ol8(H,). Then 12, C D(L) is a core for L

Proof. Note first thatA e & iff A is of classC'(L) (see[ABG, Definition 6.2.2).
Clearly &1 is dense in§ for the strong operator topology. In fact, & € &, then the
strong integrald, = ¢! fg 1;(A) dr belongs tog1 and converges strongly t& when
¢ — 0.

Since Q,, is cyclic for §, this implies that¥1€,, is dense in#,. Moreover, since
LQ, = 0, we have BLF1Q, = 192, and F102, C D(L). Thus Nelson’s theorem
implies that§1Q,, is a core forL. [

Euclidean Greels functions Let
I;Jr ={(z1,...,z0) € C" |Imz; <Imz;y1, Imz, —Imzy < B} (4)

It follows from a result of Araki[Arl,Ar2] that, for Ay, ..., A, € &, the Green’s
function

n
G(tr, ... tai Av, ..., Ay) = o([ | 7, (A))
1
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extends to a holomorphic function i!ﬁ*, continuous onl;}_f In particular, one can
uniquely define theeuclidean Greels functions

BG(s1, ... sn; ALy ooy Ap) i= G(ist, ..., 0sn; ALy ..., Ap)
for all (s1,...,s,) such thats;<--- <s, ands, — s1 <. The correct way to view
such ann-tuple (s1, ..., s,) is as ann-tuple of points on the circle of length, ordered

counter-clockwise
3.2. Stochastically positive KMS systems

Klein and Landau[KL1] introduced a class of KMS systems which they called
stochastically positive KMS systenT® a stochastically positive KMS system one can
associate a (unique up to equivalengeneralized path spacéQ, 2, 2o, U(t), R, )

(see Section 5) which has some special properties, the most important beirflg the
periodicity int and theOsterwalder—SchradefOS)positivity.

Conversely Klein and Landau have shown[iKL1] that to a generalized path space
satisfying the properties in Definition 5.1 one can associate a (unique up to unitary
equivalence) stochastically positive KMS system. This is an exampleeaxfanstruction
theorem similar results are well-known in Euclidean QFT. A reconstruction theorem
allowing to go from Euclidean Green’s functions to a KMS system has recently been
proved in a general context by Birke and Frohli@F].

The advantage of the Klein and Landau formalism is that it is relatively easy to
perturb the stochastic process associated to a KMS system, using functional integral
methods.

Definition 3.2. Let (&, 7, w) be a KMS system andl c § an abelian*-subalgebra.
The KMS system(&, U, 7, w) is called stochastically positivéf

(i) the C*-algebra generated by, . 7, (20) is equal to3;

(i) the Euclidean Green's function8G (s1, .. ., sp; A1, ..., A,) are positive for all
A1, ..., A, et ={A e | A>0} and for all(s1, ..., s,) such thats; < - - - <s,,
ands, —s1<p.

It is often more convenient to consider instead of the-algebrasiy and U their
weak closures in the GNS representation, which we denot and [. We denote
by 7 the group{t,};cg of *-automorphisms ofy defined byz,(A) := &' Ae7 "L, The
statew extends tof by settingw(A) := (Q, 7, (A)Q,). The following fact has been
shown in[KL1, Proposition 3.4]

Proposition 3.3. Let (&, 11, 7, w) be a stochastically positive KMS system. Thgnll,
T, w) is also a stochastically positive KMS systéim the W*-sensg l.e,

(i) the w*-algebra generated by, 7,A0) is equal t0;
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(i) the Euclidean Grees functions®G(s1, ..., s,; A1,..., A,) are positive for all
A, ... A, € ﬁ+ and for all n-tuples(ss,...,s,) such thats;<--- <s, and
Sn — slgﬁ-

Now we show that stochastically positive KMS systems are invariant utioer
reversal a fact that is well known for O-temperature field theories (see for example
[Si1]).

Proposition 3.4. Let (&, U, 7, w) be astochastically positive&KkMS system. Then there
exists an anti-unitary involution T of,, such that

() TIT1=F, TAT 1=A*for Aell;
(i) TQu, = Qu, TT(A)=T_, (AT for Ac F, 1t €R.

From the properties of we see thafl implements thdime reversal transformation

Proof of Proposition 3.4.Let A1, A> € . The mapz — @(A17,(A2))|=i; IS holo-
morphic in{0 < Rez < f}. By stochastic positivity it is real ofimz = 0} if A; = A}.
The Schwarz’s reflection principle implies

0 (A17,(A2)) =iz = 0(A17,(A2)) =iz for A; e U, A; = A7,
For z = —ir this yields

o (A17(A2)) = w(A17-4(A2)) = 0 (1—(A2)A1)  for A; e U, A; = A7 ®)

By C-linearity this identity extends to ali; € . We can now define the antilinear
operator

n n
T2 ditA;Q, Y e ilar,. 6)
j=1 j=1

Foru =3, €LA;Q, identity () implies

lu]|? = (Z}Ll LA Q0. YT, eikaAka)
= 2 (@0 A7 AL = 0 (A, (A0
= Tx 0 (70 (A0AT) = 5 4 (Lo Ar€B-0E A7,
=Y (e*”kLAzQa,, e*i‘.iLAj.Qw) = || Tull?.

ThusT is a well-defined antilinear operator. Moreover, using property (i) of Definition
3.2 and the fact thaf2,, is cyclic for §§, we conclude thaT has a dense domain and
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a dense range. Hencke extends uniquely to an anti-unitary operator. Clearlys an
involution. The other properties af follow directly from 6). O

4. Quasi-free KMS states

In this section, we recall some well-known facts about quasi-free KMS states and
describe a class of quasi-free KMS states which generate stochastically positive KMS
systems (se¢KL2,GQ]).

4.1. Quasi-free KMS states

Let Xo be a pre-Hilbert space§ the completion ofXg. Then (Xp, o) is a real sym-
plectic space fow = Im(., .), and we denote b§l3(Xg) the Weyl algebrdl3(Xo, o).

Let a>0 be a selfadjoint operator oM such thatXy C D(a*%) and €@ preserves

Xo. Given a=0 the canonical choice foKg is D(a‘%).
For § > 0 one defines a stateg on W(Xo) by the functional

wg(W(x)) = e a2y e g, (7)

wherep := (€2 — 1)1, Since 1+ 2p = f_rgizz and a>0 the form domain of % 2p

is equal toD(a_%) D Xo.
The statewg is a (1°, f)-KMS state for the dynamics®: s — 17 defined by

2 W(Xo) — W(Xo)

W(x) — W(€"x).

The statewy is quasi-free(see [BR]) and the KMS syster@3(Xo), t°, wp) defined
above is called the quasi-free KMS systerssociated ta.

The standard example is the following one: let @ be a selfadjoint operator rep-
resenting theone particle energyAssume that there exists a selfadjoint operatan
X representing theone particle chargesuch thatq? = 1, [h,q] = 0. Then we can
associate a group @auge transformation$x; };c(0,2x,

o W(Xo) —  W(Xo)
W(x) = W)

to the charge operatay. Let 4 € R such that h— ug>4 > 0. Thus the range for
the value of the chemical potential, which we consider, excludes Bose—Einstein
condensation. It follows that &= h— uq > 0 and henceXg = D(a_%) = X. Therefore,
the unique quasi-free KMS state d3(X) at inverse temperatur@ and chemical
potential u is the statew; defined by 7).
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4.2. Araki-Woods representation

Let us consider a quasi-free KMS system associated to a selfadjoint operator a as
in Section4.1 Let X be the conjugate Hilbert space ¥ Elements ofX will be
denoted byx. Equivalently, we denote by > x — X € X the identity operator, which
is antilinear. If a is a linear operator ok, we denote bya the linear operator o
defined byax :=ax. If }) is a Hilbert space, then

+00
ro) =P oL
n=0

denotes the bosonic Fock space oljer
We set

Ho =T'X ®X),
Q= Q,
1 _1_
Wei(x) = Wg ((1+ p)2x @ pr), x € Xo,

Wer(x) = W (p%x @ (1+ﬁ)%x) . x € Xo,

where Wr(.) denotes the Fock space Weyl operator[ofX @ X) and Q € I'(X @ X)
denotes the Fock vacuum.
The following facts are well known:

(i) The mapW(x) — Wy, ix(x) € U(Hy) defines a regular CCR representations;
(i) [We,1(x), Wer(»]1=0 forx,y € Xo;
(i) (Qu, We,1(x)Qy) = w(W(x)) for x € Xo;
(iv) Let L :=dI'(a® —a) act onH,. Then

e "0, =Qu, LW, (e = W, (6"X), x € Xo;

(v) The vectorQ is cyclic for the representation®, | (.).

In particular, the Araki-Woods representation is the GNS representation for the KMS
system(2W(X, 0), 1°, w) andL is the associated Liouvillean.

We will only consider the left Araki-Woods representation, thus will forget the
subscript | and writeW,,(x) := W, (x), x € X. The creation—annihilation operators
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associated td¥,,(.) are

a’ (x) = ai(1+ p)x & 0) + ar (0 ® p2%),
1 1
a4 () = ar(L+ p)2x @ 0) + af(0 ® p23).

4.3. Field algebras

We recall that aconjugationon a Hilbert spaceX is an anti-unitary involution on
X. Let us assume tha{ is equipped with a conjugation. To k we associate the real
vector spaceX, := {x € X | kx = x}. Let w be the quasi-free state associated to a
selfadjoint operator a, as defined in Sectibt, and let?,, be the Araki-Woods space
introduced in Sectior.2

We will denote byW < B(H,,) the field algebra i.e., the von Neumann algebra
generated by théW,(x) | x € X} and by W, C B(Hy) the von Neumann algebra
generated by{W,(x) | x € X,}. Since the symplectic forns vanishes onX,, the
algebralV, is abelian.

Lemma 4.1. Assume that = h — ug, whereh and q are selfadjoint operators such
that [h,q] =0,g?> =1, h>m > 0 and |u| < m. Let k be a conjugation on X such
that [h, k] = 0. ThenV is the von Neumann algebra generated {gy* Ae "% | ¢ €
R, A e Wi}

Proof. Clearly {€'LAe7 "L |t € R, A € W} C W, so it suffices to prove the converse

inclusion. Using the CCR, the facts thét + p)% and p% are bounded, and the fact
that the map

X®X> x1®x2 = Wr(x1 ®x2) € B(Hw)
is continuous for the strong topology, it suffices to verify that
E = Vectp{e' "Dy 1 e R, x € X,} is dense inX. (8)

Clearly E containsX,, and by differentiating with respect tp we see that contains
also {i(h — ug)x | x € X, N D(h)}). We now claim that for eaclr € X there exists
x1 € X,c andxz € X, N D(h) such that

x = x1 +i(h — ug)xs.

This will imply (8). In fact, the R-linear mapr = %,uqh‘l(l — k) has norm less
than |ulm~! < 1, so forx € X we can findy € X such thaty — ry = x. If x; =
1y +xy) andxz = 1(ih)~1(y — xy), then both are elements ¢, since[h, x] = 0.
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Now

. i _
x1+ith— pa)xz = y — 5 poh Yy—xkyy=y—ry=x 0O

4.4. Observable algebras

The gauge transformationg on (X, 6) can be unitarily implemented in the
Araki-Woods representation:

o (We(x)) = eitQWw(x)e_itQ,

where Q :=dI'(g® —0).
We denote byA the observable algebra

A= {A eW|eCae @ = A, 1 e0, 2n[]

and by A, the abelian observable algebral, := AN W.

Lemma 4.2. Assume thah>m > 0 and |u| < m. Let k be a conjugation on X such
that [h, k] = 0. Then A is the von Neumann algebra generated {&/" Ae ™" | 1 €
R, A € A}

Proof. Clearly &L Ae 'L ¢ A, if A € A,, since[L, Q] = 0. Conversely, letA € A.

By Lemma4.1 there exists a nefA;};c; in the algebra generated Kg'L Ae L, 1 €

R, A € W,} such thatA = s-limA;. For R € B(H), let RY = (271)‘1f§7Z gre

Re "2 d: be the average oR with respect to the gauge group. Then by dominated
convergence s-limM® = A% = A. Since[L, Q] = 0, we have(e'tRe "1 =

gL RVe—itL \which implies the lemma. O

Lemma 4.3. We haveAQ, = {u € Hy | Qu = 0}.

Proof. Since 02, = 0 we haveAdQ, C KerQ. Let nowu € Ker Q. If {A; € W}ics
is a net such that lim4;Q, = u, then

1 2n 1 2n . .
u=— €9y dr =Ilim — €2A,e72Q, dr = lim A2Q,,,
2n 0 2n 0 !

which proves the lemma sincé? € A. [
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4.5. Stochastic positivity

In this subsection, we give a criterion for the stochastic positivity of a quasi-free
KMS system.
The following lemma is due to Klein and Land§ikL2].

Lemma 4.4. Let a>0 be a selfadjoint operator on a Hilbert space X. L&t> s —
r(s) € B(X) be thef-periodic operator-valued function defined by

esa e(s—[i)a

r(s) = T1_efa

, 0<s <.

Then for x; € X ands; € R, one has

Z (x,-, r(sj— si)xj) >0.

i,j

Proof. Using the spectral decomposition of a, we can assumexthatC and a0

is a positive real number. Hence it is sufficient to verify thé&t) is a distribution of
positive type. But this follows from Bochner’'s theorem and the fact that the Fourier
transform ofr is ) ., r,6(. — 2n/n), wherer, = 5“22#‘;//3)2 >0. O

Theorem 4.5. Let X be a Hilbert space equipped with a conjugatiomnd a>m > 0
a selfadjoint operator on X such th@, k] = 0. Let X, C X be the real vector space
associated toc.

Let W, 1° w) be the quasi-free KMS system associatechtand let W, ¢ W be
the abelian von Neumann algebra generated {b¥,(x) | x € X,}. Then the KMS
system(W, W, 1°, w) is stochastically positive.

Proof. We start by computing the Euclidean Green’s functions. Using the CCR we get,
for x; e X and 1< j<n,

[Twap= [ et 2w .
1 1

1<i<j<n

We denote by

Gt ..t W), ..., W) = o([ | WE@72x)))
j=1
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the Green’s functions for the Weyl operatdi(x;), 1< j<n. Now
G (t19 ey tnv W(-xl)v sy W(xn))

= [1 ¢ Im (€4 ~%) o= 1 (33" €17%;.(14+2p) 33" €%x)

1<i<j<n

— H" ef%(Xi,(lJrZP)xz‘) H e*%R([j —1i)(xi,xj)
1 )
1<i<j<n

where
R(®)(x,y) = (x, 1- e‘ﬁa)‘le"ay) + (y, e faa - e—ﬁa)—leirax> _
Forx, y € X the functionr — R(t)(x, y) has a holomorphic extension to0lmz < f

such that the functioriry, ..., t,) — G (11, ..., tn; W(x1), ..., W(xn)) is holomorphic
in the setI/';’+ defined in 4) and continuous oﬂl’;+ with holomorphic extension

n
_ 1 . _1 N x x s
(Cl’ e Cn) — l_[ e 4(/\’1,(1""20))(1) 1_[ e ZR(C/ él)(xl’xj).
1 1<i<j<n

Hence, the Euclidean Green’s functions

n
1 . _ o) (X
G (s, s WxD), .., Wxy) = [ [ e72€@00) [T e €Ot
1

1<i<j<n
where
C(s)(x,y) := % (x, (11— e—ﬁa)—le—say> + % (y, 1- e—ﬁa)—le(s_/j)ax) .
Using the fact thatca = ax we get

e 4 e(s—ﬁ)a

1
CEy) =5 (x, ———

y) for x,y € Xi.

Thus, forx; € X, and 1< j <n,

BG (51 oo W) oo W) = [ e 2C0nmsibein, )

1<ij<n
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We will now prove the stochastic positivity. We will use the Araki-Woods representation

described in Sectiod.2 The operators of the forn# (¢, (x1), ..., ¢y, (xn)) for x; €
X and F € Cg°(R") (resp.F € Cg°(R") and F >0) are strongly dense iV, (resp.
in W). We have to show that its1, ..., s,) is an-tuple such that; < --- <s, and
sp —s1<f, and A; e W, then

EG(s1, ..., sn; A1, ..., Ay)=0. (10)

By [KL1, Theorem 2.2]Jand a density argument it suffices to prou®)(for A; of the
form given above.

Let nowm € N, m>1, k; € N with k; >1 for 1<i<n and > ki = m, [; :=
Yiciiakj Fort = (r,....tn) € R", x1,...,%0 € Xy, and F; € CS°(RM) with
F;>0 we sett; = (1, ...,1,,,) € R and take

Ai=F; (o (x1)s -0 (X))

ke ~ liv1
=(2m) kl/Fi(tl,., ""tli+l)WW(Z - Lix;j) dl[l» '-~dtli+1~

Now set f;(t;) = Zf;” tjxj. It follows that:
BG(s1, ... 5n; ALy ..., Ay)
= (2n)—mfl—[’; dt; Fi(t)G (ist, - ., iss W(f1(tD), ..., W(fu(tn))) .

We recall that by 9)

BG (51, -+ v 50 W(AL(tD), - ., W(fa(t)))

where Q(t1,...,t,) is a quadratic form. Applying Lemmd.4, we see thaQ is a
positive quadratic form, and hence the inverse Fourier transtsrm (e*Q('")) is a
positive function. This implies that

EG(S]_,...,Sn;A]_,...,An) =(F1®~-~®F,,)>z<}"l(e’Q) 0)

is positive as the value at O of the convolution of two positive function§l]
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4.6. Markov property

In this subsection, we show a result which implies that the generalized path space
associated to the quasi-free KMS systém, Wi, t°, w) considered in Sectiod.1 has
the Markov property (see Sectior6.5).

Lemma 4.6. Let X be a Hilbert space equipped with a conjugatiorand a>m > 0
a selfadjoint operator on X such th@h, k] = 0. Let X, C X be the real vector space
associated tac.

Let W(X), 1° w) be the quasi-free KMS system associatec @nd let W, c W
be the abelian von Neumann algebra generated Wy, (x) | x € X,}. Let (H, L, Q)

be the Araki-Woods objects defined in Sectiaéh Then the spaceAe*gLBQ, A,B e
Wi} is dense inH,,.

Proof. The function
&L We 1 () Q=W 1(€29) Q0
1 ira 1 _ifa—
=WFQ1+pﬁé.wB@ﬁe y)

1. 1
iq% 2 eta 5) 2 e—itay;
=e|a|:((1+l)) ¢ y®(p)2e Y) e_%(y,(1+2p)y)gw

is analytic in{0 < Imz < g} and continuous od0<Im Z<§}, and
BL/2 iaé((l—l—p)%e—ﬂaﬂy@(ﬁ)% e/ﬁ/zy)
eifL/ Ww,l()’)Qw=e

=Wcu,r()’)9(u~

1oy
e 20-d+20 )

Hence, forA = W, (x) and B = W, ((y), one has

Ae 5L BQ
1 __ 1 1_
= Wol () Wor(0Q = We (1 +p)2x &%) We (p2y 0 1+ 7?2 5) 2. (11)
Let M be the von Neumann algebra generated{ W, |(x), Wu.r(y) | x,y € Xi}. By
(11) the von Neumann algebra generated b{yWF ((1+ p)%x + p%y @ﬁ%f
+(1+ﬁ)%7) |x,y € XK} is equal toM. Sincela, k] = 0, the operator

1 1
A+p,2 P2 ) xex— xox
pz  (1+p)2
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sendsX, @ X, into itself. It is invertible with inverse

A+pz  —p?
—p? A+p2 )

Thus M is equal to the von Neumann algebra generatedWy(x ®7y), x, y € X,}. It
is well known that iffy is a Hilbert space and c is a conjugation lgrnthen the vacuum
vector Q is cyclic in the Fock spacé&'(h) for the algebra generated YW (h) |ch = h}
(see e.g[DG, Section 5.2]Jand references therein). We apply this resulfte X @ X,
¢ =k @« and obtain the lemma. O

5. Generalized path spaces

In [KL1] a canonical isomorphism is constructed between a stochastically pgsitive
KMS system(W, W, 1°, ) and af-periodic stochastic proceséQ, X, u, X;) indexed
by the circleSy of length 8, with values in the compact Hausdorff spake= Sp(Vy),
the spectrum ofV,.

We recall that astochastic processQ, X, u, X;) indexed by an interval ¢ R with
values in a topological spad¢ consists of

(i) a probability spacgQ, 2, w);
(i) a family {X;};e; of measurable function¥;: 0 — K.

Typically it is required that the map € r — X, is continuous in measure.

The stochastic proces®), X, u, X;) associated to a stochastically positifeKMS
system in[KL1] satisfies four important propertiestationarity, symmetry -periodicity
and Osterwalder—Schrader positivitisee[KL1, Section 4).

It turns out that the only really important feature of such a stochastic process is the
underlyinggeneralized path spac&hich consists of the sub-algebraXo generated by
the functionsF (Xo) for F € C(K), the automorphism groufp () of L*°(Q, X, u) gen-
erated by the time translation$(s): F (X, ..., Xs,) = F(Xy44s ..., X441) fOr F €
C(K™) and the automorphism® of L>*(Q, 2, n) generated byR: F(Xy, ..., X;,) —
F(X_1y,..on X)),

In particular, the detailed knowledge of the random variablgsand of the topolog-
ical spaceK is not necessary.

(Note that time translations on the path space will correspond to imaginary time
translations on the physical Hilbert space).

The analog of the constructions €L1] for § = co done by Klein[K] is formulated
in terms of generalized path spaces. Using this essentially equivalent formulation turns
out to be more convenient in applications. We now proceed to a more precise description
of this structure, taken fronfKL1,K].

If Z;, foriin an index set, is a family of subsets of a s, we denote by\/;.; Z;
the o-algebra generated hlyJ;, U;, whereU; € Z; andJ are countable subsets bf
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Definition 5.1. A generalized path spaceD, %, 2o, U(¢), R, u) consists of

(i) a probability spac«Q, X, );

(ii) a distinguished sulr-algebraXyp;

(iif) a one-parameter grouf® > r — U (t) of measure preservingrautomorphisms of
L*>°(Q, 2, w), which is strongly continuous in measure;

(iv) a measure preserving-automorphismR of L*°(Q, X, u) such thatRU(t) =
U(—t)R, R?2 =1, REyg = EoR, whereEy is the conditional expectation w.r.t. the
g-algebraXy.

Moreover one requires that

(V) 2=V,cg U®)20.

It follows from (iii) and (iv) that U(¢+) extends to a strongly continuous group of
isometries ofL”(Q, X, u), and R extends to an isometry at”(Q, X, ), for 1<p <
Q.

We say that the path spac@, %, Xo, U(¢), R, ) is -periodicfor f > 0 if U(p) =
1. On af-periodic path space we can consider the one-parameter gr@ums indexed
by the circle Sy = [-f/2, /2].

For I c R we denote byE; the conditional expectation with respect to thalgebra
2= \/tel U()2o.

Definition 5.2. O-temperature caseA path spacgQ, X, 2o, U(¢), R, u) is OS-positive
if Ejo.+oo[ REj0.+00[ =0 as an operator od?(Q, X, y1).

Positive temperature casé\ f-periodic path spac&Q, X, 2o, U(r), R, ) is OS-
positiveif Ejg g2 RE0 p/2)=>0 as an operator oh?(Q, X, p).

In order to simplify the notation we sdfg = Ejo), 2+ = 210 40o[, E+ = E[0,4+00[»
2_ = 2|_x,0 and E_ = Ej_«.. If the path spaceQ, 2, 2o, U(?), R, p) is f-
periodic, we sett; = 2y0,/20 E+ = Epo,p/2 2— = 2[-p2,0] and E_ = Ei_p/2.0

Definition 5.3. A path space(Q, 2, Xo, U(t), R, i) is a Markov path spacef it has
the

(i) reflection property REo = Eo (resp. REg g2y = E0,p/2))
(i) Markov property EyE_ = E{EoE_ (resp.ELE_ = E{ Eq g/ E-).

It follows that E,RE, = E_E, = ELE_ = Eg (resp. EtREy = E_E; =
ELE_ = Ep2) -

A Markov path space is OS-positive becauSg (resp. E(g 3/2)) iS positive as an
orthonormal projection. An OS-positive path space satisfies the reflection property (see
[K, Proposition 1.6].

Let (F,U, 7, w) be a stochastically positive-KMS system. LetK := Sp(lf) be the
spectrum of the abelia€*-algebral{, which equipped with the weak topology is a
compact Hausdorff space. Lét := K!=F/2./2] pe equipped with the product topology
and letX be the Baires-algebra onQ.
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Theorem 5.4 (Klein and Landau[KL1]). Let (F,U, t, w) be a stochastically positive
B-KMS system. Then there exists a Baire probability meagsuse Q a subo-algebra
2o C 2, a measure preserving groufg () of *-automorphisms ofl.*°(Q, X, u) and a
measure preserving automorphism RISF(Q, X, ) such that(Q, X, X, U(t), R, 1)
is an OS-positives-periodic generalized path space

A more precise relationship between tfileKMS system and the generalized path
space will be given in Theorer@.7.

6. Reconstruction theorems

In this section, we recall reconstruction theorems of Klgh and Klein and Lan-
dau [KL1] which associate a stochastically positigekMS system to an OS-positive
generalized path spad®, %, Xo, U (¢), R, 1).

To simplify notation, we allow the parametgrto take values if0, +oc]. The case
B = 400 corresponds to the O-temperature casel ¥ oo, then the OS-positive path
spaces will be assumed to Ifieperiodic.

6.1. Physical Hilbert space

SetHos:= L%(Q, 4, 1) and
(F, G) :=/ R(F)Gdu, F,G € Hos.
0

By OS-positivity
OS(F, ) IF Il

If we set N := KerE,RE, then (-,-) is a positive definite sesquilinear form on
Hos/N.
The physical Hilbert spacedenoted byHphys (or simply by ) is
H := completion of Hos/N for (., ).

If we denote byV: Hos — Hos/N the canonical projection, ther extends uniquely
to a contraction with dense rang#os — H. In fact

_ 2
VF,VF) = (F, F) <[ F |3
In the physical Hilbert spacg{ we find adistinguished vector

Q:=V).
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6.2. Selfadjoint operator

The O-temperature case

Proposition 6.1 (Klein [K, Theorem 1.7). Let (Q, 2, 2o, U(¢), R, ;) be an OS-
positive generalized path space. Foe0 the time evolutionU(t) maps N — N.
Hence the linear operator

P(t): Hos/N 3 V(F) — V(U(t)F) € Hos/N

is well defined forr >0.

The family{ P (¢)}; >0 uniquely extends to a strongly continuous selfadjoint semigroup
of contractions{e™"#},~o on H, where H is a positive selfadjoint operator such that
HQ=0.

The positive temperature cas@/e first recall the definition of a local symmetric
semigroup [KL3,Frl1]):

Definition 6.2. Let ‘H be a Hilbert space and@ > 0. A local symmetric semigroup

(P(t), Dy, T) is a family { P(¢), D;}:c[0,77 Of linear operatorsP (¢) and vector subspaces

D, of H such that

(i) Do=H, D; DD it 0<r<s<T andD = Ug, <7 D; is dense inH;

@iy P():D; — H is a symmetric linear operator witR(0) = 1, P(s)D; C D, for
0<s<t<T and P(t)P(s) = P(t +s) on D,y for t,s,t +s € [0, T].

(i) t+ — P(r) is weakly continuous, i.e., forn € D; and 0<tr<s the mapt —
(u, P(t)u) is continuous.

The following theorem was shown ifiKL3,Fr1].

Theorem 6.3. Let (P(t), D;, T) be a local symmetric semigroup cH. Then there
exists a unique selfadjoint operator L @ such that

() D: c De'h), el = P@) for 0<1<T;
(i)) Dyo.77 = Yo <1 Uo<s<r P(s)D; is a core for L for0 < T'<T.

Proposition 6.4 (Klein and Landau[KL1, Lemma 8.3). Let(Q, 2, 2o, U(¢), R, 1) be
a f-periodic OS-positive path space. S#t; := LZ(Q,Z[OJ;/Z_,],M) for 0<r < f/2.
Then

@A) UG): M, NN — M, NN for 0<s<r<p/2. If D, :=V(M,), then the linear
operator

P(S) Dt — Dt—Sv
V(F) — VU (s)F)

is well defined
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(i) (P(@),Dy, p/2) is a local symmetric semigroup
By Theoren®6.3there exists a unique selfadjoint operator L such tRét) p, = e 'L,
Moreover LQ = 0.

6.3. Algebras of operators

Abelian C*-algebralf: Let f € L*°(Q, X0, p). SinceXo C 24, f acts as a multipli-
cation operator ort{os, which we will still denoted byf.

Proposition 6.5 (Klein and Landau[KL1, Lemma 2.2]. For f € L°°(Q, 2o, u) the
multiplication operator f preserved/. Hence

JV(F) = V(fF)
defines a unique element B{H) with || ]| = || fllee. Leti C B(H) be defined by

={f | feL™Q, 2o, W}

Then!{ is a von Neumann algebra isomorphic £5°(Q, 2o, u) and Q is a separating
vector forl/.

We will denote byl/™ the set of positive elements i.
Full algebra 7 and automorphism group

Definition 6.6. Let 7 C B(#) denote the von Neumann algebra generated/dfy’
Ae"H | A clU,t e R} for B = oo (resp.{€LAe™L | AclU,t € R} for f < o).

We denote by{t;},er the strongly continuous group of automorphisms’ofdefined
by 1,(B) = " Be " for B e F, t € R and = co (resp.t;(B) = €'LBe 'L for
BeF,teRandf < o0).

6.4. f-KMS system associated tofaperiodic path space

In caseff < co one can associate to/aperiodic OS positive path space a stochasti-
cally positive f-KMS system (se¢KL1]). (The analog object in case= oo is called
a positive semigroup structuri]). Let, forn € N and § > 0,

Jpt = ) € R 1620, 4+ 1 <B/2)

Theorem 6.7 (Klein and Landau[KL1]). Let L be the selfadjoint operator associated
to the local symmetric semigroui®(¢), Dy, f/2). It follows that

(i) Qe D(L) and L2 = 0;

(i) if n €N, (i1.....00 € Ji* and A1, ..., A, €U, then 4, (n;_l e"iLAj) Q¢

D(e ™). The vector span of these vectors is densé{in
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(i) if f1..... fn € L®(Q, 2o, 1) and 0<s1< - - - <s, < /2, then
v[[uespm =etad et e,
1 2

where f; is defined in Propositior®.5.

(iv) if neN, (tl,...,t,,)eJ['),’+ and A1, ..., A,, B1,..., B, eUT, then

1 1
A ([T e apQ, B[] €7"B)HQ)>0;
n—1 n—1

() |leP2LAQ| = ||A*Q| for all A e U.

Theorem 6.8(Klein and LandauKL1]). Let wg be the state o defined bywgq(B)
= (Q, BQ). Then(F,U, 1, wg) is a stochastically positivgg-KMS system

Finally, let J be the modular conjugation associated to the KMS systéin, wg).

Proposition 6.9 (Klein and Landau[KL1]). The modular conjugation J is the unique
extension of

JV(F) = V(RgaF), (12)
where
Rpja:=U(B/HRU(-P/H = RU(-B/2) = U(B/2R
is the reflection at = /4 in Hos.
6.5. Markov property forf-periodic path spaces
We recall a characterization of the Markov property fof-eriodic path space in
Eﬁrqu]s,Of the associated stochastically posifivKMS system due to Klein and Landau

Theorem 6.10. A f-periodic OS-positive path spac®, >, o, U (¢), R, p) satisfies the
Markov property iff the vectors{e‘gLBQ for A, B € U are dense inH. In this case

H=L*Q, X102 W-

Proof. The first statement of the theorem is showrKibL1, Theorem 11.2] The second
statement is obvious: it follows from the Markov property thgp g/21RE0 /21 =
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Eop/2) is a projection, hencé{os/N is canonically identified withE g2 Hos =
L%(Q, S0/ 0. O

Theorem 6.11.Let OV, W, 1°, wg) be the quasi-free KMS system associated to a
selfadjoint operatora>0 and a conjugation< with [a, k] = 0. Then the OS-positive
generalized path spacéQ, X, Xo, U(t), R, u) associated toOV(X), Wi (X), 7°, wp)
satisfies the Markov property

Proof. Stochastic positivity of the quasi-free KMS syst&hy, W, t°, wp) was shown
in Theorem 4.5. The Markov property follows from Lemma 4.6 and Theorem 6.10.
O

7. Perturbations of generalized path spaces

In this section, we recall some results concerning perturbations of OS-positive path
spaces.

7.1. FKN kernels
Let (Q, 2, 2o, U(1), R, 1) be an OS-positive path space.

Definition 7.1. A Feynman—Kac—NelsofFKN) kernelis a family { Fj, 5} of real mea-
surable functions orQ, X, i) such that, for &b — a <p,

(I) F[a,b] >0 n-a.e.;
(i) Flap € L0, 2, ) and Fla.p) IS continuous inL1(Q, X, w) as a function ofb;
(iii) Fia.p1Fip.c] = Fla.c] for a<b<c, c —a<p;
(iv) U(s)Fia,p) = Flats.p+s) for s € R;
(V) RFjap) = Fi-b,—al-

The main examples of FKN kernels are those associated to a selfadjoint opérator
affiliated to/. In [KL1,K] perturbations associated to more general FKN kernels are
considered. However, the present case is sufficient for our applications.

Let V be a selfadjoint operator affiliated t@. Since by Proposition 6.5 the algebra
U is isomorphic toL*°(Q, 2o, 1), we can uniquely associate ¥ a real function on
Q, measurable with respect ty, which we will still denote byv.

Proposition 7.2. Let (Q, 2, 2o, U(¢), R, u) be a p-periodic OS-positive path space
and let V be a selfadjoint operator affiliated @ such thatV e L1(Q, Xo, 1), and
e ™V e LYQ, Zo, p for someT > 0if f =00 or eV e LY(Q, Zo, p) if f < oo.



184 C. Gérard, C.D. Jakel/Journal of Functional Analysis 220 (2005) 157-213
Then

(i) the family of functionsFig. s := e~ /o VOV for 0<b — a <inf(T, f)/2 is & FKN
kernel

(i) Fros € L2(Q, 20,51, W for 0<s <inf(7, f)/2 and the maps — Fjo is contin-
uous iNL2(Q, (o /21, -

Proof. All properties required in Definitior7.1 except from property (ii) follow directly
from the definition ofU (¢) and the properties of the path spaee, >, 2o, U(¢), R, 1).
Let us now verify (ii). WritingV = V. — V_, where V4 is the positive/negative part
of V, we haveFj, ;1 < exp(f{f umnv_ dt), and hencev[%ﬂ < exp(2 é}/z U(t)V_dt).

Since u is a probability measure, we havé_, efV- e L1(0, 2o, w). We recall the
following bound from[KL4, Theorem 6.2 (i)]

— b — —
le™ S VOV o 3 <Ie WY Il sy, 1<p < 0. (13)

This yields
2 2P umv-a BV
||F[o,s]||L1(Q,2,H) <l 0 ||L1(Q,2,p) <l ||L1(Q,Z,u) < 0.

Hence Fio s € LZ(Q,Z[O,/;/Z],,u) for 0<s<inf(T, f)/2. The continuity w.r.t. tos
follows from the dominated convergence theorem. This completes the proof of (ii).
The proof of property (i) from Definition7.1 for 0<a follows from (ii) and the
fact thatL2(Q, X, u) c LY(Q, X, ). The caseb<0 is reduced to the case>0 using
property (v). Finally, the case < 0 < b follows from the identityFi, »; = Fia,01F0,5]-

O

7.2. Selfadjoint operator associated to a FKN kernel

In this subsection, we recall a result of Klein and LandKl1], allowing us to
construct a selfadjoint operator starting from a FKN kernel associated to a selfadjoint
operatorV, which is affiliated tol/. To keep the exposition compact, we will use the
convention for the parametét explained at the beginning of Secti@n

Let (Q, 2, 2o, U(t), R, u) be an OS positive path space avich selfadjoint operator
affiliated toZ{ such thatV € L1(Q, 2, ) and €TV e LY(Q, Zo, p) for someT > 0.

Let Fi, 5 be the associated FKN kernel.

Let, for 0<r<T/2, M, be the linear spalhjogKT/H Fios)L*>(Q, 210,7/2-1]5 ).

Set

Uv(s): M, — L%(Q, 24, 1)

0<s <.
Yy = FosgU®)y,
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Lemma 7.3.
(i) For Y € M, the map

[0,1] 35 > Uy(s)Y € L%(Q, X4, W)

is continuous ono0, 7].
(i) Uy(s):M; NN — N for 0<s <t < T/2.

Proof. Using the definition of M, and the properties of the FKN kernél, ; it
suffices to show that foy € L°°(Q, 2(0,7/2—1], 1) the maps — Uy (s)y is continuous
ats =s', 0<s'<t < T/2. For 0<s,s'<t < T/2 we have

Uy ("W — Uy ()Y = Foe) (U — U)Y) + (Flo,s — Flo.st) Uy
Hence

Uy (s — Uy (5)¥113

< /Q FR UG — Us)p|? du+ /Q(F[o,s] — Fo,y DU ()| du

< F3 4 lUGHY — U dp

/{IU(S/)l//U(S)WI(q)>8}

+f F UG = Ul du
(U =UWlg) <&l

+ | Fo.sy — Fros I3IW11%.

The last term on the r.h.s. tends to Osif—> s’ as a consequence of Propositidr.
The second term on the r.h.s. is less théth[oys/]H%. To estimate the first term, we
write the functionf := F[%’s/] as fly g <my + fAyr@)>my. It follows that:

/ FIUGHY — U )y du
{lUHY=U)Yl(g)>e}

<AM|y|% / Wusp—v s wi@)=e G+ 4L F rgy= il

Since f € LY(Q, 2, ), the second term tends to 0 @ — oo. Since U(r) is
strongly continuous in measure, the first term tends to © ass’. Picking firste « 1,
then M > 1 and finally|s — 5’| <« 1 we obtain (i).

Let us now prove (ii). Let &s<t < T/2. Note thatUy(s) sendsM, into L?
(Q, 24, 1. Let us fixy € M,. First we consider the case< ¢. For 0< r<s and
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s +r<t we have
Uy () Uy (5= /Q Flos U)W RFlo. U ) d
_ /Q Fiers—nU(s = WU (—r) R Fio.qU () du
- /Q FiersenU(s = U RFyp 11U s + 1) dp

= /Q Fo.s-U(s — VWRF0511U (s + r)ydu
=Uy (s =), Uy (s +r)Y).

Since (., .) is positive, the Cauchy—Schwartz inequality implies

(Uy )y, Uy ()y)

NI

< (Uv(s — N, Uy (s — W) 2 (Uy (s + P Uy (s + r) 2.

Thus, by induction,

(Uv ()¢, Uy ()

1
2

<Ny (s =)y 1'[;;; (Uv(s = (G =Dy Uy (s = ( = D) 2.

If we pick O < r < s, s = nr, such thats + r<¢, then (Y,¥y) = 0
implies (U(s)¥, U(s)¥) = 0. Finally, (ii) for s = ¢ follows from (i) for s < ¢
and (i). O

Theorem 7.4.Let0 <t < T/2, D; = V(M,;) and 0<s <. Then

Py(s): D — H
VW) = V(FosU®)Y)

is a well-defined linear operatpand (D;, Py (t), T/2) is a local symmetric semigroup
on H. We denote byHy the associated selfadjoint operator

Proof. The fact thatPy (s) is well defined follows from Lemma 7.3 (ii). Property (ii)
of Definition 6.2 follows from the properties of the FKN kernéfj, ;. Monotonicity
of the family {D;} w.r.t. inclusions is immediate. Th&d = Up.; <7 D; is dense inH
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follows from the fact thatD containsy (L*°(Q, X1, w)). Finally, property (iii) follows
from the continuity property stated in Lemn7a3. [

Theorem 7.5 (Klein and LandaulKL1, Theorem 16.4] Let V be a selfadjoint oper-
ator affiliated to/ such thatV e L(Q, 2o, ) and e 7V e L1(Q, X, ) for some
T > 0. Assume in addition that eithe¥ e L2+¢(Q, Xo, ) for ¢ > 0 or that V €
L2(Q, Xo, 1) and V >0. Let, for f = oo, H (resp L for f < oo) denote the selfadjoint
generator of the unperturbed semi-group— P(r). Then H + V (resp. L + V) is
essentially selfadjoint and the operatdfy (for both casep constructed in Theorem
7.4is equal toH + V (resp.L + V).

7.3. Perturbations in the positive temperature case
The following theorem is shown ifKL1]:

Theorem 7.6 (Klein and Landau[KL1]). Let (Q, X, X0, U(¢), R, ) be a f-periodic
OS-positive path spac® a selfadjoint operator or{ affiliated to/, which satisfies
the hypotheses of Propositioh2 Let F = {Fj, 5} be the associate@-periodic FKN
kernel. Then the path spad®, 2, Xo, U(¢), R, uy), where

Ay = Bi2/2 O
Jo Fi-pr2.p/21 du.

is a f-periodic OS-positive path space

By the reconstruction theorem recalled in SecttB, one can associate to the per-
turbed path spaceQ, 2, 2o, U(1), R, uy) a physical Hilbert spacé{y, a distinguished
vector Qy, an abelian von Neumann algelidg, a selfadjoint operatoLy and a von
Neumann algebr&y . If wy andzty are the state an®#*-dynamics associated @y
and Ly, then (Fy,Uy, 1y, wy) is a stochastically positivg-KMS system.

Our next aim is to construct canonical identifications between the perturbed objects
and perturbations of the original objects associated to the path sgace o, U (¢),

R, p).

7.3.1. Identification of the physical Hilbert spaces
We first show that there is a canonical unitary operator betwéenand 7.

Proposition 7.7. Assume that, eV e L1(Q, 2o, ). Set
[DL%Q, 21, w/Nv - Hos/N

Vv () . V(Flo,5/21%) .
(fo Fioprzprdn)

Nl
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Then! is a well-defined isometry frofos v /Ny into Hos/N with dense range and
domain. Hencel uniquely extends to a unitary mapHy — H.

Proof. Note that u, is absolutely continuous w.r.u. Thus L*°(Q, 2, uy) = L™
(0.2, . It Y € L®(Q, X, i) N Ny, then [, Ry duy = [, duRFio g/210 Fio p/21
= 0. HenceFo g2y € V. Consequently is well defined./ is clearly isometric since

Jo Roduy — Jy R0 /20 Fio, /21 di

= = (Vv IVv).
Jo Fi—py2.p/21 o Jo Fi-py2.p/21

Wy, Vwi)y =

[is densely defined since>*(Q, 2, w) is dense inHosy. SinceVy is a contraction,
L>®(Q, 24, w/Ny is dense inHosv /Ny and hence inHy. Finally, we note that
Ran/ containsV (Fjo /21 L>°(Q. X+, 1)). Since Fig /2 > 0 a.e.,Fio g2 L>°(Q. 2, )
is dense inHps and hence its image under is dense inH. O

7.3.2. ldentification of the abelian algebra

Proposition 7.8. For f € L*°(Q, 2o, 1) one has
Ify=Fly. yeHy
and, consequently/ify = U1.

Proof. This follows immediately from the definitions of in Proposition6.5 and I in
Proposition 7.7. [J

7.3.3. Identification of the&*-dynamics

Applying Theorem7.4 we obtain a selfadjoint operataly from the FKN kernel
associated td/. It will be called thepseudo-Liouvilleargenerated by.
Proposition 7.9. One has

(i) 1Qy = |lePHv/2Q|~1e-PHv/2Q;
(i) for 0<s1< - <sp<p/2andAq,...,A, €U

ie—lev Al(l_[,; e(s_/'fl—Sj)LV A])QV

g1ty A5 glsj-1—s;)Hy Aj)e(s”_ﬁ/z)HVQ_
le=PHv/2Q|| ’
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(i) for,....t, € R, A1,..., A, eld andy € Hy
I(l_[ eITjLVAjeflthv)w — (1_[ elthVAjeflthV)Ilp;
1 1

(v) I1Jy = JI.

Note that in (ii) and (iii) we identifyl/ with L>°(Q, 2o, p).
7.3.4. ldentification of the observable algebras

We recall that the observable algebra and the dynamics associated to the perturbed
path space(Q, 2, 2o, U(1), R, uy) are the von Neumann algebtdy generated by

('LvAeT'Lv | A € Uy, t € R} and the automorphism group,:7 — Ty (1), ¢ € R,
where

tv(t)(B) = €''vBe v B e Fy.
Proposition 7.10. o .
() Ity()(B)I L =¢&'HvIBI~1e "Hv for B e Fy andt € R;

(i) Assume that eithel € L27(Q, Xo, u) for ¢ > 0 or that V e L#(Q, Zo, p) and
V >0. It follows that I/ Fy 1= F.

Proof. (i) follows from Proposition7.9 (iii). To prove (ii) we recall from Theorem
7.5 that, under the assumptions of the propositibird- V is essentially selfadjoint on
D(L)ND(V) and Hy = L + V. Hence, by Trotter's formula,
eitHv —s- lim (eitL/neitV/n)n.
n—oQ

Thus

eifHVAe*iIHV —w — lim (eitL/neitV/n)nA(efitV/nefitL/n)n'

n—-+00

Since &Y e U/ C F, A € F implies that &Y Ae Y ¢ F. Moreover, &L Ae L ¢ F
by definition. So BHv Ae™"Hv ¢ F, if A €U, and hence

[FyItcF.

According to Tomita's theorem (see, e.g., [BRIj = JFJ and F|, = JyFyJy. Thus
using Proposition7.q(iv):

UFyI™Y =IF i t=1nwFyiyit=JiFy ity cIF) =F.



190 C. Gérard, C.D. Jakel/Journal of Functional Analysis 220 (2005) 157-213

Taking commutants we obtain
F=F'cUFyI™Y =Ir™
HenceF = IFyi~t. O
The results in this section are summarized in the following theorem.
Theorem 7.11. Let (F, U, t, w) be a stochastically positiv8-KMS system. Lek(, Q, L

be the associated GNS Hilbert spac&NS vector and Liouvillean. Let V be a selfad-
joint operator on#, affiliated toi/, such that

vV, e PV e LY(Q, 2o, p) and either V € LZ(Q, 2o, ), ¢ > 0,
or V eL%0,2o, w) and V >0.

Then

(i) L+ V is essentially selfadjoint o(L) N D(V);

(ii) QeD(e‘gHV), whereHy =L+ V; _
(i) (F.U,ty,wy) is a stochastically positivg8-KMS system forry ,(A) = €/Hv

AeHY | gy (A) = e tHV Q| 2(e 2 HV O, Ae 5V Q), A € F.

7.3.5. Perturbed Liouvillean
In the next theorem, we identify the Liouvillean for the perturbed system.

Theorem 7.12. Assume that V is a selfadjoint operator affiliatedZtosuch that
eV e LM, Zo. (14)
and

B
VeLr(Q. Xo.p). &2V € LUQ. To.p) for pt+q T =3.2< p. g <00 (g5
or Ve L%Q, 2o, w) and V >0.

Let Ly be the Liouvillean associated to tHeKMS system(F, 1y, wy). Then Hy —
JV J is essentially selfadjoint o®(Hy) ND(JVJ) and Ly = Hy — JV J.

—LHy o-1a-LHy 4%
Lemma 7.13. For A € 4 one hasJAQy = ||le 2"V Q| e 2"V A*Q.

B
Proof. Let us setc = [e" 2V Q| 71, Then AQy = cV(AFq g/2)). Moreover,J AQy =
cV(U(B/2)A* Fio p/2)), since Fg g2 is invariant underRg 4. Since A* belongs to

the spaceMpg,» = L*>°(Q, 2o, ) defined in Section 7.2V(A*) = AQ ¢ D(e‘gHV)
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and

ce™ 2V A*Q = V(WU (B/2A*Fo ) = JAQy. [

Lemma 7.14. Let f1 be a real function inL?(Q, Xo, u) such that fiFg g/ € L?
(Q, Zj0,p/21, W- ThenQy and Q2 are vectors inD(f1). The vectorf1Q is in D (e‘gHV)

. B g
and satisfies/ f1Qy = e 2V Q| ~le 2/lv Q.

Proof. Since f1 € L?(Q,%o,p), we have Q € D(f1). Now fiFgpz € L?
(Q. Zj0,p/21- W, thus Qy € D(f1). Let f, = fil s <n). By dominated convergence

faFo.p21 = fiFop/2) In L2(Q, Zjo /21, ), i€,

[Qv =V(iFop2) = Im V(fuFiopz2) = lim f,Qv.

Applying Lemma7.13to A = f, we obtain, foru € D(e V),
by . by
(e72%u, {1Q) = limy, 00 (€727 u, fu€d)
= limu— oo (u, eigHanQ) = 1lim, o (u, JfaQy) = (u, J f10y).
This shows thatf,Q2 € D(e”2#v) and € 2% 10 = Jf1Qy. O

Lemma 7.15. Assume that V is a selfadjoint operat@ffiliated toZ/, which satisfies
(15). Then

Qv € D(Hy)ND(V) and (Hy — JVJ)Qy = (Hy — JV)Qy =0.
Proof. We first verify thatV satisfies the hypotheses of Lemiid4 i.e., that

_ b2
ve o VOV ¢ 1200, 516 /2, ). (16)

Let 2<p,g<oco be asin 15). If p =2, thenV >0 a.e., thus16) is clearly satisfied.
If ¢ < o0, then, applying Holder’s inequality, it suffices to prove that

p/2
VelP(Q,2, ) and €/fo UOVI c a5 ).
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Applying (13) we find
_ (b2 _B
le=Jo " vOVay s n<lle 2" |, < oo.

Letu e D (e*gHV) ND(Hy) ND (Hve*gHV> and setc := ||e*L2fHVQ||*1. Then

B B B
(Hyu, Qy) = c(€ 28V Hyu, Q) = c(e 2"y, Hy Q) = c(e” 2y, v Q),

since Q2 € D(V)ND(L) and HyQ = LQ + VQ = VQ. Applying Lemma7.14 to
f1 =V we obtain

c(e’gHVu, VQ) =c(u, engVVQ) = (u, JVQy).

This implies, together with/Qy = Qy, that Qy € D(Hy) and HyQy = JVQy =
JVIQy. O

Proof of Theorem 7.12 Let F; be the set ofA € F such thatr > 1y ,(A) is C*
for the strong topology and led € F;. Since Hy implements the dynamicsy ;,
we see thatA € C1(Hy). By [ABG], this implies thatA: D(Hy) — D(Hy). Since
Qv € D(Hy), the vectorAQy € D(Hy). SinceJVJ is affiliated to 7/, Lemma7.15
implies

._¢d
LvA.QV:I 1—‘CV’[(A)QV |r1=0 = HvAQV — AHv.QV

dr
=HyAQy — AJVJQy = HyAQy — JVJAQy.

This yields Lyu = Hyu — JV Ju for u € F1Qy. By Proposition3.1, we know that
F1Qy is a core forLy. This implies thatLy is the closure ofHy — JVJ on F1Qy
and hence also the closure #ffy — JVJ on D(Hy)ND(JVJ). O

7.4. Markov property for perturbed of path spaces

In this subsection, we show that the Markov property of a path space is preserved
by the perturbations described in Sectipi.

Proposition 7.16. Let (Q, 2, 2o, U(?), R, 1) be a generalized path space satisfying the
Markov property and let{Fi, 1} be a FKN kernel. Then the path spa¢@, 2, 2o,
U(1), R, up) satisfies the Markov property

Proof. Let (Q, X, 1) be a probability spaceF € L1(Q, X, u) with F > 0 p-a.e. and
set dip = (f Fdw1Fdu.



C. Gérard, C.D. Jéakel/Journal of Functional Analysis 220 (2005) 157-213 193

If B C X is ao-algebra andf is X-measurable, then we denote &g (f), (resp.
Eg(f)) the conditional expectation df w.r.t. B for the measureu (resp. p). Then
(see[Lo, Section 2.4)

Ep(fg) = Eg(f)g, EL(fg) = E5(f)g p-a.e. if g is B-measurable 17)
and
F _ Eg(Ff) _
Eg(f)= Epb) M a.e. (18)

To simplify the notation, let us sdfo = Eq) if = +o00 and Ego = Eg /2 if B < oc.

SetFy = Flopz and F- = Fi_gy0), SO thatF = F_Fy. SetE{”) = Ei/ . and

(F) _ p(F) ; (F) _ p(F) _ (F) _ p(F) ;
EZ"=E 4,0 Finally setEy ' = Eq if f=+oo andEy * = E05/2) if < oo.
Let now f be X-measurable. Then

EL(Ff) _Ey(F-Fif) _ E4(F-_[)
E((F)  E4(F_Fy)  Ef(F)

EL(f) =
using (8), (17) and the fact thatr’, is 2|g g/2-measurable. Next

Ef(F-f) _ E+(F-f) _ E4+(F-f)
E\(F-) E{E_(F-)  Eo(F-)’

by the Markov property for(Q, X, 1) and the fact thatF_ is X|_p/, g-measurable.
Since Eo(F-) is 2|_p/2 0-measurable, we have, b8 and (7),

Erpr(py - E2FEC(Ff) | E(FFEy(Ff) _ E-(FeEy(F-f)
- Eo(F)E_(F)  Eo(F)E_(F-Fy)  Eo(F)E_(Fy)

since F_ is X|_p/2 o-measurable.
Now

E_(FyEv(F-f) _  Eo(Ff)
Eo(F)E_(Fy)  Eo(Fy)Eo(F-)'

by the Markov property for(Q, 2, 1) and the fact thatF, is 2g 32-measurable.
Finally

Eo(F_)Eo(F+)=E+E_(F_)Eo(Fy) = E+(F-Eo(Fy))
—E,(F_E_(Fy)) = ExE_(F_Fy) = Eo(F).

This yields EFEF (f) = EE (f) p-a.e. and completes the proofl]
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8. Free Klein—Gordon fields at positive temperature

In this section, we recall some results about the complex Klein—Gordon field and
show that it provides an example of a charge symmetric Kahler structure.
The classical Klein—-Gordon equation describing a charged particle of mass

PP — P+ m2d =0, (1,x) € RITL,

where ®: R“*! — € is a complex valued function. For later use we recall the discrete
symmetries of the Klein—Gordon equation, namely ity p, time reversald and
charge conjugatiorc:

pd(z, x) := (¢, —x), 0D(t, x) = P(—t, x) and eP(r, x) = d(1, x).

In particular, real solutions of the Klein—Gordon equation without external field describe
neutral scalar particles. In the sequel only time-reversal and charge conjugation will
play a role.

8.1. The complex Klein—Gordon field

Let us now describe the abstract Klein—Gordon equation that we will consider in the
sequel.

8.1.1. Abstract Klein—Gordon equation

Let h be a Hilbert space. We denote by i the complex structurg and by (., .)y
the scalar product o). We assume thdj is equipped with a conjugation denoted by
¢ — P.

Let

e=m >0 (29)

be a real selfadjoint operator dy i.e., such that® = ¢®.

For 0<s<1 we denote byl the Hilbert spaceD(¢’) with complex structure i
and scalar producb, u +> (v,szsu)b and by bh_, the completion of(h,i) for the
norm (v, s*zxv)b. The spacd)_, can be identified with the anti-dual df; using the
sesquilinear form{v, u) = (v, u)y for v e h_; andu € b;.

We consider the abstract Klein-Gordon equation

(KG) (0°®)(1) + £2d(t) = 0,

where @(¢) is a function ofr € R with values inl). This (complex) KG equation
describes a classical field of scalar charged particles.
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The complex structure ob yields a complex structure on the space of solutions of
(KG), associated to thé&/(1) gauge group. Following the convention in Secti2ri
this ‘charge’ complex structure will be denoted by j. It is defined by

(jD)(t) ;= i®(r) for @ a solution of (KG) andt € R.
The following quantity does not depend &n
q(P, @) =i (P, (0 P) 1)y =1 (3 P)(1), D®))y -

Hence it defines a symmetric sesquilinear form on the space of solutions of (KG). The
following transformations preserve the solutions of (KG):

e gauge transformation®(t) — e'*®(r) = (e!*®)(¢),x € [0, 2x];

o time-reversalf; ®(t) — ®(—1);

e charge conjugatiorc: (1) — ®(1).

8.1.2. Energy space
It is convenient to identify a solution of (KG) with its Cauchy datar at O,

f = (®(0), (0:2)(0)) € h x b.
To do so one introduces thenergy space& := h1 @ [) equipped with the norm

(f. Pe = (fr. 10y + (f2. 2Dy,

where we setf = (f1, f2). Note that the complex structure j become® i on £.
Setting f; = ((D(t), (ﬁt@)(t)) one can rewrite the Klein—Gordon equation as the first-
order system:

. 0 i
j@ ) =Lf; for L = (_igz 0) .
It is convenient to diagonalize using the unitary map

Ug: £ — hel
S B u=(u1,u2)),

where

() = - (57)

N



196 C. Gérard, C.D. Jakel/Journal of Functional Analysis 220 (2005) 157-213

It follows that:

UoLUE = (8 _2).

In particular,L is selfadjoint on& with domain U~1(h1 x by) and the evolutiorR >
t — e L is a strongly continuous unitary group. Therefore the space of solutions of
(KG) can be identified with€. On £ the symmetric formg is

Q(g’ f) = i(glv fZ)b - i(gZ? fl)[)'

8.1.3. Charged Kahler space structure

On & we put the ‘energy’ complex structure= j .

Proposition 8.1. The spaceé,j, i, ¢q) is a charged K&éhler space
Proof. Clearly [i, j] = 0. We have to prove that

is a positive definite symmetric sesquilinear form @ i). If Upf = (u1,u2) and
Uog = (v1, v2), then

q(g. f) = —(v2, & tuz)y + (v1, & tuny,

q(g.1f) = —(v2, —ie " tu2)y + (v1, ie tur)y = i(va, e ur)y +i(v2, e tua)y

and consequently

(8. )= (1. e tup)y + (v2, e Tuz)y. O (20)

Definition 8.2. We denote by(é’q,i, (., .)) the completion of(&,i) for the scalar
product(., .).

Proposition 8.3. The space&, is equal to the spacé)% @ b_% equipped with the
complex structure
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and the scalar productg, f) = Re(g1. ef1)y + Re(g2, 6 1 f2)y + i (Re(g1, f2), — Re
(g2, fl)I))-

8.1.4. Standard form of the complex Klein—Gordon field
It is convenient to introduce the map

Ug(f1, f2) = \/% (8%1‘1 +ie T fa 63 fy+ i8*%72) =: (ug, u2).
Using 20) we obtain thatl; extends to a unitary map
Ug: (&g, 1, ¢, ) = (b, D) @ (D, D).

Let us describe the various objects after conjugationlUgy We will denote by the
same letter an object acting d&fy and its conjugation by/q acting onk @ b.
e symmetric formafter conjugation byUq the symmetric formy (g, ) becomes

q ((v1, v2), (u1, u2)) = (v, u1) — (u2, v2).

e ‘charge complex structureafter conjugation byUq the complex structure j becomes

i-(5 %)

e Hamiltonian the infinitesimal generator oR > 7 — eIl on (é’q, i (., .)) is the
Hamiltonian denoted by h. After conjugation b¥q,

e 0
(5 °)
In particular h is positive. _
e Gauge transformationsthe infinitesimal generator d0, 27] > « — €% on (é‘q,i ,
(., .)) is the charge operatorg. After conjugation byUy,

1= (65

We have o= —ij. Hence g is a charge operator in the sense of Seidn
e Time reversalwe havel(f1, f2) = (f1, —f>), and after conjugation by,

O(uy, up) = (u1, u2).
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e charge conjugationwe have ¢fi, f2) = (f1, f»), and after conjugation by,
Clug, uz) = (u2, u1).
We see thai(&y, . i, ¢, ©) is a charge-symmetric Kahler space.

From now on we will setX := @b with elementsx = (x, x™) and equipX with
the complex structures

=(5%) w=(32)

with the symmetric form and the scalar product
q(y.0) =0T xH -7,y and (y,x) =0T x)+7.x7),

the Hamiltonian and the charge operator

e 0 1 0
h=<o g) and qz(o —]l)

and the time-reversal and the charge conjugation
0T, x)=(x*,x7) and dxt,x7)=x",xH).
From the discussion above we obtain the following theorem.

Theorem 8.4. The mapUq: (&g,],i, 9,0 — (X,]j,i,q,0) is unitary between(é’q,i,
(.,.)) and (X,i, (., .)), and isometric betwee(&y, j, ¢) and (X, j, q). It satisfies

Uanq_lza for a=h, q, t, c

For later use we set := 0c and X, := {x € X |kx = x} = {(xT,xT), x* € b).
Note that in terms of solutions of (KG) we haw&)(r, x) = @(—t,x) and an element
of X, corresponds to a solution of (KG) with Cauchy d&ia0), whereu € b%.

We see thatc is a conjugation on(X,i, (., .)) and hence Inn., .) vanishes on
X,. Since|k,j] = 0, the vector spac&, is a complex vector space for the complex
structure |.

For comparison with the physics literature, let us consider the I;aseLZ([RRd, dx)

and ¢ = (-4, +m2)%. Then b_% is the Sobolev spacé{‘%([l%"). In the physics
literature one defines fou € Cg"(le) the time-zero field<f>p(u) to be the Hermitian
field associated with the solution of (KG) with Cauchy dé%s‘lu, 0).
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After the unitary transformatio/q, (&~

~¢~1u, 0) becomes the element

1

e 2/md 2/ md
ﬁZn(g ue 2u>€L (RY) @ LA(RY),

¢p(u) \/_2 (8_%14, 8_%ﬁ>.

In the physics literature one also considers tioenplex time-zero fielgp,(u) defined
as d)p(u) + iqsp(iu), ie.

1 1 1
Pp(u) = P @ (8 2u, & 2u>.
8.2. The real Klein—Gordon field

We now quickly discuss the real Klein—Gordon field.

8.2.1. Abstract real Klein—Gordon equation
Let hr be a real Hilbert space. Let>m > 0 be a selfadjoint operator oijz. We
consider the Klein—Gordon equation

20(t) + (1) =0

where @ is a function ofr € R with values inhg. The real Klein-Gordon equation
describes a classical field of scalar neutral particles.

Let us denote by := Chgr the complexification offr with its canonical scalar
product (-, -)y. The spacd) is equipped with the canonical conjugatiore @ P,
P el

On the space of real solutions of the Klein—Gordon equation, the charge conjugation
c acts as identity and the time-reverghkakes the formf: @(t) > ®(—r). We will
still denote bye the complexification of acting onl). We can now apply the results
of Section8.1 to the Hilbert spacd).

The real energy space &; := & N bhr x hr. The image of€r under the transfor-
mation U is

Ufp =:Sp = {(u1,u2) e hdh|uz =uz}.

Note that el preservesg. More generally, if /2R — C is a bounded measurable
function such thatF(1) = F(—1) then F(L) preserves€r. Therefore i preservesy
and hence defines a complex structureéan The space&p, i, g) is a Kahler space.
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Definition 8.5. We denote b)(é’q,R, i (., .)) the closure of &g, i) for the scalar prod-
uct (., .).

Proposition 8.6. The spacefy r is equal tob%’ﬂ;Q @b_%’R equipped with the complex

structure
i = 0 —¢1
“\e O

and the scalar productg, f) = (g1. £f0)y + (g2, € 1 f2)p +1 (81, f2)p — (g2, 1))

8.2.2. Standard form of the real Klein—Gordon field
We set

Ur: Ep — b
f o GEfitieify).

Then Ur extends to a unitary map betweéfh,u;g, (., .)) andly. Let us describe the

various objects after conjugation Wyp:

e Hamiltonian The infinitesimal generator dR > 7 — e’L on (Eqr.1. (-, ) is the
Hamiltonian denoted by h. After conjugation b/,

h=ec.

In particular, h is positive.

e Time reversal We havef(f1, f2) = (f1, —f2). After conjugation byUg, one finds
Ouq = us.
From the discussion above we obtain the following theorem.

Theorem 8.7. There exist a mag/r between(&y g, i, q,0) and (b, ], g, 0) which is
unitary between(&qr. i, (., .)) and (b, j, (., .)), and satisfies

Uq’RaUc;[%R =a fora=h,t
For later use we set := 0 and b, :={h € b | h = h}.

8.3. Free Klein—Gordon fields at positive temperature

We can now apply the results of Sectidnto the real and complex Klein—Gordon
fields.
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In the complex case we s&f =hdh, h=cd¢ q= 1@ —1 and introduce for
lul < m the statewp , on W(X) defined by the functional

1
wp (W (x)) 1= e a0 0y e x|

where p = (/@ — 1)~ and a= h — uqg. As recalled in Sectiod, wg , is a (z, f)-
KMS state for the dynamics, (W (x)) = W (€2x), which is invariant under the gauge
transformationsz, (W (x)) = W(€"9). For u = 0 the statewp , will be denoted by
In the real case we set = 1), h = ¢ and consider the state di3(X) defined by
the functional

1
wg (W(x)) 1= e 3034200 0y ¢ X,

where p = efe— 11 1tis a(r P)-KMS state for the dynamics; (W(x)) =
W (€%x).

In both cases we denote % andi/ the algebras defined in Sectidn3, note that
U is defined w.r.t. the appropriate conjugatien

Applying Theoremd4.5 we obtain that the KMS systeii#, i, 7, wp) is stochastically
positive both for real and complex Klein—Gordon fields. Moreover, by Lemmgaand
Theorem6.10 the stochastic process associated ¥ U, T, wp) satisfies the Markov
property.

In the next lemma we show that fer# 0, the KMS system(F, U, t, wg ) is not
stochastically positive. The same is true, if we restrict the KMS stgje to gauge
invariant observables (see Sectiér).

The physical reason for this fact is that a system of charged patrticles is only invariant
under the combination of time reversal and charge conjugation. A non-zero chemical
potential introduces a disymmetry between particles of positive and negative charge
and hence breaks time reversal invariance, which is a necessary property shared by all
stochastically positive KMS systems, as we have seen in PropoSitibn

Lemma 8.8. For u # 0 the KMS system&F, U, T, wg ) and (A, Ay, t, wg ) are not
stochastically positive

Proof. Using the results of SectioB.4 we have
Po(x) = o) +ag(x7), @50 = ag,(x") +an(x7),
which, by an easy computation using the results recalled in Sedt@rimplies
950,02 u=ai (A+p) i+ @52 af (A+ pix~ @753%) @y,

+ (7, A+ px) + & px ) Qg .



202 C. Gérard, C.D. Jakel/Journal of Functional Analysis 220 (2005) 157-213

SetH =dI'(he@ —h) and Q = dI'(q® —q), so thatL = H — uQ. Then

e Lol ()0, ()25 = 0% ()0, ()24

—a ((1 et g ﬁ%e‘ﬁx_—)
xai (1+p2e " @ p2e™F) 0y,
+ (7, A+ px7) + F, px)) Qg e

Thus, forx, y € X,

(0" 002 e L0 WP )2p,.)
=(A+piytept . A+ pie it apleM)
x(@+p2y” @27, 1+ pie N @ plefT)
(T, A+ px )+ @ D)) (7. A+ py )+ 0T D).

Let us now restrict ourselves to, y € Xy, i.e.,x = (u,u), y = (v,0), u,v € h. We
obtainx* =u, x~ =u, y" =v andy~ = 7. If we setp* = (#“FH — 1)~1 then

(@* MNP QLp s T (@* PR 1),
= (v, €A+ p") +€pu) x (u, (€714 p7) +€%p")v)
+ (u, A+p" + p_)u) (v, A+p" + p_)v)).

This quantity is not real it # 0 andu # 0. Since}, (x)¢,(x) is a positive operator
affiliated to A, this shows that the KMS systents, U, t, wg ) and (A, Ay, T, wg )
are not stochastically positive.[]

9. Scalar quantum fields at positive temperature with spatially cutoff interactions

In this section, we present the main results of this paper, namely the construction
of scalar quantum fields at positive temperature in one space dimension with spatially
cutoff interactions. For the real scalar quantum field the two kinds of interactions that we
will consider are the spatially cutofP(¢), and €%, models (the later one is known
as the Hgegh-Krohn model). The first model is specified by the formal interaction
J g(X)P(¢(x))dx, where P(1) is a real polynomial, which is bounded from below.
The second model is specified lfyg(x)e“d“x) dx for |a| < +/27. In both caseg is a
positive function inL1(R) N L2(R).
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For the complex scalar field we will consider the spatially cuffp* )2 interaction,
specified by the formal interaction terfig(x) P (¢*(X) (X)) dx.

9.1. Some preparations

In this subsection, we prove some auxiliary results, which we will need to prove
some properties of the interaction terms later on. We first recall a result of Klein and
Landau[KL1].

Lemma 9.1. Let (F, U, 7, w) be a stochastically positive KMS system and#gat be
the closure of/Q. Let U1 := Uj3,. ThenQ is a cyclic and separating vector faxy,
and {1 and U are isomorphic asC*-algebras

Lemma 9.2. Let (F, U, 7, w) be the stochastically positive KMS system introduced in
Section4.5. Let X, be the vector space X equipped with the scalar producl), =
(x, (1+ 2p)x) and set

1
—_—

X (1+p)%x®p KX.

Then

(i) I'(j) is an isometry froml'(X,) into I'(X @® X) such that
F(HE?™ = Wo()I'(j), x € X
(i) Hi=T()HI(X,) =L*Q, 2o, p.

Proof. The mapx — %x is C-linear from X to X, hencej is C-linear. From the
results recalled in Sectiod.2 and the functional properties df(j) we obtain that
I(He?® = We(jx)I'(j). Now Wr(jx) = W, (x) for x € X,, and this proves (i).

Let us now prove (ii). The fact thak; is isomorphic toL?(Q, o, ) follows from
the definition ofl/ in Section6.3. To prove the second equality, we note thag¢xtends
to a conjugation onX,, since[x, p] = 0. By a well-known result on Fock spaces,
which we already recalled in the proof of Lemmz6, the vacuum vectof2 € I'(X,)
is cyclic for {(W(x) | x € Xp, kx = x}.

Let nowu € I'(X,). Because of the result recalled above we find

N
u= lim u,, unzz/le(x]')Q, xjeX,, Kxj=xj.

n—00
1
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It follows that

N
FGyu= lim ve, vy =37 2 Wolx))Q.
1

Since v, € UQ we havel'(j)u € Hi and hencel'(j)I'(X,) C Hi. Let us now prove
the converse inclusion: lat € #H; with

N
v= lim v,, v,,:Z/lew(xj)Q, xjeX, Kkx;=xj.

n—00
1

Then
N
vp =Ty for u, =" 7;W(x))Q.
1

Since I'(j) is isometric,u, — u € I'(X,) and v = I'(j)u. This shows that{; C
r(rx,). o

9.2. Wick ordering

We recall some well-known facts concerning the Wick ordering of Gaussian random
variables. Let(Q, 2o, u) be a probability spacd; a real vector space equipped with
a positive quadratic forny — c(f, f), called acovariance Let F 5 f — ¢(f) be a
R-linear map fromF to the space of real measurable functions@n

The Wick ordering: ¢(f)" : with respect to the covariance is defined using a
generating series:

]

@D =Y ‘Z_': ) o= PN T, 21)
— !
Thus
[n/2] n! —om 1
:p(f) :c=m220 mdm (=5 " (22)

If now c1, ¢ are two covariances oR, then

W2, §
(/) = 0 p(f) ” e z(a—c)(f.f) (23)
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This implies the followingWick reordering identitiegsee e.g[GJ]):

[n/2] | 1
D = ) s U e (52— e (f ) (24)

— 2m!
m=0 n m!)

9.3. The spatially cutofP(¢), interaction

We recall from Sectior8.2 that the real Klein—Gordon field in one space dimension
is described by the Weyl algebfB(h), wherel = L?(R, dk). Let y € C5°(R) be a
real cutoff function witth y(X)dx = 1. For xe R and A4 € [1, +o0o[ an ultraviolet
cutoff parameter, we defing, x € ) by

(4m)2

1 - k
Saxk) = - e kxy <Z> S(k)’%.
We set

40 =20, (fax) = a}(fax) +aw(fax), X€R.

Note that /4 x € by, S0 ¢ ,(x) is affiliated toi/; i.e., ¢ 4(X) can be considered as a
measurable function o0Q, 2o, ).

In order to define the spatially cutoff(¢)2 interaction we fix a real polynomial of
degree 2, which is bounded from below, namely

2n
P(J) =) a; with a, >0 (25)
j=0

and a real functiorg € L (R, dx) N L?(R, dx) with g>0.
We set

V= f (%) : P (X)) 0 %

where: ;o denotes the Wick ordering with respect to the covariance at temperature 0

given by co(f, f) = 3(f. f)y.
For technical reasons we will also need to consider similar UV cutoff interactions
with the Wick ordering done with respect to the covariance at inverse tempeiyature

given by cs(f. f) = 3(f. Hp = 3(f. (L+2p)f), f €b. We set

Vagp= /g(x) LP($ ()25 dX,
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where::; denotes Wick ordering with respect ¢g. Note thatV,; and V4 4 are affiliated
to U. We first collect some properties of these auxiliary interactions.

Lemma 9.3. The family{V, g} is Cauchy in all spaced.”(Q, 2o, w) for 1<p < oo
and converges whea — oo to a functionVy € LP(Q, 2o, 1), 1<p < oo, which

satisfiese "V € L1(Q, Zo, p) for all + > 0. We set

Vg =: /g(X) (P (P(x)):p dX.

Proof. We use the identification of£?(Q, Xo, 1) with I'(h,) presented in Lemma.2
Then Wick ordering with respect tog coincides with Wick ordering with respect
to the Fock vacuum or’(),). By exactly the same arguments as those used in the
O-temperature case (see e[§-H.K] or [DG, Section 6]for a recent survey) we ob-
tain that, for O< p<2n, the cutoff interactionV, 4 is a linear combination of Wick
monomials of the form

p

3 <f) / Wy a(kts - Ky g, - kp)a® (ke

r=0
o a*(k)a(—krs1) -~ a(—kp) dky - - - dk,,

where
p p ki )
wp Aky, - kp) = é’(z ki) 1_[ Z(Z) e(ki) 2.
1 1

Recalling that 1+ 2p = €7 we see that

P —Pe(ki)
1+ e Petki
PR — 72 p||
u)p,/l ER® bp—L (R . l—e*/jg(kz) dkl,dkp)
1

The sequencgw, 4} is Cauchy in this space. Consequently, 1 — wp ..o When
A — oo, where

p p
wpoolks k) = 8O0 k) [T etk .
1 1

We can now apply these Wick monomials to the Fock vacuum and conclude that
V4,592 converges to a vectovzQ in I'(h,), or equivalently thatV, s converges to
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Vg in L2(0, 2o, p). Since V,.p€2 is a finite particle vector, it follows from a standard
argument (see e.dSi2, Theorem 1.22Jor [DG, Lemma 5.12] that V45 — Vp €
LP(Q, 2o, p) for all 1< p < oo.
We will now prove that &% e LY(Q, Zo, ). We argue as in the O-temperature

case: we first verify thafjw, 4 — Wp,ool| SCA™ for somegy > 0 and therefore
1Vap — V[)’||L2(Q,Zo,;4)<CA780- Applying again[DG, Lemma 5.12]we find

IVag = VplLr.zom <C(p =" A7, p>1 (26)

Using the Wick ordering identities2@) we obtain as identities between functions on
K (see, e.g.[DG, Lemma 6.6]

: P($400) 5 > = C (9400217 +1).
Now [|¢ ,(X)Q| = Clle~1 (1) Iy, gC(In(A))%. This yields
Vip= —Cln(Ay". (27)

Applying now [Si2, Lemma V.5]we deduce from 26) and @7) that e’"s ¢ L1(Q,
2o, p) forallt >0. O

Proposition 9.4. The family{V,} is Cauchy in all spaced.”(Q, 2o, n) for 1<p <
oo and converges wherl — oo to a functionV € L?(Q, 2o, 1), 1<p < oo, which
satisfiese™V e L1(Q, Zo, ) for all + > 0. We set

V= /g(x) :P(¢p(x)):0 dx.

Proof. With the help of the Wick reordering identity24) we find, for f € by,
2n
PDo(Ni0=) _ aj (N0

20 1j/2) j! ' om 1 m
=Zzo -0 aim-dﬁ(ﬂj g (_E(CO_Cﬁ)(fsf)) :

For f = f/l,x

ra:=(cg — co)(fa.xs fa.x) = (fa,0, P 1.0

:/e—ﬁ“k);z (%) dk = roo + O(A™%),

wherero, = [ e #® dk.
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On the other hand,
‘éWMMﬂww€0WMMwMﬂW60MMV)
Therefore

2P (P 4(X)) 0= f’(qSA(x)) g +0 (In(/l)z”/l*"o) uniformly for x € suppg,

where

~ 2n [j/2] - 1 m
Fo=3 3wty (=)

j=0 m=0

We see that? (1) — P(J) is of degree less tham2- 1. Applying Lemma9.3to P this
yields

AILI”nOo / g(xX) 1 P(P4(X¥):0 dX=AIi£nOo f g(X) 1 P(¢4(x)):p dx
=/guwﬁ@u»¢dx
which completes the proof of the propositiorn.]

9.4. The spatially cutofé*?, interaction

As in Section9.3 we set, for|a| < /27,
V4= /g(x) @400 dx
and
Vaip= /g(X) @ PaX) g dX.

Note that, as above¥, and V4 s are affiliated tol.

Lemma 9.5. For |o| < +/2r the family{V 4 4} is Cauchy inL2(Q, Xo, 1) and converges
when A — oo to a positive functionVy € L2(Q, Zo, u). We set

Vg =: /g(x) g9 g dx.
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Proof. The proof is completely similar to the O-temperature case wihete 0 (see
e.g. [Si2,H-K2]). For completeness we will give an outline. Note first that &) (
s eba) :p is a positive function orQ, hence the same holds fdf, s as g>0. We
now show thatV, s converges inL2(Q, Xo, w), and we will identify Va,p with V4 3Q.
We have

n

o " o . " " (ki 1
Yoy (N)Vp 5 = m/g(x) (PN (X): Qdx = mé’(; ki)l:[ 1 <Z>

eki)?

Hence

1 /a2\"
1 ===
gy W)V 1= - (4n>/
1 [/ o? ”f
'\ 4rn

2017 s (ki) 21+ 2p(ki)
— | |*————dk1...dk
1_[1'%<A>' ke G

1 eki)

8 k)
(5 %)

g_

ki...dk, =: ¢,.
n!

Next, we find

1 /a2\" .
o= (E) /g(x)g(Y)Kﬁ(X_Y) dx dy

for

Kp(x) = %/e‘k"% dk.

We claim now that

12
ez Ks®l ¢ LY R) 4+ L®(R) for |o| < +/27. (28)
This implies that
0 2
> i< [ 5005’ 110 dxdy < ox. (29)
n=0

If we set

Ko(X) = % / e”‘X% dk
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then because of the rapid decay @) when [k| — oo, we haveKo — Ky € L*(R),
and (sedH-K2, Eq. (4)) Ko(X) € O(1) in x| =1, Ko(X) = —In(xX) + O(1) in |x|<1.
This implies ¢8).

Now by the arguments in the proof of Lemmn8a3, we see that

n

Jim Ay (V)Va,p = %/g(X) P Qdx.

Since 1,)(N)V4p — V, in L?(Q, 2o, ) for eachn and sup ||]l{,,}(N)VA,/;||2<s,,
with Y &, < oo, we see thatV, s converges to some elememt € L2%(Q, 2o, 1),
which is a.e. positive as a limit of positive functiond.]

Proposition 9.6. For |a| < +/2m, the family {V4} is Cauchy inL2(Q, Xo, 1) and
converges to a positive functioi € L2(Q, Xo, ). We set

V = /g(x) P00 dx.

Proof. By the Wick reordering identityA3) we have

2
(@ P g=: P B ez,

Hence V4 = e2"1V, s, which implies, using Lemmd.5 that V4 converges in

012
L?(Q. %o, p) to the positive function eV [

9.5. The spatially cutofP(¢* @), interaction

We consider now the complex Klein—Gordon field in one space dimension which is
described by the Weyl algeb3(X) for X = h @ b, h = L3(R, dk). We recall that

the Gibbs state at inverse temperatyfrés given by (W (x)) = e 1+209)  where
o= (eﬁh —Dland h=¢oe.
We set

P40 = 00 (fax ® fax), @) =@ (fax D fax), XeER.

Note that £, is invariant under the conjugatiolm — h. This implies thatp ,(x) is
affiliated told, since f4x ® fa.x € Xx. Moreover,p* (X)p 4(X) = % (¢5)(f/1’x D fax)

+¢(21)(i fA,x @ _if/l,x))-
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For P a real polynomial of degreen? which is bounded from below, argla positive
function in LY(R) N L2(R), we set

Va= fg(X) 1P (@ ()@ 4(X)) 0 dX,

where::g denotes Wick ordering with respect to the O-temperature covari@icex) =
%(x,x), and

Vap= /g(X) PP(@ ()@ 4(X)) 15 dX,

where: :5 denotes Wick ordering with respect to the covariance at inverse temperature

B specified bycg(x, x) = %(x, (14 2p)x). The following two results can be shown by
exactly the same methods as in Sectih8.

Lemma 9.7. The family{V, s} is Cauchy in allL?(Q, Zo, n) spaces and converges
when A — oo, to a function Vg € LP(Q, 2o, i), 1< p < 00, which satisfiese Vs ¢
LY(Q, X, p) for all t > 0. We set

Vg = /g(X) tP(™ () ((X) 15 dX.

Proposition 9.8. The family{V 4} is Cauchy in all space&”(Q, Xo, ) and converges
when A4 — oo, to a functionV € LP(Q, 2o, 1), 1<p < oo, which satisfiese™" ¢
LY(Q, Xo, p) for all r > 0. We set

V= /g(X) (P(@*(X)p(X)):0 dX.

9.6. Scalar quantum fields at positive temperature with spatially cutoff interactions

To construct the space-cutaff(¢)» and €%, models at positive temperature, we ap-
ply the general results of Sectiah3. Note that by Section8.3 and9.4, the interactions
termsV = [g(x) : P(¢p(X)):0 dx and V = [ g(x) :€*¢® g dx for |¢| < /21 satisfy
all the hypotheses of Section3. Consequently we obtain the following theorem:

Theorem 9.9. Let W, W,, 1°, w) be the quasi-fregs-KMS system describing the free
neutral Klein—Gordon field in one space dimension at temperaﬂfrﬁ described in
Section8.3 Let H, L, Q be the associated GNS objects described in Sedtian_et V
be the selfadjoint operator o affiliated to W, equal either tof g(x) : P(¢(x)):0 dx
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or to [ g(x) :e*?™ 4 dx. Then the following statements hold true

(i) L+ V is essentially selfadjoint anf e D(e‘gHV), where Hy := L + V.

(i) Let ty(r) be the W*-dynamics generated by/y and wy be the vector state
induced byQy = e 2HvQ|~le2Hv Q. Thenty is a group of*-automorphisms
of W, continuous for the strong operator topology such thet, Wi, Ty, wy) is
a stochastically positivgs-KMS system

(iii) The generalized path space associated g, W, tv, wy) satisfies the Markov
property.

(iv) Let Ly, Jy be the perturbed Liouvillean and modular conjugation associated to
W, Wi, Ty, 0y). Then Jy=J and Ly =Hy —JV/J.

Finally, we state the corresponding result for the charged Klein—Gordon field:

Theorem 9.10.Let W, W, 1% ) be the quasi-freef-KMS system describing the
free charged Klein—Gordon field in one space dimension at temper#ﬁu’reand Zero
chemical potentialdescribed in SectioB.3. Let H, L, Q be the associated GNS objects
described in Sectiod.2 Let V be the selfadjoint operator oK affiliated to W, equal

to

fg(x) :P(@(X)p(X)):0 dX. Then the following statements hold true

(i) L+ V is essentially selfadjoint an€® e D(e‘gHV), where Hy := L+ V.

(i) Let ty(¢r) be the W*-dynamics generated byly and wy be the vector state
induced byQy = ||e‘§HVQ||‘1e‘gHVQ. Thenty is a group of*-automorphisms
of W, continuous for the strong operator topology such thef, Wi, ty, wy) is
a stochastically positivgs-KMS system

(i) The generalized path space associatedd, W, 1y, wy) satisfies the Markov
property.

(iv) Let Ly, Jy be the perturbed Liouvillean and modular conjugation associated to
W, Wi, v, 0y). Then Jy=J and Ly =Hy —-JVJ.
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