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Abstract

We construct interacting quantum fields in 1+1 space–time dimensions, representing charged
or neutral scalar bosons at positive temperature and zero chemical potential. Our work is based
on prior work by Klein and Landau and HZegh-Krohn. Generalized path space methods are used
to add a spatially cutoff interaction to the free system, which is described in the Araki–Woods
representation. It is shown that the interacting KMS state is normal w.r.t. the Araki–Woods
representation. The observable algebra and the modular conjugation of the interacting system
are shown to be identical to the ones of the free system and the interacting Liouvillean is
described in terms of the free Liouvillean and the interaction.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Constructive field theory; Thermal field theory; KMS states

1. Introduction

Thermal quantum field theory is supposed to unify both quantum statistical mechanics
and elementary particle physics. The formulation of the general framework should be
wide enough to allow a QED description of ordinary matter. It should also provide the
necessary tools for the QCD description of several experiments currently envisaged with
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the new large hadron collider (LHC) at CERN. While the general theory of thermal
quantum fields has made substantial progress in recent years, the actual construction
of interacting models, which fit into the axiomatic setting, has not yet started (with the
exception of the very early contributions by Høegh-Krohn[H-K1] and Fröhlich[Fr2]).
Let us briefly recall the formal description of charged scalar fields in physics. Exam-

ples of scalar particle–antiparticle pairs are the mesons�+, �−, K+, K−, or K0, K0.
(In the last case the ‘charge’ is strangeness). One starts with the classical Lagrangian
density

L = (���)(���∗) − m2��∗ − �
4
(��∗)2.

Here�(t, x) is a complex scalar field over space–time. The Lagrangian densityL(t, x)

is invariant under the global gauge transformations� �→ ei��, � ∈ R. By Noether’s
theorem this invariance leads to a conserved current

j� = i(�∗��� − ����∗), � = 0, . . . ,3

and to a conserved charge

q =
∫
d3x j0(t, x).

The next step, according to the physics literature, is to setup real or imaginary time
perturbation theory.
The state of art of perturbative thermal field theory is covered in three recent books by

Kapusta[Ka], Le Bellac[L-B] and Umezawa[U] . The authors concentrate on theoretical
efforts to understand various hot quantum systems (e.g., ultra-relativistic heavy-ion
collisions or the phase transitions in the very early universe) and various physical
implications (e.g., spontaneous symmetry breaking and restoration, deconfinement phase
transition).
Constructive thermal field theory allows one to circumvent (at least in lower space–

time dimensions) the severe problems (see, e.g., Steinmann[St]) of thermal perturbation
theory, which can otherwise only be removed partially by applying certain “resummation
schemes”.
A class of models representing scalar neutral bosons with polynomial interactions

in 1+1 space–time dimensions was constructed by Høegh-Krohn[H-K1] more than
20 years ago. As he could show, thermal equilibrium states for these models exist
at all positive temperatures. For neutral particles, the particle density (and the energy
density) adjust themselves to the given temperature; contrary to the non-relativistic
case, a chemical potential adjusting the particle density cannot be introduced, since
the mass is no longer a conserved quantity. Shortly afterwards, several related results
on the construction and properties of selfinteracting thermal fields in 1+1 space–time
dimensions were announced by Fröhlich[Fr2].
Our goal in this and a subsequent paper[GeJ]was twofold: firstly, we wanted to fully

understand the neutral scalar thermal field with polynomial interaction as constructed
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by Høegh-Krohn[H-K1] , with the aim to study thermal scattering theory, using the
framework introduced by Bros and Buchholz[BB1,BB2]. Secondly, we wanted to
generalize this construction to charged fields. This would allow us to study the system
at different temperatures and chemical potentials, i.e., different charge densities. A
possibility to change the charge density would put this model closer to non-relativistic
models, where the mass is a conserved quantity, giving rise to the existence of a
chemical potential.
The construction of the full interacting thermal quantum field without cutoffs in[GeJ]

includes several of the original ideas of Høegh-Krohn[H-K1] , but instead of starting
from the interacting system in a box we start from the Araki–Woods representation
for the free system in infinite volume. Using a general method developed by Klein
and Landau[KL1] to treat spatially cutoff perturbations of the free system in infinite
volume, we can eliminate some cumbersome limiting procedures due to the introduction
of boxes, when we remove the spatial cutoff.
The present paper is devoted to the construction of neutral and charged thermal fields

with spatially cutoff interactions in 1+1 space–time dimensions, using the method of
Klein and Landau[KL1] . Although the excellent paper[KL1] is rather selfcontained,
it did not include the discussion of examples. Twenty years ago it might have been
evident for the experts in the field how to apply their method to thermal quantum
fields, but we find it worthwhile to present this application in some detail.
A difference between this paper and[KL1] is the use of generalized path spaces as

in [K] , instead of stochastic processes. This compact formulation is convenient for our
applications. In addition, we prove several new results concerning the interacting KMS
systems obtained by perturbations of path spaces.

1.1. Content of this paper

Our paper can be divided into several parts. The first part, presented in Section
2, discusses the description of neutral and charged scalar fields in terms of operator
algebras. Its application to Klein–Gordon fields is discussed in Section8. As usual the
starting point is a real symplectic space(X,�), which allows the construction of the
Weyl algebraW(X,�). The next step is to introduce on(X,�) a Kähler structure, i.e., a
compatible Hermitian structure. For charged scalar fields, the symplectic space(X,�)
possesses also a canonical ‘charge’ complex structure j and a ‘charge’ sesquilinear
form q, such that� = Im q. The mapsX � x �→ ej�x for � ∈ R generate the
gauge transformations. Given a regular CCR representation, complex quantum fields
are defined.
This leads to the notion of acharged Kähler structure, corresponding to the in-

troduction of another complex structure i and of thecharge operator q, relating the
two complex structures. Finally, the notion ofcharge conjugationis discussed in this
abstract framework.
For Klein–Gordon fields, a conjugation inducing charge–time reflections is used to

distinguish an appropriate abelian sub-algebra of the Weyl algebra to which the inter-
action terms considered later on will be affiliated.
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Section 3 recalls the characterization of a thermal equilibrium state by the KMS
property. The GNS representation associated to a KMS state has a number of interest-
ing properties which are briefly recalled. For instance, the GNS vector is cyclic and
separating for the field algebraF (in our case the weak closure of the Weyl algebra in
the GNS representation), and therefore one can always go over to the weak closure of
the relevant operator algebras, and we will do so in the sequel. Since a KMS state is
invariant under time translations, a Liouvillean implementing the time evolution is al-
ways available. As has been shown by Araki, the KMS condition allows us to introduce
Euclidean Green’s functions. The notion ofstochastically positive KMS systemsdue to
Klein and Landau is presented. This notion rests on the introduction of a distinguished
abelian subalgebraU of the field algebraF . In physics, this algebra is the algebra
generated by the time-zero fields. It is also shown that stochastically positive KMS
systems are invariant under atime reversaltransformation.
In Section 4, we recall the notion of a quasi-free KMS system associated to a

positive selfadjoint operator acting on the one-particle space. The GNS representation
for a quasi-free KMS system has been analyzed by Araki and Woods. We briefly recall
this framework and its connection to the Fock representation in a modern notation.
It is shown that the field algebraF is generated by the time-translates of the abelian
algebraU . The observable algebra, consisting of elements of the field algebra which are
invariant under gauge transformations, is introduced. In Section4.5 it is shown that the
KMS system for the (quasi-)free charged thermal field is indeed stochastically positive,
if the chemical potential vanishes. However, if the chemical potential is non-zero, then
the charge distinguishes a time direction, and consequently, the system is no longer
invariant under time reversal. Thus it fails to be stochastically positive too, as we show
in Section8.3.
Following Klein and Landau, a cyclicity property of the Araki–Woods representation,

which will imply the so-calledMarkov propertyfor the free system later on, is shown.
The Markov property has the consequence that the physical Hilbert space can naturally
be considered as anL2-space.
Section5 recalls the notion of ageneralized path space, both for the 0-temperature

case and the case of positive temperature. We follow here[K,KL1] . Although the
0-temperature case is not needed in this paper, it will be useful later on in[GeJ].
A generalized path space consists of a probability space(Q,�,�), a distinguished�-
algebra�0, a one-parameter groupt �→ U(t) and a reflectionR. We recall the definition
of OS-positivityand theMarkov propertyfor both cases.
Section 6 is devoted to a discussion of the Osterwalder–Schraderreconstruction

theorem in the framework of generalized path spaces. This reconstruction theorem
associates to a	-periodic, OS-positive path space a stochastically positive	-KMS
system.
In Section7, we recall from[KL1] how to deal with a class of perturbations, which

are given in terms ofFeynman–Kac–Nelson kernels. The main examples of FKN kernels
are those obtained from a selfadjoint operatorV on the physical Hilbert spaceH, where
V is affiliated toU .
We show that for a class of perturbationsV considered in[KL1] , the perturbed

Hilbert space can be canonically identified with the free Hilbert space in such a way



C. Gérard, C.D. Jäkel / Journal of Functional Analysis 220 (2005) 157–213 161

that the interacting algebrasF, U and the modular conjugationJ coincide with the free

ones. Moreover, we prove that the perturbed LiouvilleanLV is equal toL + V − JV J ,
if L is the free Liouvillean. HereH denotes the closure of a linear operatorH.
Finally, we show that the Markov property of a generalized path space is preserved

by the perturbations associated to FKN kernels.
In Section8, we apply the framework of Sections2 and 4 to charged and neutral

Klein–Gordon fields at positive temperature. The case of the neutral Klein–Gordon
field is well known and reviewed only for completeness. We give more details on the
charged Klein–Gordon field which provides an example of a charge symmetric Kähler
structure. We also compare our setup with the one used in physics textbooks. Using the
results of Section4, we present the quasi-free KMS system describing a free charged or
neutral Klein–Gordon field at positive temperature. Note that the conjugation used in the
definition of the abelian algebraU corresponds to time reversal in the neutral case and to
the composition of time-reversal and charge conjugation in the charged case. We show
that the KMS system for the charged Klein–Gordon field is not stochastically positive,
if the chemical potential is unequal to zero. The physical reason is that the dynamics
of charged particles is only invariant under the combination of time reversal and charge
conjugation. A non-zero chemical potential introduces a disymmetry between particles
of positive and negative charge and hence breaks time reversal invariance, which itself
is a property shared by all stochastically positive KMS systems.
In Section9, we consider Klein–Gordon fields at positive temperature with spatially

cutoff interactions in 1+ 1 space–time dimensions. In the neutral case we will treat
the P(
)2 and the e�


2 interactions (the later being also known as theHøegh-Krohn
model). In the charged case we treat the (gauge invariant)P(��)2 interaction.
The UV divergences of the interactions are eliminated by Wick ordering, which is

discussed in detail in Sections9.1 and 9.2. As it turns out, the leading order in the
UV divergences is independent of the temperature. Thus it is a matter of convenience
whether one uses thermal Wick ordering or Wick ordering w.r.t. the vacuum state.
The Lp-properties of the interactions needed to apply the abstract results of Section

7 are shown in Sections9.3–9.5.
Finally, the main results of this paper, namely the construction and description of a

KMS system representing a Klein–Gordon field at positive temperature with spatially
cutoff interactions, is given in Section9.6.
In a forthcoming paper, we will consider the translation invariantP(
)2 model at

positive temperature. Following again ideas of Høegh-Krohn[H-K1] , Nelson symmetry
will be used to establish the existence of the model in the thermodynamic limit.

2. Real and complex quantum fields

In this section, we present real and complex quantum fields in an abstract framework.
Usually in the physics literature complex quantum fields are described in the case of
Klein–Gordon fields. Although the results of this section are probably known, we have
not found them in the literature.
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2.1. Notation

Let X be a real vector space. IfX is equipped with a complex structure i, then we
will denote by(X, i) the complex vector spaceX. If (X, i) is equipped with a hermitian
form ( . , . ), then we will denote by(X, i, ( . , . )) the Hermitian spaceX. If it is clear
from the context which complex or Hermitian structure is used,(X, i) or (X, i, ( . , . ))

will simply be denoted byX. As a rule the complex structure of a Hermitian spaceX
will be denoted by the letter i. Sometimes another ‘charge’ complex structure appears;
it will be denoted by the letter j.

2.2. Real fields

We start by recalling the formalism of real quantum fields.
CCR Algebra: Let (X,�) be a real symplectic space. LetW(X,�) be the (uniquely

determined)C∗-algebra generated by non-zero elementsW(x), x ∈ X, satisfying

W(x1)W(x2) = e−i�(x1,x2)/2W(x1 + x2),

W ∗(x) = W(−x), W(0) = 1l.

W(X,�) is called theWeyl algebraassociated to(X,�).
Regular representations: Let H be a Hilbert space. We recall that a representation

�:W(X,�) � W(x) �→ W�(x) ∈ U(H)

is called aregular CCR representationif

t �→ W�(tx) is strongly continuous for anyx ∈ X.

One can then definefield operators


�(x) := −i d
dt

W�(tx)

∣∣∣∣
t=0

, x ∈ X,

which satisfy in the sense of quadratic forms onD(
�(x1)) ∩ D(
�(x2)) the commu-
tation relations

[
�(x1),
�(x2)] = i�(x1, x2), x1, x2 ∈ X. (1)

Kähler structures: Let (X,�) be a real symplectic space and i a complex structure
on X. The space(X, i,�) is called aKähler spaceif

�(ix1, x2) = −�(x1, ix2) and �(x, ix) is positive definite.
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If (X, i,�) is a Kähler space, then(X, i, ( . , . )) is a Hermitian space for

(x1, x2) := �(x1, ix2) + i�(x1, x2).

The typical example of a Kähler space is a Hermitian space(X, i, ( . , . )) with its
natural complex structure and symplectic form� = Im ( . , . ).
Creation and annihilation operators: If � is a regular CCR representation of the Weyl

algebraW(X,�), and(X,�) is equipped with a Kähler structure, then thecreationand
annihilation operatorsare defined as follows:

a∗
�(x) := 1√

2

(

�(x) − i
�(ix)

)
, a�(x) := 1√

2

(

�(x) + i
�(ix)

)
.

Clearly,


�(x) = 1√
2

(
a∗
�(x) + a�(x)

)
, x ∈ X.

The operatorsa∗
�(x) and a�(x) with domainD(
�(x)) ∩ D(
�(ix)) are closed and

satisfy canonical commutation relations in the sense of quadratic forms:

[a�(x1), a
∗
�(x2)] = (x1, x2)1l, [a�(x2), a�(x1)] = [a∗

�(x2), a
∗(x1)] = 0.

2.3. Complex fields

Let (X, j) be a complex vector space. Let us assume thatX is equipped with a
sesquilinear, symmetric non-degenerate formq. If a ∈ L(X), we say thata is iso-
metric (resp. symmetric, skew-symmetric) if[a, j] = 0 and q(ax1, ax2) = q(x1, x2)

(resp.q(ax1, x2) = q(x1, ax2), q(ax1, x2) = −q(x1, ax2)). Clearly (X, Im q) is a real
symplectic space. The quadratic formq is called thecharge quadratic form.
Gauge transformations: The mapsX � x �→ ej�x ∈ X for � ∈ R are calledgauge

transformations. They are symplectic on(X, Im q) and isometric on(X, q). We have

q(x1, x2) = Im q(x1, jx2) + iIm q(x1, x2). (2)

Complex fields: Let now � be a regular CCR representation ofW(X, Im q) on a
Hilbert spaceH and let
�(x) be the associated field.
Using the complex structure j, we can define thecomplex fields

�∗
�(x) := 1√

2

(

�(x) − i
�( jx)

)
,

��(x) := 1√
2

(

�(x) + i
�( jx)

)
,
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with domainsD(
�(x)) ∩ D(
�( jx)). The mapsX � x �→ �∗
�(x) (resp.x �→ ��(x))

are j-linear (resp. j-antilinear).

Lemma 2.1. The operators��
�(x) are closed. In the sense of quadratic forms on

D(
�(x)) ∩ D(
�( jx)) they satisfy the commutation relations

[��(x1),�
∗
�(x2)] = q(x1, x2)1l, [��(x1),��(x2)] = [�∗

�(x1),�
∗(x2)] = 0.

Proof. The commutation relations are easily deduced from (1). Let u ∈ D(
�(x)) ∩
D(
�( jx)). To prove that��

�(x) is closed, we write

2‖��(x)u‖2 = ‖
�(x)u‖2 + ‖
�( jx)u‖2 − q(x, jx)‖u‖2.

This easily implies that��(x) is closed. The case of�∗
�(x) is treated similarly. �

2.4. Charge operator

Definition 2.2. Let (X, j, q) be as in Section2.3 and i another complex structure on
X. Then (X, j, i, q) is called acharged Kähler spaceif [i, j] = 0 and (X, i, Im q) is a
Kähler space.

Let (X, j, i, q) be a charged Kähler space. Then i is antisymmetric forq, i.e.,
q(x1, ix2) = −q(ix1, x2), and j is antisymmetric for( . , . ).
We can introduce thecharge operator:

q := −ij .

Note that[q, i] = [q, j] = 0, q2 = 1 and that q is symmetric and isometric both forq

and ( . , . ). Since i= jq we have ej� = ei�q and the gauge transformationsx �→ ej�x,
� ∈ R, form a unitary group on(X, i, ( . , . )) with infinitesimal generator q.
The typical example of a charged Kähler space is a Hermitian space(X, i, ( . , . ))

with a distinguished symmetric operator q such that q2 = 1. Let us denote byX± :=
Ker (q∓1l) the spaces of positive (resp. negative) charge and byx± the orthogonal pro-
jection of x ∈ X ontoX±. If we setq(x1, x2) = (x+

1 , x+
2 )− (x−

2 , x−
1 ), then(X, iq, i, q)

is a charged Kähler space. Note thatX+ or X− may be equal to{0}.
Using the fact that q is symmetric for( . , . ) and q, we see that the spacesX± are

orthogonal both for( . , . ) and q. If we setx± = 1
2(x ± qx), then the map

U : X → X+ ⊕ X−

x �→ x+ ⊕ x−
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is unitary from (X, i, ( . , . )) to (X+, i, ( . , . )) ⊕ (X−, i, ( . , . )) and isometric from
(X, j, q) to (X+, i, ( . , . )) ⊕ (X−,−i,−( . , . )).
If �:W(X, Im q) → U(H) is a regular CCR representation on a Hilbert spaceH,

then we can introduce, just as in Section2.2, creation and annihilation operators

a∗
�(x) := 1√

2

(

�(x) − i
�(ix)

)
, a�(x) := 1√

2

(

�(x) + i
�(ix)

)
,

with domainsD(
�(x)) ∩ D(
�(ix)). The mapsX � x �→ a∗
�(x) (resp.a�(x)) are

i-linear (resp. i-antilinear). Ifx = x+ + x−, with x± ∈ X±, then

��(x) = a�(x
+) + a∗

�(x
−) and �∗

�(x) = a∗
�(x

+) + a�(x
−).

Note that this is consistent with fact that the mapsX � x �→ �∗
�(x) (resp.x �→ ��(x))

are j-linear (resp. j-antilinear).

2.5. Charge conjugation

Let (X, j, i, q) be a charged Kähler space. Assume that there exists some c∈ L(X)

such that

c2 = 1l, ci = ic, cq= −qc, (x1, cx2) = (cx1, x2), x1, x2 ∈ X. (3)

I.e., c is a symmetric involution for( . , . ), which anticommutes with the charge operator
q. An operator c satisfying (3) is called acharge conjugation. Charge conjugations
exist in charge-symmetric quantum field theories. A charged Kähler space(X, j, i, q, c)
equipped with a charge conjugation c will be called acharge-symmetric Kähler space.
It follows from (3) thatq(x1, cx2) = −q(cx1, x2), i.e., c is antisymmetric forq. Since

cq= −qc, we see that c is a unitary map from(X−, i, ( . , . )) to (X+, i, ( . , . )).

3. Stochastically positive KMS systems

In this section, we recall the notion of astochastically positive KMS systemdue
to Klein and Landau[KL1] . We prove that stochastically positive KMS systems are
invariant under time-reversal.

3.1. KMS systems

Let F be aC∗-algebra and{�t }t∈R a group of∗-automorphisms ofF. Let � be a
(�,	)-KMS stateon F, i.e., a state such that for eachA,B ∈ F there exists a function
FA,B(z) holomorphic in the strip{z ∈ C | 0< Im z < 	} and continuous on its closure
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such that

FA,B(t) = �(A�t (B)), FA,B(t + i	) = �(�t (B)A), t ∈ R.

A triple (F, �,�) such that� is a (�,	)-KMS state is called a	-KMS system.
Let us now recall some standard facts about KMS systems. By the GNS construction,

one associates to(F, �,�) a Hilbert spaceH�, a representation�� of F on H�, a
unit vector
�, cyclic for ��, and a strongly continuous unitary group{e−itL}t∈R such
that

�(A) = (
�,��(A)
�), ��(�t (A)) = eitL��(A)e−itL, L
� = 0.

The KMS condition implies that
� is separating for the von Neumann algebra��(F)′′,
i.e., A
� = 0 ⇒ A = 0 for A ∈ ��(F)′′. Consequently, the image ofF under ��
is isomorphic toF; it will therefore not be distinguished fromF. Moreover, we will
identify an elementA of F with its image��(A).
The selfadjoint operatorL is called theLiouvillean associated to the KMS system

(F, �,�). It is the unique selfadjoint operator whose associated unitary group generates
the dynamics� and such thatL
� = 0 (see e.g.[DJP, Proposition 2.14]).

Proposition 3.1. Let F1 ⊂ F be the set ofA ∈ F such that�: t �→ �t (A) is C1 for
the strong topology onB(H�). ThenF1
� ⊂ D(L) is a core for L.

Proof. Note first thatA ∈ F1 iff A is of classC1(L) (see[ABG, Definition 6.2.2]).
Clearly F1 is dense inF for the strong operator topology. In fact, ifA ∈ F, then the
strong integralA� = �−1

∫ �
0 �t (A)dt belongs toF1 and converges strongly toA when

� → 0.
Since
� is cyclic for F, this implies thatF1
� is dense inH�. Moreover, since

L
� = 0, we have eitLF1
� = F1
� and F1
� ⊂ D(L). Thus Nelson’s theorem
implies thatF1
� is a core forL. �
Euclidean Green’s functions: Let

In+
	 := {(z1, . . . , zn) ∈ Cn | Im zj < Im zj+1, Im zn − Im z1 < 	}. (4)

It follows from a result of Araki[Ar1,Ar2] that, for A1, . . . , An ∈ F, the Green’s
function

G(t1, . . . , tn;A1, . . . , An) := �(

n∏
1

�ti (Ai))
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extends to a holomorphic function inIn+
	 , continuous onIn+

	 . In particular, one can
uniquely define theEuclidean Green’s functions

EG(s1, . . . , sn;A1, . . . , An) := G(is1, . . . , isn;A1, . . . , An)

for all (s1, . . . , sn) such thats1� · · · �sn and sn − s1�	. The correct way to view
such ann-tuple (s1, . . . , sn) is as ann-tuple of points on the circle of length	, ordered
counter-clockwise.

3.2. Stochastically positive KMS systems

Klein and Landau[KL1] introduced a class of KMS systems which they called
stochastically positive KMS systems. To a stochastically positive KMS system one can
associate a (unique up to equivalence)generalized path space(Q,�,�0, U(t), R,�)
(see Section 5) which has some special properties, the most important being the	-
periodicity in t and theOsterwalder–Schrader(OS)-positivity.
Conversely Klein and Landau have shown in[KL1] that to a generalized path space

satisfying the properties in Definition 5.1 one can associate a (unique up to unitary
equivalence) stochastically positive KMS system. This is an example of areconstruction
theorem; similar results are well-known in Euclidean QFT. A reconstruction theorem
allowing to go from Euclidean Green’s functions to a KMS system has recently been
proved in a general context by Birke and Fröhlich[BF].
The advantage of the Klein and Landau formalism is that it is relatively easy to

perturb the stochastic process associated to a KMS system, using functional integral
methods.

Definition 3.2. Let (F, �,�) be a KMS system andU ⊂ F an abelian∗-subalgebra.
The KMS system(F,U, �,�) is calledstochastically positiveif

(i) the C∗-algebra generated by
⋃

t∈R �t (U) is equal toF;

(ii) the Euclidean Green’s functionsEG(s1, . . . , sn;A1, . . . , An) are positive for all
A1, . . . , An ∈ U+ = {A ∈ U | A�0} and for all(s1, . . . , sn) such thats1� · · · �sn
and sn − s1�	.

It is often more convenient to consider instead of theC∗-algebrasF and U their
weak closures in the GNS representation, which we denote byF and U. We denote
by � the group{�t }t∈R of ∗-automorphisms ofF defined by�t (A) := eitLAe−itL. The
state� extends toF by setting�(A) := (
�,��(A)
�). The following fact has been
shown in [KL1, Proposition 3.4].

Proposition 3.3. Let (F,U, �,�) be a stochastically positive KMS system. Then(F,U,

�,�) is also a stochastically positive KMS system(in theW ∗-sense). I.e.,

(i) theW ∗-algebra generated by
⋃

t∈R �t (U) is equal toF;
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(ii) the Euclidean Green’s functionsEG(s1, . . . , sn;A1, . . . , An) are positive for all

A1, . . . , An ∈ U
+
and for all n-tuples(s1, . . . , sn) such that s1� · · · �sn and

sn − s1�	.

Now we show that stochastically positive KMS systems are invariant undertime
reversal, a fact that is well known for 0-temperature field theories (see for example
[Si1]).

Proposition 3.4. Let (F,U, �,�) be a stochastically positiveKMS system. Then there
exists an anti-unitary involution T onH� such that

(i) T FT −1 = F, TAT −1 = A∗ for A ∈ U;
(ii) T 
� = 
�, T �t (A) = �−t (A)T for A ∈ F, t ∈ R.

From the properties ofT we see thatT implements thetime reversal transformation.

Proof of Proposition 3.4. Let A1, A2 ∈ U. The mapz �→ �(A1�t (A2))|t=iz is holo-
morphic in {0< Rez < 	}. By stochastic positivity it is real on{Im z = 0} if Ai = A∗

i .
The Schwarz’s reflection principle implies

� (A1�t (A2))|t=iz = �(A1�t (A2))|t=iz̄ for Ai ∈ U, Ai = A∗
i .

For z = −it this yields

� (A1�t (A2)) = �(A1�−t (A2)) = � (�−t (A2)A1) for Ai ∈ U, Ai = A∗
i . (5)

By C-linearity this identity extends to allAi ∈ U. We can now define the antilinear
operator

T :
n∑

j=1
eitj LAj
� �→

n∑
j=1

e−itj LA∗
j
�. (6)

For u = ∑n
j=1 eitj LAj
� identity (5) implies

‖u‖2 =
(∑n

j=1 eitj LAj
�,
∑n

k=1 eitkLAk
�

)
= ∑

j,k

(

�, A∗

je
i(tk−tj )LAk
�

)
= ∑

j,k �
(
A∗

j�tk−tj (Ak)
)

= ∑
j,k �

(
�tj−tk (Ak)A

∗
j

)
= ∑

j,k

(

�, Akei(tk−tj )LA∗

j
�

)
= ∑

j,k

(
e−itkLA∗

k
�,e−itj LA∗
j
�

)
= ‖T u‖2.

ThusT is a well-defined antilinear operator. Moreover, using property (i) of Definition
3.2 and the fact that
� is cyclic for F, we conclude thatT has a dense domain and
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a dense range. HenceT extends uniquely to an anti-unitary operator. ClearlyT is an
involution. The other properties ofT follow directly from (6). �

4. Quasi-free KMS states

In this section, we recall some well-known facts about quasi-free KMS states and
describe a class of quasi-free KMS states which generate stochastically positive KMS
systems (see[KL2,GO]).

4.1. Quasi-free KMS states

Let X0 be a pre-Hilbert space,X the completion ofX0. Then (X0,�) is a real sym-
plectic space for� = Im( . , . ), and we denote byW(X0) the Weyl algebraW(X0,�).
Let a�0 be a selfadjoint operator onX such thatX0 ⊂ D(a− 1

2 ) and e−ita preserves
X0. Given a�0 the canonical choice forX0 is D(a− 1

2 ).
For 	 > 0 one defines a state�	 on W(X0) by the functional

�	(W(x)) := e−
1
4 (x,(1+2�)x), x ∈ X0, (7)

where� := (e	a − 1)−1. Since 1+ 2� = 1+e−	a

1−e−	a and a�0 the form domain of 1+ 2�

is equal toD(a− 1
2 ) ⊃ X0.

The state�	 is a (�o,	)-KMS state for the dynamics�o: t �→ �ot defined by

�ot :W(X0) → W(X0)

W(x) �→ W(eitax).

The state�	 is quasi-free(see [BR]) and the KMS system(W(X0), �o,�	) defined
above is called the quasi-free KMS systemassociated toa.
The standard example is the following one: let h�0 be a selfadjoint operator rep-

resenting theone particle energy. Assume that there exists a selfadjoint operatorq on
X representing theone particle chargesuch thatq2 = 1l, [h,q] = 0. Then we can
associate a group ofgauge transformations{�t }t∈[0,2�[,

�t : W(X0) → W(X0)

W(x) �→ W(eitqx)

to the charge operatorq. Let � ∈ R such that h− �q�� > 0. Thus the range for
the value of the chemical potential�, which we consider, excludes Bose–Einstein

condensation. It follows that a:= h−�q > 0 and henceX0 = D(a− 1
2 ) = X. Therefore,

the unique quasi-free KMS state onW(X) at inverse temperature	 and chemical
potential� is the state�	 defined by (7).
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4.2. Araki–Woods representation

Let us consider a quasi-free KMS system associated to a selfadjoint operator a as
in Section 4.1. Let X be the conjugate Hilbert space toX. Elements ofX will be
denoted byx. Equivalently, we denote byX � x �→ x ∈ X the identity operator, which
is antilinear. If a is a linear operator onX, we denote bya the linear operator onX
defined byax := ax. If h is a Hilbert space, then

�(h) =
+∞⊕
n=0

⊗n
sh

denotes the bosonic Fock space overh

We set

H� := �(X ⊕ X),


� := 
,

W�,l(x) := WF

(
(1+ �)

1
2x ⊕ �

1
2x
)
, x ∈ X0,

W�,r(x) := WF

(
�
1
2x ⊕ (1+ �)

1
2x
)
, x ∈ X0,

whereWF(.) denotes the Fock space Weyl operator on�(X ⊕ X) and
 ∈ �(X ⊕ X)

denotes the Fock vacuum.
The following facts are well known:

(i) The mapW(x) �→ W�,l/r(x) ∈ U(H�) defines a regular CCR representations;
(ii) [W�,l(x),W�,r(y)] = 0 for x, y ∈ X0;
(iii) (
�,W�,l(x)
�) = �(W(x)) for x ∈ X0;
(iv) Let L := d�(a⊕ −a) act onH�. Then

e−itL
� = 
�, eitLW�,l(x)e
−itL = W�,l(e

itax), x ∈ X0;

(v) The vector
 is cyclic for the representationsW�,l/r(.).

In particular, the Araki–Woods representation is the GNS representation for the KMS
system

(
W(X,�), �o,�

)
and L is the associated Liouvillean.

We will only consider the left Araki–Woods representation, thus will forget the
subscript l and writeW�(x) := W�,l(x), x ∈ X. The creation–annihilation operators
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associated toW�(.) are

a∗
�(x) = a∗

F((1+ �)
1
2x ⊕ 0) + aF(0⊕ �

1
2x),

a�(x) = aF((1+ �)
1
2x ⊕ 0) + a∗

F(0⊕ �
1
2x).

4.3. Field algebras

We recall that aconjugationon a Hilbert spaceX is an anti-unitary involution on
X. Let us assume thatX is equipped with a conjugation�. To � we associate the real
vector spaceX� := {x ∈ X | �x = x}. Let � be the quasi-free state associated to a
selfadjoint operator a, as defined in Section4.1, and letH� be the Araki–Woods space
introduced in Section4.2.
We will denote byW ⊂ B(H�) the field algebra, i.e., the von Neumann algebra

generated by the{W�(x) | x ∈ X} and byW� ⊂ B(H�) the von Neumann algebra
generated by{W�(x) | x ∈ X�}. Since the symplectic form� vanishes onX�, the
algebraW� is abelian.

Lemma 4.1. Assume thata = h− �q, where h and q are selfadjoint operators such
that [h,q] = 0, q2 = 1, h�m > 0 and |�| < m. Let � be a conjugation on X such
that [h,�] = 0. ThenW is the von Neumann algebra generated by{eitLAe−itL | t ∈
R, A ∈ W�}.

Proof. Clearly {eitLAe−itL | t ∈ R, A ∈ W�} ⊂ W, so it suffices to prove the converse

inclusion. Using the CCR, the facts that(1+ �)
1
2 and �

1
2 are bounded, and the fact

that the map

X ⊕ X � x1 ⊕ x2 �→ WF(x1 ⊕ x2) ∈ B(H�)

is continuous for the strong topology, it suffices to verify that

E = VectR{eit (h−�q)x, t ∈ R, x ∈ X�} is dense inX. (8)

ClearlyE containsX�, and by differentiating with respect tot, we see thatE contains
also {i(h− �q)x | x ∈ X� ∩ D(h)}. We now claim that for eachx ∈ X there exists
x1 ∈ X� and x2 ∈ X� ∩ D(h) such that

x = x1 + i(h− �q)x2.

This will imply (8). In fact, theR-linear map r = 1
2�qh

−1(1 − �) has norm less
than |�|m−1 < 1, so for x ∈ X we can findy ∈ X such thaty − ry = x. If x1 =
1
2(y + �y) and x2 = 1

2(ih)
−1(y − �y), then both are elements ofX�, since[h,�] = 0.
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Now

x1 + i(h− �q)x2 = y − i

2
�qh−1(y − �y) = y − ry = x �.

4.4. Observable algebras

The gauge transformations�t on W(X0,�) can be unitarily implemented in the
Araki–Woods representation:

�t (W�(x)) = eitQW�(x)e−itQ,

whereQ := d�(q⊕ −q).
We denote byA the observable algebra

A :=
{
A ∈ W | eitQAe−itQ = A, t ∈ [0,2�[

}

and byA� the abelian observable algebraA� := A ∩ W�.

Lemma 4.2. Assume thath�m > 0 and |�| < m. Let � be a conjugation on X such
that [h,�] = 0. ThenA is the von Neumann algebra generated by{eitLAe−itL | t ∈
R, A ∈ A�}.

Proof. Clearly eitLAe−itL ∈ A, if A ∈ A�, since [L,Q] = 0. Conversely, letA ∈ A.
By Lemma4.1 there exists a net{Ai}i∈I in the algebra generated by{eitLAe−itL, t ∈
R, A ∈ W�} such thatA = s- limAi . For R ∈ B(H�), let Rav := (2�)−1

∫ 2�
0 eitQ

Re−itQ dt be the average ofR with respect to the gauge group. Then by dominated
convergence s- limAav

i = Aav = A. Since [L,Q] = 0, we have(eitLRe−itL)av =
eitLRave−itL, which implies the lemma.�

Lemma 4.3.We haveA
� = {u ∈ H� | Qu = 0}.

Proof. SinceQ
� = 0 we haveA
� ⊂ KerQ. Let now u ∈ KerQ. If {Ai ∈ W}i∈I

is a net such that limAi
� = u, then

u = 1

2�

∫ 2�

0
eitQudt = lim

1

2�

∫ 2�

0
eitQAie

−itQ
� dt = lim Aav
i 
�,

which proves the lemma sinceAav
i ∈ A. �
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4.5. Stochastic positivity

In this subsection, we give a criterion for the stochastic positivity of a quasi-free
KMS system.
The following lemma is due to Klein and Landau[KL2] .

Lemma 4.4. Let a�0 be a selfadjoint operator on a Hilbert space X. LetR � s →
r(s) ∈ B(X) be the	-periodic operator-valued function defined by

r(s) = e−sa + e(s−	)a

1− e−	a
, 0�s < 	.

Then, for xi ∈ X and si ∈ R, one has

∑
i,j

(
xi, r(sj − si)xj

)
�0.

Proof. Using the spectral decomposition of a, we can assume thatxi ∈ C and a�0
is a positive real number. Hence it is sufficient to verify thatr(s) is a distribution of
positive type. But this follows from Bochner’s theorem and the fact that the Fourier
transform ofr is

∑
n∈Z rn�(. − 2�/n), wherern = 2a

a2+(2�n/	)2 �0. �

Theorem 4.5. Let X be a Hilbert space equipped with a conjugation� and a�m > 0
a selfadjoint operator on X such that[a,�] = 0. Let X� ⊂ X be the real vector space
associated to�.
Let (W, �o,�) be the quasi-free KMS system associated toa and letW� ⊂ W be

the abelian von Neumann algebra generated by{W�(x) | x ∈ X�}. Then the KMS
system(W,W�, �o,�) is stochastically positive.

Proof. We start by computing the Euclidean Green’s functions. Using the CCR we get,
for xj ∈ X and 1�j �n,

n∏
1

W(xj ) =
∏

1� i � j �n

e−
i
2�(xi ,xj )W(

n∑
1

xj ).

We denote by

G(t1, . . . , tn;W(x1), . . . ,W(xn)) = �(

n∏
j=1

W(eitjaxj ))
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the Green’s functions for the Weyl operatorsW(xj ), 1�j �n. Now

G(t1, . . . , tn;W(x1), . . . ,W(xn))

=
∏

1� i<j �n

e−i Im(xi ,e
i(tj −ti )axj )e−

1
4 (
∑n
1 eitj axj ,(1+2�) ∑n

1 eitj axj )

=
∏n

1
e−

1
4 (xi ,(1+2�)xi )

∏
1� i<j �n

e−
1
2R(tj−ti )(xi ,xj ),

where

R(t)(x, y) =
(
x, (1− e−	a)−1eitay

)
+
(
y,e−	a(1− e−	a)−1eitax

)
.

For x, y ∈ X the functiont �→ R(t)(x, y) has a holomorphic extension to 0< Im z < 	
such that the function(t1, . . . , tn) �→ G(t1, . . . , tn;W(x1), . . . ,W(xn)) is holomorphic

in the setIn+
	 defined in (4) and continuous onIn+

	 with holomorphic extension

(�1, . . . , �n) �→
n∏
1

e−
1
4 (xi ,(1+2�)xi )

∏
1� i<j �n

e−
1
2R(�j−�i )(xi ,xj ).

Hence, the Euclidean Green’s functions

EG(s1, . . . , sn;W(x1), . . . ,W(xn)) =
n∏
1

e−
1
2C(0)(xi ,xi )

∏
1� i<j �n

e−C(sj−si )(xi ,xj ),

where

C(s)(x, y) := 1

2

(
x, (1− e−	a)−1e−say

)
+ 1

2

(
y, (1− e−	a)−1e(s−	)ax

)
.

Using the fact that�a= a� we get

C(s)(x, y) = 1

2

(
x,
e−sa + e(s−	)a

1− e−	a
y

)
for x, y ∈ X�.

Thus, forxj ∈ X� and 1�j �n,

EG(s1, . . . , sn;W(x1), . . . ,W(xn)) =
∏

1� i,j �n

e−
1
2C(|si−sj |)(xi ,xj ). (9)
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We will now prove the stochastic positivity. We will use the Araki–Woods representation
described in Section4.2. The operators of the formF

(

�(x1), . . . ,
�(xn)

)
for xi ∈

X� andF ∈ C∞
0 (Rn) (resp.F ∈ C∞

0 (Rn) andF �0) are strongly dense inW� (resp.
in W+

� ). We have to show that if(s1, . . . , sn) is a n-tuple such thats1� · · · �sn and
sn − s1�	, andAi ∈ W+

� , then

EG(s1, . . . , sn;A1, . . . , An)�0. (10)

By [KL1, Theorem 2.2]and a density argument it suffices to prove (10) for Ai of the
form given above.
Let now m ∈ N, m�1, ki ∈ N with ki �1 for 1� i�n and

∑n
1 ki = m, li :=∑

j � i−1 kj . For t = (t1, . . . , tm) ∈ Rm, x1, . . . , xm ∈ X�, and Fi ∈ C∞
0 (Rki ) with

Fi �0 we setti = (tli , . . . , tli+1) ∈ Rki and take

Ai=Fi

(

�(xli ), . . . ,
�(xli+1)

)
=(2�)−ki

∫
F̂i(tli , . . . , tli+1)W�(

∑li+1
li

tj xj ) dtli . . .dtli+1.

Now setfi(ti ) = ∑li+1
li

tj xj . It follows that:

EG(s1, . . . , sn;A1, . . . , An)

= (2�)−m

∫ ∏n

1
dti F̂i (ti )G

(
is1, . . . , isn;W(f1(t1)), . . . ,W(fn(tn))

)
.

We recall that by (9)

EG
(
s1, . . . , sn;W(f1(t1)), . . . ,W(fn(tn))

)
=
∏

1� i,j �n
e−

1
2C(|si−sj |)(fi (ti ),fj (tj )) =: e−Q(t1,...,tm),

whereQ(t1, . . . , tm) is a quadratic form. Applying Lemma4.4, we see thatQ is a
positive quadratic form, and hence the inverse Fourier transformF−1 (e−Q(...)

)
is a

positive function. This implies that

EG(s1, . . . , sn;A1, . . . , An) = (F1 ⊗ · · · ⊗ Fn) ∗ F−1 (e−Q
)
(0)

is positive as the value at 0 of the convolution of two positive functions.�
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4.6. Markov property

In this subsection, we show a result which implies that the generalized path space
associated to the quasi-free KMS system(W,W�, �o,�) considered in Section4.1 has
theMarkov property (see Section6.5).

Lemma 4.6. Let X be a Hilbert space equipped with a conjugation� and a�m > 0
a selfadjoint operator on X such that[a,�] = 0. Let X� ⊂ X be the real vector space
associated to�.
Let (W(X), �o,�) be the quasi-free KMS system associated toa and letW� ⊂ W

be the abelian von Neumann algebra generated by{W�(x) | x ∈ X�}. Let (H�, L,
�)

be the Araki–Woods objects defined in Section4.2. Then the space{Ae− 	
2LB
, A, B ∈

W�} is dense inH�.

Proof. The function

eitLW�,l(y)
�=W�,l(e
itay)
�

=WF

(
(1+ �)

1
2 eitay ⊕ (�)

1
2 e−itay

)

=eia
∗
F

(
(1+�)

1
2 eitay⊕(�)

1
2 e−itay

)
e−

1
2 (y,(1+2�)y)
�

is analytic in {0< Im z<
	
2} and continuous on{0� Im z� 	

2}, and

e−	L/2W�,l(y)
�=eia
∗
F

(
(1+�)

1
2 e−	a/2y⊕(�)

1
2 e	a/2y

)
e−

1
2 (y,(1+2�)y)
�

=W�,r (y)
�.

Hence, forA = W�,l(x) andB = W�,r(y), one has

Ae−
	
2LB


= W�,l(x)W�,r(y)
 = WF

(
(1+ �)

1
2x ⊕ �x

)
WF

(
�
1
2y ⊕ (1+ �)

1
2 y
)


. (11)

Let M be the von Neumann algebra generated by{W�,l(x),W�,r(y) | x, y ∈ X�}. By
(11) the von Neumann algebra generated by

{
WF

(
(1+ �)

1
2x + �

1
2y ⊕ �

1
2x

+(1+ �)
1
2y
)

| x, y ∈ X�

}
is equal toM. Since[a,�] = 0, the operator

(
(1+ �)

1
2 �

1
2

�
1
2 (1+ �)

1
2

)
: X ⊕ X → X ⊕ X
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sendsX� ⊕ X� into itself. It is invertible with inverse

(
(1+ �)

1
2 −�

1
2

−�
1
2 (1+ �)

1
2

)
.

ThusM is equal to the von Neumann algebra generated by{WF(x ⊕y), x, y ∈ X�}. It
is well known that ifh is a Hilbert space and c is a conjugation onh, then the vacuum
vector
 is cyclic in the Fock space�(h) for the algebra generated by{WF(h) |ch = h}
(see e.g.[DG, Section 5.2]and references therein). We apply this result toh = X⊕X,
c= � ⊕ � and obtain the lemma. �

5. Generalized path spaces

In [KL1] a canonical isomorphism is constructed between a stochastically positive	-
KMS system(W,W�, �o,�) and a	-periodicstochastic process(Q,�,�, Xt ) indexed
by the circleS	 of length	, with values in the compact Hausdorff spaceK = Sp(W�),
the spectrum ofW�.
We recall that astochastic process(Q,�,�, Xt ) indexed by an intervalI ⊂ R with

values in a topological spaceK consists of

(i) a probability space(Q,�,�);
(ii) a family {Xt }t∈I of measurable functionsXt :Q → K.
Typically it is required that the mapI ∈ t �→ Xt is continuous in measure.
The stochastic process(Q,�,�, Xt ) associated to a stochastically positive	-KMS

system in[KL1] satisfies four important properties:stationarity, symmetry, 	-periodicity
andOsterwalder–Schrader positivity(see[KL1, Section 4]).
It turns out that the only really important feature of such a stochastic process is the

underlyinggeneralized path space, which consists of the sub�-algebra�0 generated by
the functionsF(X0) for F ∈ C(K), the automorphism groupU(t) of L∞(Q,�,�) gen-
erated by the time translationsU(t):F(Xt1, . . . , Xtt ) �→ F(Xt1+t , . . . , Xtn+t ) for F ∈
C(Kn) and the automorphismR of L∞(Q,�,�) generated byR:F(Xt1, . . . , Xtt ) �→
F(X−t1, . . . , X−tn ).
In particular, the detailed knowledge of the random variablesXt and of the topolog-

ical spaceK is not necessary.
(Note that time translations on the path space will correspond to imaginary time

translations on the physical Hilbert space).
The analog of the constructions of[KL1] for 	 = ∞ done by Klein[K] is formulated

in terms of generalized path spaces. Using this essentially equivalent formulation turns
out to be more convenient in applications. We now proceed to a more precise description
of this structure, taken from[KL1,K] .
If �i , for i in an index setI, is a family of subsets of a setQ, we denote by

∨
i∈I �i

the �-algebra generated by
⋃

i∈J Ui , whereUi ∈ �i and J are countable subsets ofI.
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Definition 5.1. A generalized path space(Q,�,�0, U(t), R,�) consists of

(i) a probability space(Q,�,�);
(ii) a distinguished sub�-algebra�0;
(iii) a one-parameter groupR � t �→ U(t) of measure preserving∗-automorphisms of

L∞(Q,�,�), which is strongly continuous in measure;
(iv) a measure preserving∗-automorphismR of L∞(Q,�,�) such thatRU(t) =

U(−t)R, R2 = 1l, RE0 = E0R, whereE0 is the conditional expectation w.r.t. the
�-algebra�0.

Moreover one requires that

(v) � = ∨
t∈R U(t)�0.

It follows from (iii) and (iv) that U(t) extends to a strongly continuous group of
isometries ofLp(Q,�,�), andR extends to an isometry ofLp(Q,�,�), for 1�p <

∞.
We say that the path space(Q,�,�0, U(t), R,�) is 	-periodic for 	 > 0 if U(	) =

1l. On a	-periodic path space we can consider the one-parameter groupU(t) as indexed
by the circleS	 = [−	/2,	/2].
For I ⊂ R we denote byEI the conditional expectation with respect to the�-algebra

�I := ∨
t∈I U(t)�0.

Definition 5.2. 0-temperature case: A path space(Q,�,�0, U(t), R,�) is OS-positive
if E[0,+∞[RE[0,+∞[ �0 as an operator onL2(Q,�,�).
Positive temperature case: A 	-periodic path space(Q,�,�0, U(t), R,�) is OS-

positive if E[0,	/2]RE[0,	/2] �0 as an operator onL2(Q,�,�).

In order to simplify the notation we setE0 = E{0}, �+ = �[0,+∞[, E+ = E[0,+∞[,
�− = �]−∞,0] and E− = E]−∞,0]. If the path space(Q,�,�0, U(t), R,�) is 	-
periodic, we set�+ = �[0,	/2], E+ = E[0,	/2], �− = �[−	/2,0] andE− = E[−	/2,0].

Definition 5.3. A path space(Q,�,�0, U(t), R,�) is a Markov path spaceif it has
the

(i) reflection property: RE0 = E0 (resp. RE{0,	/2} = E{0,	/2});
(ii) Markov property: E+E− = E+E0E− (resp.E+E− = E+E{0,	/2}E−).
It follows that E+RE+ = E−E+ = E+E− = E0 (resp. E+RE+ = E−E+ =

E+E− = E{0,	/2}) .

A Markov path space is OS-positive becauseE0 (resp.E{0,	/2}) is positive as an
orthonormal projection. An OS-positive path space satisfies the reflection property (see
[K, Proposition 1.6]).
Let (F,U, �,�) be a stochastically positive	-KMS system. LetK := Sp(U) be the

spectrum of the abelianC∗-algebraU , which equipped with the weak topology is a
compact Hausdorff space. LetQ := K [−	/2,	/2] be equipped with the product topology
and let� be the Baire�-algebra onQ.
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Theorem 5.4 (Klein and Landau[KL1] ). Let (F,U, �,�) be a stochastically positive
	-KMS system. Then there exists a Baire probability measure� on Q, a sub�-algebra
�0 ⊂ �, a measure preserving groupU(t) of ∗-automorphisms ofL∞(Q,�,�) and a
measure preserving automorphism R ofL∞(Q,�,�) such that(Q,�,�0, U(t), R,�)
is an OS-positive	-periodic generalized path space.

A more precise relationship between the	-KMS system and the generalized path
space will be given in Theorem6.7.

6. Reconstruction theorems

In this section, we recall reconstruction theorems of Klein[K] and Klein and Lan-
dau [KL1] which associate a stochastically positive	-KMS system to an OS-positive
generalized path space(Q,�,�0, U(t), R,�).
To simplify notation, we allow the parameter	 to take values in]0,+∞]. The case

	 = +∞ corresponds to the 0-temperature case. If	 < ∞, then the OS-positive path
spaces will be assumed to be	-periodic.

6.1. Physical Hilbert space

SetHOS := L2(Q,�+,�) and

(F,G) :=
∫
Q

R(F)Gd�, F,G ∈ HOS.

By OS-positivity

0�(F, F )�‖F‖2HOS
.

If we set N := KerE+RE+, then (·, ·) is a positive definite sesquilinear form on
HOS/N .
The physical Hilbert space, denoted byHphys (or simply byH) is

H := completion ofHOS/N for (·, ·).

If we denote byV:HOS → HOS/N the canonical projection, thenV extends uniquely
to a contraction with dense range:HOS → H. In fact

(VF,VF) = (F, F )�‖F‖2HOS
.

In the physical Hilbert spaceH we find adistinguished vector


 := V(1).
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6.2. Selfadjoint operator

The 0-temperature case:

Proposition 6.1 (Klein [K, Theorem 1.7]). Let (Q,�,�0, U(t), R,�) be an OS-
positive generalized path space. Fort �0 the time evolutionU(t) mapsN → N .
Hence the linear operator

P(t):HOS/N � V(F ) �→ V(U(t)F ) ∈ HOS/N

is well defined fort �0.
The family{P(t)}t �0 uniquely extends to a strongly continuous selfadjoint semigroup

of contractions{e−tH }t �0 on H, where H is a positive selfadjoint operator such that
H
 = 0.

The positive temperature case: We first recall the definition of a local symmetric
semigroup ([KL3,Fr1]):

Definition 6.2. Let H be a Hilbert space andT > 0. A local symmetric semigroup
(P (t),Dt , T ) is a family {P(t),Dt }t∈[0,T ] of linear operatorsP(t) and vector subspaces
Dt of H such that

(i) D0 = H, Dt ⊃ Ds if 0� t �s�T andD = ∪0<t �T Dt is dense inH;
(ii) P(t):Dt → H is a symmetric linear operator withP(0) = 1l, P(s)Dt ⊂ Dt−s for

0�s� t �T andP(t)P (s) = P(t + s) on Dt+s for t, s, t + s ∈ [0, T ].
(iii) t �→ P(t) is weakly continuous, i.e., foru ∈ Ds and 0� t �s the map t �→

(u, P (t)u) is continuous.

The following theorem was shown in[KL3,Fr1].

Theorem 6.3. Let (P (t),Dt , T ) be a local symmetric semigroup onH. Then there
exists a unique selfadjoint operator L onH such that

(i) Dt ⊂ D(e−tL), e−tL
|Dt

= P(t) for 0� t �T ;
(ii) D]0,T ′] := ∪0<t �T ′ ∪0<s<t P (s)Dt is a core for L for0< T ′ �T .

Proposition 6.4 (Klein and Landau[KL1, Lemma 8.3]). Let (Q,�,�0, U(t), R,�) be
a 	-periodic OS-positive path space. SetMt := L2(Q,�[0,	/2−t],�) for 0� t �	/2.
Then

(i) U(s):Mt ∩ N → Mt−s ∩ N for 0�s� t �	/2. If Dt := V(Mt ), then the linear
operator

P(s): Dt → Dt−s ,

V(F ) �→ V(U(s)F )

is well defined;
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(ii) (P (t),Dt ,	/2) is a local symmetric semigroup.
By Theorem6.3 there exists a unique selfadjoint operator L such thatP(t)|Dt

= e−tL.
MoreoverL
 = 0.

6.3. Algebras of operators

AbelianC∗-algebraU : Let f ∈ L∞(Q,�0,�). Since�0 ⊂ �+, f acts as a multipli-
cation operator onHOS, which we will still denoted byf.

Proposition 6.5 (Klein and Landau[KL1, Lemma 2.2]). For f ∈ L∞(Q,�0,�) the
multiplication operator f preservesN . Hence

f̃V(F ) := V(f F )

defines a unique element ofB(H) with ‖f̃ ‖ = ‖f ‖∞. Let U ⊂ B(H) be defined by

U := {f̃ | f ∈ L∞(Q,�0,�)}.

ThenU is a von Neumann algebra isomorphic toL∞(Q,�0,�) and
 is a separating
vector forU .

We will denote byU+ the set of positive elements inU .
Full algebra F and automorphism group:

Definition 6.6. Let F ⊂ B(H) denote the von Neumann algebra generated by{eitH
Ae−itH | A ∈ U, t ∈ R} for 	 = ∞ (resp. {eitLAe−itL | A ∈ U, t ∈ R} for 	 < ∞).
We denote by{�t }t∈R the strongly continuous group of automorphisms ofF defined
by �t (B) = eitHBe−itH for B ∈ F , t ∈ R and 	 = ∞ (resp.�t (B) = eitLBe−itL for
B ∈ F , t ∈ R and 	 < ∞).

6.4. 	-KMS system associated to a	-periodic path space

In case	 < ∞ one can associate to a	-periodic OS positive path space a stochasti-
cally positive	-KMS system (see[KL1] ). (The analog object in case	 = ∞ is called
a positive semigroup structure[K] ). Let, for n ∈ N and 	 > 0,

J n+
	 := {(t1, . . . , tn) ∈ Rn | ti �0, t1 + · · · + tn�	/2}.

Theorem 6.7 (Klein and Landau[KL1] ). Let L be the selfadjoint operator associated
to the local symmetric semigroup(P (t),Dt ,	/2). It follows that:

(i) 
 ∈ D(L) and L
 = 0;

(ii) if n ∈ N, (t1, . . . , tn) ∈ J n+
	 and A1, . . . , An ∈ U , thenAn

(∏1
n−1 e−tj LAj

)

 ∈

D(e−tnL). The vector span of these vectors is dense inH;
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(iii) if f1, . . . , fn ∈ L∞(Q,�0,�) and 0�s1� · · · �sn�	/2, then

V(

n∏
1

U(sj )fj ) = e−s1Lf̃1(

n∏
2

e−(sj−sj−1)Lf̃j )
,

where f̃j is defined in Proposition6.5.
(iv) if n ∈ N, (t1, . . . , tn) ∈ J n+

	 and A1, . . . , An, B1, . . . , Bn ∈ U+, then

(An(

1∏
n−1

e−tj LAj )
 , Bn(

1∏
n−1

e−tj LBj )
)�0;

(v) ‖e−	/2LA
‖ = ‖A∗
‖ for all A ∈ U .

Theorem 6.8 (Klein and Landau[KL1] ). Let �
 be the state onF defined by�
(B)

= (
, B
). Then (F,U, �,�
) is a stochastically positive	-KMS system.

Finally, let J be the modular conjugation associated to the KMS system(F, �,�
).

Proposition 6.9 (Klein and Landau[KL1] ). The modular conjugation J is the unique
extension of

JV(F ) = V(R	/4F), (12)

where

R	/4 := U(	/4)RU(−	/4) = RU(−	/2) = U(	/2)R

is the reflection att = 	/4 in HOS.

6.5. Markov property for	-periodic path spaces

We recall a characterization of the Markov property for a	-periodic path space in
terms of the associated stochastically positive	-KMS system due to Klein and Landau
[KL1] .

Theorem 6.10.A 	-periodic OS-positive path space(Q,�,�0, U(t), R,�) satisfies the

Markov property iff the vectorsAe−
	
2LB
 for A,B ∈ U are dense inH. In this case

H = L2(Q,�{0,	/2},�).

Proof. The first statement of the theorem is shown in[KL1, Theorem 11.2]. The second
statement is obvious: it follows from the Markov property thatE[0,	/2]RE[0,	/2] =
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E{0,	/2} is a projection, henceHOS/N is canonically identified withE{0,	/2}HOS =
L2(Q,�{0,	/2},�). �

Theorem 6.11.Let (W,W�, �o,�	) be the quasi-free KMS system associated to a
selfadjoint operatora�0 and a conjugation� with [a,�] = 0. Then the OS-positive
generalized path space(Q,�,�0, U(t), R,�) associated to(W(X),W�(X), �o,�	)

satisfies the Markov property.

Proof. Stochastic positivity of the quasi-free KMS system(W,W�, �o,�	) was shown
in Theorem 4.5. The Markov property follows from Lemma 4.6 and Theorem 6.10.

�

7. Perturbations of generalized path spaces

In this section, we recall some results concerning perturbations of OS-positive path
spaces.

7.1. FKN kernels

Let (Q,�,�0, U(t), R,�) be an OS-positive path space.

Definition 7.1. A Feynman–Kac–Nelson(FKN) kernel is a family {F[a,b]} of real mea-
surable functions on(Q,�,�) such that, for 0�b − a�	,

(i) F[a,b] > 0 �-a.e.;
(ii) F[a,b] ∈ L1(Q,�,�) andF[a,b] is continuous inL1(Q,�,�) as a function ofb;
(iii) F[a,b]F[b,c] = F[a,c] for a�b�c, c − a�	;
(iv) U(s)F[a,b] = F[a+s,b+s] for s ∈ R;
(v) RF[a,b] = F[−b,−a].

The main examples of FKN kernels are those associated to a selfadjoint operatorV
affiliated to U . In [KL1,K] perturbations associated to more general FKN kernels are
considered. However, the present case is sufficient for our applications.
Let V be a selfadjoint operator affiliated toU . Since by Proposition 6.5 the algebra

U is isomorphic toL∞(Q,�0,�), we can uniquely associate toV a real function on
Q, measurable with respect to�0, which we will still denote byV.

Proposition 7.2. Let (Q,�,�0, U(t), R,�) be a 	-periodic OS-positive path space
and let V be a selfadjoint operator affiliated toU such thatV ∈ L1(Q,�0,�), and
e−T V ∈ L1(Q,�0,�) for someT > 0 if 	 = ∞ or e−	V ∈ L1(Q,�0,�) if 	 < ∞.
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Then

(i) the family of functionsF[a,b] := e−
∫ b
a U(t)V dt for 0�b − a� inf (T ,	)/2 is a FKN

kernel;
(ii) F[0,s] ∈ L2(Q,�[0,s],�) for 0�s� inf (T ,	)/2 and the maps �→ F[0,s] is contin-

uous inL2(Q,�[0,	/2],�).

Proof. All properties required in Definition7.1 except from property (ii) follow directly
from the definition ofU(t) and the properties of the path space(Q,�,�0, U(t), R,�).
Let us now verify (ii). WritingV = V+ − V−, whereV± is the positive/negative part

of V, we haveF[a,b] � exp
(∫ b

a
U(t)V− dt

)
, and henceF 2[0,s] � exp

(
2
∫ 	/2
0 U(t)V−dt

)
.

Since � is a probability measure, we haveV−, e	V− ∈ L1(Q,�0,�). We recall the
following bound from[KL4, Theorem 6.2 (i)]:

‖e−
∫ b
a U(t)V dt‖Lp(Q,�,�)�‖e−(b−a)V ‖Lp(Q,�,�), 1�p < ∞. (13)

This yields

‖F 2[0,s]‖L1(Q,�,�)�‖e2
∫ 	/2
0 U(t)V− dt‖L1(Q,�,�)�‖e	V−‖L1(Q,�,�) < ∞.

Hence F[0,s] ∈ L2(Q,�[0,	/2],�) for 0�s� inf (T ,	)/2. The continuity w.r.t. tos
follows from the dominated convergence theorem. This completes the proof of (ii).
The proof of property (ii) from Definition7.1 for 0�a follows from (ii) and the

fact thatL2(Q,�,�) ⊂ L1(Q,�,�). The caseb�0 is reduced to the casea�0 using
property (v). Finally, the casea < 0< b follows from the identityF[a,b] = F[a,0]F[0,b].

�

7.2. Selfadjoint operator associated to a FKN kernel

In this subsection, we recall a result of Klein and Landau[KL1] , allowing us to
construct a selfadjoint operator starting from a FKN kernel associated to a selfadjoint
operatorV, which is affiliated toU . To keep the exposition compact, we will use the
convention for the parameter	 explained at the beginning of Section6.
Let (Q,�,�0, U(t), R,�) be an OS positive path space andV a selfadjoint operator

affiliated to U such thatV ∈ L1(Q,�,�) and e−T V ∈ L1(Q,�0,�) for someT > 0.
Let F[a,b] be the associated FKN kernel.
Let, for 0<t<T/2, Mt be the linear span

⋃
0� s �T/2−t F[0,s]L∞(Q,�[0,T /2−t],�).

Set

UV (s): Mt → L2(Q,�+,�)
� �→ F[0,s]U(s)�,

0�s� t.
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Lemma 7.3.
(i) For � ∈ Mt the map

[0, t] � s �→ UV (s)� ∈ L2(Q,�+,�)

is continuous on[0, t].
(ii) UV (s):Mt ∩ N → N for 0�s� t < T/2.

Proof. Using the definition ofMt and the properties of the FKN kernelF[a,b] it
suffices to show that for� ∈ L∞(Q,�[0,T /2−t],�) the maps → UV (s)� is continuous
at s = s′, 0< s′ � t < T/2. For 0�s, s′ � t < T/2 we have

UV (s′)� − UV (s)� = F[0,s′]
(
U(s′)� − U(s)�

)+ (
F[0,s′] − F[0,s]

)
U(s)�.

Hence

‖UV (s′)� − UV (s)�‖22
�
∫
Q

F 2
[0,s′]|U(s′)� − U(s)�|2 d� +

∫
Q

(F[0,s] − F[0,s′])2|U(s)�|2 d�

�
∫

{|U(s′)�−U(s)�|(q)>�}
F 2

[0,s′]|U(s′)� − U(s)�|2 d�

+
∫

{|U(s′)�−U(s)�|(q)� �}
F 2

[0,s′]|U(s′)� − U(s)�|2 d�

+ ‖F[0,s′] − F[0,s]‖22‖�‖2∞.

The last term on the r.h.s. tends to 0 ifs → s′ as a consequence of Proposition7.2.
The second term on the r.h.s. is less than�2‖F[0,s′]‖22. To estimate the first term, we
write the functionf := F 2

[0,s′] as f 1l{|f (q)|�M} + f 1l{|f (q)|>M}. It follows that:∫
{|U(s′)�−U(s)�|(q)>�}

f |U(s′)� − U(s)�|2 d�

�4M‖�‖2∞
∫
1l{|U(s′)�−U(s)�|(q)>�} d� + 4‖f 1l{|f (q)|>M}‖1‖�‖2∞.

Since f ∈ L1(Q,�+,�), the second term tends to 0 asM → ∞. Since U(t) is
strongly continuous in measure, the first term tends to 0 ass → s′. Picking first� ! 1,
thenM " 1 and finally |s − s′| ! 1 we obtain (i).
Let us now prove (ii). Let 0�s� t < T/2. Note thatUV (s) sendsMs into L2

(Q,�+,�). Let us fix � ∈ Mt . First we consider the cases < t . For 0< r�s and
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s + r� t we have

(UV (s)�, UV (s)�)=
∫
Q

F[0,s]U(s)�RF[0,s]U(s)�d�

=
∫
Q

F[−r,s−r]U(s − r)�U(−r)RF[0,s]U(s)�d�

=
∫
Q

F[−r,s−r]U(s − r)�RF[r,s+r]U(s + r)�d�

=
∫
Q

F[0,s−r]U(s − r)�RF[0,s+r]U(s + r)�d�

=(UV (s − r)�, UV (s + r)�).

Since ( . , . ) is positive, the Cauchy–Schwartz inequality implies

(
UV (s)�, UV (s)�

)
�
(
UV (s − r)�, UV (s − r)�

) 1
2
(
UV (s + r)�, UV (s + r)�

) 1
2 .

Thus, by induction,

(
UV (s)�, UV (s)�

)
�‖UV (s − nr)�‖

∏n−1
j=0

(
UV (s − (j − 1)r)�, UV (s − (j − 1)r)�

) 1
2 .

If we pick 0 < r < s, s = nr, such that s + r� t , then (�,�) = 0
implies

(
U(s)�, U(s)�

) = 0. Finally, (ii) for s = t follows from (ii) for s < t

and (i). �

Theorem 7.4. Let 0< t < T/2, Dt = V(Mt ) and 0�s� t . Then

PV (s): Dt → H
V(�) �→ V(F[0,s]U(s)�)

is a well-defined linear operator, and (Dt , PV (t), T /2) is a local symmetric semigroup
on H. We denote byHV the associated selfadjoint operator.

Proof. The fact thatPV (s) is well defined follows from Lemma 7.3 (ii). Property (ii)
of Definition 6.2 follows from the properties of the FKN kernelF[a,b]. Monotonicity
of the family {Dt } w.r.t. inclusions is immediate. ThatD = ∪0<t �T Dt is dense inH
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follows from the fact thatD containsV (L∞(Q,�+,�)). Finally, property (iii) follows
from the continuity property stated in Lemma7.3. �

Theorem 7.5 (Klein and Landau[KL1, Theorem 16.4]). Let V be a selfadjoint oper-
ator affiliated toU such thatV ∈ L1(Q,�0,�) and e−T V ∈ L1(Q,�0,�) for some
T > 0. Assume in addition that eitherV ∈ L2+�(Q,�0,�) for � > 0 or that V ∈
L2(Q,�0,�) and V �0. Let, for 	 = ∞, H (resp. L for 	 < ∞) denote the selfadjoint
generator of the unperturbed semi-groupt �→ P(t). ThenH + V (resp. L + V ) is
essentially selfadjoint and the operatorHV (for both cases) constructed in Theorem
7.4 is equal toH + V (resp.L + V ).

7.3. Perturbations in the positive temperature case

The following theorem is shown in[KL1] :

Theorem 7.6 (Klein and Landau[KL1] ). Let (Q,�,�0, U(t), R,�) be a 	-periodic
OS-positive path space, V a selfadjoint operator onH affiliated to U , which satisfies
the hypotheses of Proposition7.2. Let F = {F[a,b]} be the associated	-periodic FKN
kernel. Then the path space(Q,�,�0, U(t), R,�V ), where

d�V := F[−	/2,	/2] d�∫
Q

F[−	/2,	/2] d�,

is a 	-periodic OS-positive path space.

By the reconstruction theorem recalled in Section6.5, one can associate to the per-
turbed path space(Q,�,�0, U(t), R,�V ) a physical Hilbert spaceHV , a distinguished
vector
V , an abelian von Neumann algebraUV , a selfadjoint operatorLV and a von
Neumann algebraFV . If �V and �V are the state andW ∗-dynamics associated to
V

andLV , then (FV ,UV , �V ,�V ) is a stochastically positive	-KMS system.
Our next aim is to construct canonical identifications between the perturbed objects

and perturbations of the original objects associated to the path space(Q,�,�0, U(t),

R,�).

7.3.1. Identification of the physical Hilbert spaces
We first show that there is a canonical unitary operator betweenHV andH.

Proposition 7.7. Assume thatV, e−	V ∈ L1(Q,�0,�). Set

Î : L∞(Q,�+,�)/NV → HOS/N

VV (�) �→ V(F[0,	/2]�)(∫
Q F[−	/2,	/2] d�

) 1
2
.
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Then Î is a well-defined isometry fromHOS,V /NV into HOS/N with dense range and
domain. HenceÎ uniquely extends to a unitary map̂I :HV → H.

Proof. Note that �V is absolutely continuous w.r.t.�. Thus L∞(Q,�,�V ) = L∞
(Q,�,�). If � ∈ L∞(Q,�,�) ∩ NV , then

∫
Q

R��d�V = ∫
Q
d�RF[0,	/2]�F[0,	/2]�

= 0. HenceF[0,	/2]� ∈ N . ConsequentlŷI is well defined.Î is clearly isometric since

(VV �,VV �)V =
∫
Q

R��d�V∫
Q

F[−	/2,	/2] d�
=
∫
Q

RF[0,	/2]�F[0,	/2]�d�∫
Q

F[−	/2,	/2] d�
= (ÎVV �, ÎVV �).

Î is densely defined sinceL∞(Q,�+,�) is dense inHOS,V . SinceVV is a contraction,
L∞(Q,�+,�)/NV is dense inHOS,V /NV and hence inHV . Finally, we note that
RanÎ containsV (F[0,	/2]L∞(Q,�+,�)

)
. SinceF[0,	/2] > 0 a.e.,F[0,	/2]L∞(Q,�,�)

is dense inHOS and hence its image underV is dense inH. �

7.3.2. Identification of the abelian algebra

Proposition 7.8. For f ∈ L∞(Q,�0,�) one has

Î f̃� = f̃ Î�, � ∈ HV

and, consequently, ÎUV = U Î .

Proof. This follows immediately from the definitions of̃f in Proposition6.5 and Î in
Proposition 7.7. �

7.3.3. Identification of theC∗-dynamics
Applying Theorem7.4 we obtain a selfadjoint operatorHV from the FKN kernel

associated toV. It will be called thepseudo-Liouvilleangenerated byV.

Proposition 7.9. One has

(i) Î
V = ‖e−	HV /2
‖−1e−	HV /2
;
(ii) for 0�s1� · · · �sn�	/2 and A1, . . . , An ∈ U

Îe−s1LV A1(
∏n

2
e(sj−1−sj )LV Aj )
V

= e−s1HV A1(
∏n

2 e
(sj−1−sj )HV Aj )e(sn−	/2)HV 


‖e−	HV /2
‖ ;
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(iii) for t1, . . . , tn ∈ R, A1, . . . , An ∈ U and � ∈ HV

Î (

n∏
1

eitj LV Aje
−itj LV )� = (

n∏
1

eitjHV Aje
−itjHV )Î�;

(iv) Î JV = J Î .

Note that in (ii) and (iii) we identifyU with L∞(Q,�0,�).

7.3.4. Identification of the observable algebras
We recall that the observable algebra and the dynamics associated to the perturbed

path space(Q,�,�0, U(t), R,�V ) are the von Neumann algebraFV generated by
{eitLV Ae−itLV | A ∈ UV , t ∈ R} and the automorphism group�V : t �→ �V (t), t ∈ R,
where

�V (t)(B) = eitLV Be−itLV , B ∈ FV .

Proposition 7.10.
(i) Î�V (t)(B)Î−1 = eitHV ÎBÎ−1e−itHV for B ∈ FV and t ∈ R;
(ii) Assume that eitherV ∈ L2+�(Q,�0,�) for � > 0 or that V ∈ L2(Q,�0,�) and

V �0. It follows that ÎFV Î−1 = F .

Proof. (i) follows from Proposition7.9 (iii). To prove (ii) we recall from Theorem
7.5 that, under the assumptions of the proposition,L + V is essentially selfadjoint on
D(L) ∩ D(V ) andHV = L + V . Hence, by Trotter’s formula,

eitHV = s- lim
n→∞ (eitL/neitV /n)n.

Thus

eitHV Ae−itHV = w− lim
n→+∞ (eitL/neitV /n)nA(e−itV /ne−itL/n)n.

Since eisV ∈ U ⊂ F , A ∈ F implies that eisV Ae−isV ∈ F . Moreover, eisLAe−isL ∈ F
by definition. So eitHV Ae−itHV ∈ F , if A ∈ U , and hence

ÎFV Î−1 ⊂ F .

According to Tomita’s theorem (see, e.g., [BR])F ′ = JFJ andF ′
V = JV FV JV . Thus

using Proposition7.9(iv):

(ÎFV Î−1)′ = ÎF ′
V Î−1 = Î JV FV JV Î−1 = J ÎFV Î−1J ⊂ JFJ = F ′.
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Taking commutants we obtain

F = F ′′ ⊂ (ÎFV Î−1)′′ = ÎFV Î−1.

HenceF = ÎFV Î−1. �
The results in this section are summarized in the following theorem.

Theorem 7.11.Let (F,U, �,�) be a stochastically positive	-KMS system. LetH,
, L

be the associated GNS Hilbert spaces, GNS vector and Liouvillean. Let V be a selfad-
joint operator onH, affiliated toU , such that

V, e−	V ∈ L1(Q,�0,�) and either V ∈ L2+�(Q,�0,�), � > 0,
or V ∈ L2(Q,�0,�) and V �0.

Then

(i) L + V is essentially selfadjoint onD(L) ∩ D(V );

(ii) 
 ∈ D(e−
	
2HV ), whereHV = L + V ;

(iii) (F,U, �V ,�V ) is a stochastically positive	-KMS system for�V,t (A) = eitHV

Ae−itHV , �V (A) = ‖e− 	
2HV 
‖−2(e−

	
2HV 
, Ae−

	
2HV 
), A ∈ F .

7.3.5. Perturbed Liouvillean
In the next theorem, we identify the Liouvillean for the perturbed system.

Theorem 7.12.Assume that V is a selfadjoint operator affiliated toU such that

e−	V ∈ L1(Q,�0,�) (14)

and

V ∈ Lp(Q,�0,�), e−
	
2V ∈ Lq(Q,�0,�) f or p−1 + q−1 = 1

2, 2< p, q < ∞,

or V ∈ L2(Q,�0,�) and V �0.
(15)

Let LV be the Liouvillean associated to the	-KMS system(F, �V ,�V ). ThenHV −
JV J is essentially selfadjoint onD(HV ) ∩ D(JV J ) and LV = HV − JV J .

Lemma 7.13. For A ∈ U one hasJA
V = ‖e− 	
2HV 
‖−1e−

	
2HV A∗
.

Proof. Let us setc = ‖e− 	
2HV 
‖−1. ThenA
V = cV(AF[0,	/2]). Moreover,JA
V =

cV(U(	/2)A∗F[0,	/2]), since F[0,	/2] is invariant underR	/4. Since A∗ belongs to

the spaceM	/2 = L∞(Q,�0,�) defined in Section 7.2,V(A∗) = A
 ∈ D(e−
	
2HV )
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and

ce−
	
2HV A∗
 = cV(U(	/2)A∗F[0,	/2]) = JA
V . �

Lemma 7.14. Let f1 be a real function inL2(Q,�0,�) such thatf1F[0,	/2] ∈ L2

(Q,�[0,	/2],�). Then
V and
 are vectors inD(f1). The vectorf1
 is in D
(
e−

	
2HV

)
and satisfiesJf1
V = ‖e− 	

2HV 
‖−1e−
	
2HV f1
.

Proof. Since f1 ∈ L2(Q,�0,�), we have 
 ∈ D(f1). Now f1F[0,	/2] ∈ L2

(Q,�[0,	/2],�), thus
V ∈ D(f1). Let fn = f11l{|f1|�n}. By dominated convergence
fnF[0,	/2] → f1F[0,	/2] in L2(Q,�[0,	/2],�), i.e.,

f1
V = V(f1F[0,	/2]) = lim
n→∞ V(fnF[0,	/2]) = lim

n→∞ fn
V .

Applying Lemma7.13 to A = fn we obtain, foru ∈ D(e−
	
2HV ),

(e−
	
2HV u, f1
) = limn→∞ (e−

	
2HV u, fn
)

= limn→∞ (u,e−
	
2HV fn
) = limn→∞ (u, Jfn
V ) = (u, Jf1
V ).

This shows thatf1
 ∈ D(e−
	
2HV ) and e−

	
2HV f1
 = Jf1
V . �

Lemma 7.15. Assume that V is a selfadjoint operator, affiliated to U , which satisfies
(15). Then


V ∈ D(HV ) ∩ D(V ) and (HV − JV J )
V = (HV − JV )
V = 0.

Proof. We first verify thatV satisfies the hypotheses of Lemma7.14, i.e., that

V e−
∫ 	/2
0 U(t)V dt ∈ L2(Q,�[0,	/2],�). (16)

Let 2�p, q�∞ be as in (15). If p = 2, thenV �0 a.e., thus (16) is clearly satisfied.
If q < ∞, then, applying Hölder’s inequality, it suffices to prove that

V ∈ Lp(Q,�,�) and e−
∫ 	/2
0 U(t)V dt ∈ Lq(Q,�,�).
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Applying (13) we find

‖e−
∫ 	/2
0 U(t)V dt‖Lq(Q,�,�)�‖e− 	

2V ‖q < ∞.

Let u ∈ D
(
e−

	
2HV

)
∩ D(HV ) ∩ D

(
HV e−

	
2HV

)
and setc := ‖e− 	

2HV 
‖−1. Then

(HV u,
V ) = c(e−
	
2HV HV u,
) = c(e−

	
2HV u,HV 
) = c(e−

	
2HV u, V
),

since 
 ∈ D(V ) ∩ D(L) and HV 
 = L
 + V
 = V
. Applying Lemma7.14 to
f1 = V we obtain

c(e−
	
2HV u, V
) = c(u,e−

	
2HV V
) = (u, JV
V ).

This implies, together withJ
V = 
V , that 
V ∈ D(HV ) and HV 
V = JV
V =
JV J
V . �

Proof of Theorem 7.12. Let F1 be the set ofA ∈ F such thatt �→ �V,t (A) is C1

for the strong topology and letA ∈ F1. SinceHV implements the dynamics�V,t ,
we see thatA ∈ C1(HV ). By [ABG], this implies thatA:D(HV ) → D(HV ). Since

V ∈ D(HV ), the vectorA
V ∈ D(HV ). SinceJVJ is affiliated toF ′, Lemma7.15
implies

LV A
V =i−1 d
dt

�V,t (A)
V |t=0 = HV A
V − AHV 
V

=HV A
V − AJV J
V = HV A
V − JV JA
V .

This yieldsLV u = HV u − JV Ju for u ∈ F1
V . By Proposition3.1, we know that
F1
V is a core forLV . This implies thatLV is the closure ofHV − JV J on F1
V

and hence also the closure ofHV − JV J on D(HV ) ∩ D(JV J ). �

7.4. Markov property for perturbed of path spaces

In this subsection, we show that the Markov property of a path space is preserved
by the perturbations described in Section7.1.

Proposition 7.16. Let (Q,�,�0, U(t), R,�) be a generalized path space satisfying the
Markov property and let{F[a,b]} be a FKN kernel. Then the path space(Q,�,�0,

U(t), R,�F ) satisfies the Markov property.

Proof. Let (Q,�,�) be a probability space,F ∈ L1(Q,�,�) with F > 0 �-a.e. and
set d�F = (

∫
F d�)−1F d�.
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If B ⊂ � is a �-algebra andf is �-measurable, then we denote byEB(f ), (resp.
EF

B (f )) the conditional expectation off w.r.t. B for the measure� (resp.�F ). Then
(see[Lo, Section 2.4])

EB(fg) = EB(f )g, EF
B (fg) = EF

B (f )g �-a.e. if g is B-measurable (17)

and

EF
B (f ) = EB(Ff )

EB(F )
�-a.e. (18)

To simplify the notation, let us setE0 = E{0} if 	 = +∞ andE0 = E{0,	/2} if 	 < ∞.

Set F+ = F[0,	/2] and F− = F[−	/2,0], so thatF = F−F+. SetE(F)
+ = E

(F)

[0,	/2] and
E

(F)
− = E

(F)

[−	/2,0]. Finally setE
(F)
0 = E

(F)
{0} if 	 = +∞ andE

(F)
0 = E

(F)

{0,	/2} if 	 < ∞.
Let now f be �-measurable. Then

EF+(f ) = E+(Ff )

E+(F )
= E+(F−F+f )

E+(F−F+)
= E+(F−f )

E+(F−)
,

using (18), (17) and the fact thatF+ is �[0,	/2]-measurable. Next

E+(F−f )

E+(F−)
= E+(F−f )

E+E−(F−)
= E+(F−f )

E0(F−)
,

by the Markov property for(Q,�,�) and the fact thatF− is �[−	/2,0]-measurable.
SinceE0(F−) is �[−	/2,0]-measurable, we have, by (18) and (17),

EF−EF+(f ) = E−(FE+(F−f ))

E0(F−)E−(F )
= E−(F−F+E+(F−f ))

E0(F−)E−(F−F+)
= E−(F+E+(F−f ))

E0(F−)E−(F+)
,

sinceF− is �[−	/2,0]-measurable.
Now

E−(F+E+(F−f ))

E0(F−)E−(F+)
= E0(Ff )

E0(F+)E0(F−)
,

by the Markov property for(Q,�,�) and the fact thatF+ is �[0,	/2]-measurable.
Finally

E0(F−)E0(F+)=E+E−(F−)E0(F+) = E+(F−E0(F+))

=E+(F−E−(F+)) = E+E−(F−F+) = E0(F ).

This yieldsEF−EF+(f ) = EF
0 (f ) �-a.e. and completes the proof.�



194 C. Gérard, C.D. Jäkel / Journal of Functional Analysis 220 (2005) 157–213

8. Free Klein–Gordon fields at positive temperature

In this section, we recall some results about the complex Klein–Gordon field and
show that it provides an example of a charge symmetric Kähler structure.
The classical Klein–Gordon equation describing a charged particle of massm is

�2t � − �2x� + m2� = 0, (t, x) ∈ Rd+1,

where�:Rd+1 → C is a complex valued function. For later use we recall the discrete
symmetries of the Klein–Gordon equation, namely theparity p, time reversal� and
charge conjugationc:

p�(t, x) := �(t,−x), ��(t, x) = �(−t, x) and c�(t, x) = �(t, x).

In particular, real solutions of the Klein–Gordon equation without external field describe
neutral scalar particles. In the sequel only time-reversal and charge conjugation will
play a role.

8.1. The complex Klein–Gordon field

Let us now describe the abstract Klein–Gordon equation that we will consider in the
sequel.

8.1.1. Abstract Klein–Gordon equation
Let h be a Hilbert space. We denote by i the complex structure onh and by( . , . )h

the scalar product onh. We assume thath is equipped with a conjugation denoted by
� → �.
Let

��m > 0 (19)

be a real selfadjoint operator onh, i.e., such that�� = ��.
For 0�s�1 we denote byhs the Hilbert spaceD(�s) with complex structure i

and scalar productv, u �→ (v, �2su)h and by h−s the completion of(h, i) for the
norm (v, �−2sv)h. The spaceh−s can be identified with the anti-dual ofhs using the
sesquilinear form〈v, u〉 = (v, u)h for v ∈ h−s and u ∈ hs .
We consider the abstract Klein–Gordon equation

(KG) (�2t �)(t) + �2�(t) = 0,

where �(t) is a function of t ∈ R with values in h. This (complex) KG equation
describes a classical field of scalar charged particles.
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The complex structure onh yields a complex structure on the space of solutions of
(KG), associated to theU(1) gauge group. Following the convention in Section2.1
this ‘charge’ complex structure will be denoted by j. It is defined by

( j�)(t) := i�(t) for � a solution of (KG) andt ∈ R.

The following quantity does not depend ont:

q(�,�) := i
(
�(t), (�t�)(t)

)
h

− i
(
(�t�)(t),�(t)

)
h
.

Hence it defines a symmetric sesquilinear form on the space of solutions of (KG). The
following transformations preserve the solutions of (KG):
• gauge transformations�(t) �→ ei��(t) = (ej��)(t),� ∈ [0,2�];
• time-reversal�:�(t) �→ �(−t);
• charge conjugationc:�(t) �→ �(t).

8.1.2. Energy space
It is convenient to identify a solution of (KG) with its Cauchy data att = 0,

f := (�(0), (�t�)(0)) ∈ h × h.

To do so one introduces theenergy spaceE := h1 ⊕ h equipped with the norm

(f, f )E = (f1, �2f1)h + (f2, f2)h,

where we setf = (f1, f2). Note that the complex structure j becomes i⊕ i on E .
Settingft = (

�(t), (�t�)(t)
)
one can rewrite the Klein–Gordon equation as the first-

order system:

j(�t f )t = Lft for L =
(

0 i
−i�2 0

)
.

It is convenient to diagonalizeL using the unitary map

U0: E → h ⊕ h

f �→ u = (u1, u2),

where

U0 := 1√
2

(
� i
� −i

)
and U−1

0 = 1√
2

(
�−1 �−1
−i i

)
.
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It follows that:

U0LU∗
0 =

(
� 0
0 −�

)
.

In particular,L is selfadjoint onE with domainU−1(h1 × h1) and the evolutionR �
t �→ e−jtL is a strongly continuous unitary group. Therefore the space of solutions of
(KG) can be identified withE . On E the symmetric formq is

q(g, f ) = i(g1, f2)h − i(g2, f1)h.

8.1.3. Charged Kähler space structure
On E we put the ‘energy’ complex structure i:= j L

|L| .

Proposition 8.1. The space(E, j, i, q) is a charged Kähler space.

Proof. Clearly [i, j] = 0. We have to prove that

(g, f ) := Im q(g, if ) + iIm q(g, f )

is a positive definite symmetric sesquilinear form on(E, i). If U0f = (u1, u2) and
U0g = (v1, v2), then

q(g, f ) = −(v2, �−1u2)h + (v1, �−1u1)h,

q(g, if ) = −(v2,−i�−1u2)h + (v1, i�−1u1)h = i(v1, �−1u1)h + i(v2, �−1u2)h

and consequently

(g, f ) = (v1, �−1u1)h + (v2, �−1u2)h. � (20)

Definition 8.2. We denote by
(Eq, i, ( . , . )

)
the completion of(E, i) for the scalar

product ( . , . ).

Proposition 8.3. The spaceEq is equal to the spaceh 1
2

⊕ h− 1
2
equipped with the

complex structure

i =
(
0 −�−1
� 0

)
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and the scalar product(g, f ) = Re(g1, �f1)h + Re(g2, �−1f2)h + i (Re(g1, f2)h − Re
(g2, f1)h).

8.1.4. Standard form of the complex Klein–Gordon field
It is convenient to introduce the map

Uq(f1, f2) := 1√
2

(
�
1
2f1 + i�− 1

2f2, �
1
2f 1 + i�− 1

2f 2

)
=: (u1, u2).

Using (20) we obtain thatUq extends to a unitary map

Uq:
(Eq, i, (·, ·)) → (h, i) ⊕ (h, i).

Let us describe the various objects after conjugation byUq. We will denote by the
same letter an object acting onEq and its conjugation byUq acting onh ⊕ h.
• symmetric form: after conjugation byUq the symmetric formq(g, f ) becomes

q ((v1, v2), (u1, u2)) = (v1, u1) − (u2, v2).

• ‘charge’ complex structure: after conjugation byUq the complex structure j becomes

j =
(
i 0
0 −i

)
.

• Hamiltonian: the infinitesimal generator ofR � t �→ e−jtL on
(Eq, i, ( . , . )

)
is the

Hamiltonian, denoted by h. After conjugation byUq,

h =
(

� 0
0 �

)
.

In particular h is positive.
• Gauge transformations: the infinitesimal generator of[0,2�] � � �→ e−j� on

(Eq, i ,
( . , . )) is the charge operatorq. After conjugation byUq,

q =
(
1 0
0 −1

)
.

We have q= −ij. Hence q is a charge operator in the sense of Section2.4.
• Time reversal: we have�(f1, f2) = (f 1,−f 2), and after conjugation byUq,

�(u1, u2) = (u1, u2).
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• charge conjugation: we have c(f1, f2) = (f 1, f 2), and after conjugation byUq,

c(u1, u2) = (u2, u1).

We see that(Eq, j, i, q, c) is a charge-symmetric Kähler space.
From now on we will setX := h⊕ h with elementsx = (x+, x−) and equipX with

the complex structures

i =
(
i 0
0 i

)
and j=

(
i 0
0 −i

)
,

with the symmetric form and the scalar product

q(y, x) = (y+, x+) − (x−, y−) and (y, x) := (y+, x+) + (y−, x−),

the Hamiltonian and the charge operator

h =
(

� 0
0 �

)
and q=

(
1l 0
0 −1l

)

and the time-reversal and the charge conjugation

�(x+, x−) = (x+, x−) and c(x+, x−) = (x−, x+).

From the discussion above we obtain the following theorem.

Theorem 8.4. The mapUq: (Eq, j, i, q, c) → (X, j, i, q, c) is unitary between
(Eq, i,

( . , . )) and (X, i, ( . , . )), and isometric between(Eq, j, q) and (X, j, q). It satisfies

UqaU
−1
q = a f or a = h, q, t, c.

For later use we set� := �c andX� := {x ∈ X |�x = x} = {(x+, x+), x+ ∈ h}.
Note that in terms of solutions of (KG) we have��(t, x) = �(−t, x) and an element
of X� corresponds to a solution of (KG) with Cauchy data(u,0), whereu ∈ h 1

2
.

We see that� is a conjugation on(X, i, ( . , . )) and hence Im( . , . ) vanishes on
X�. Since [�, j] = 0, the vector spaceX� is a complex vector space for the complex
structure j.
For comparison with the physics literature, let us consider the caseh = L2(Rd ,dx)

and � = (−�x + m2)
1
2 . Then h− 1

2
is the Sobolev spaceH− 1

2 (Rd). In the physics

literature one defines foru ∈ C∞
0 (Rd) the time-zero field
p(u) to be the Hermitian

field associated with the solution of (KG) with Cauchy data
( 1
2��−1u,0

)
.
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After the unitary transformationUq,
( 1
2��−1u,0

)
becomes the element

1√
22�

(
�−

1
2u, �−

1
2u
)

∈ L2(Rd) ⊕ L2(Rd),

i.e.,


p(u) = 1√
22�



(
�−

1
2u, �−

1
2u
)
.

In the physics literature one also considers thecomplex time-zero field�p(u) defined
as
p(u) + i
p(iu), i.e.,

�p(u) = 1

2�
�
(
�−

1
2u, �−

1
2u
)
.

8.2. The real Klein–Gordon field

We now quickly discuss the real Klein–Gordon field.

8.2.1. Abstract real Klein–Gordon equation
Let hR be a real Hilbert space. Let��m > 0 be a selfadjoint operator onhR. We

consider the Klein–Gordon equation

�2t �(t) + �2�(t) = 0,

where� is a function of t ∈ R with values inhR. The real Klein–Gordon equation
describes a classical field of scalar neutral particles.
Let us denote byh := ChR the complexification ofhR with its canonical scalar

product (·, ·)h. The spaceh is equipped with the canonical conjugationh � � �→ �,
� ∈ h.
On the space of real solutions of the Klein–Gordon equation, the charge conjugation

c acts as identity and the time-reversal� takes the form�:�(t) �→ �(−t). We will
still denote by� the complexification of� acting onh. We can now apply the results
of Section8.1 to the Hilbert spaceh.
The real energy space isER := E ∩ hR × hR. The image ofER under the transfor-

mationU is

UER =: SR = {
(u1, u2) ∈ h ⊕ h | u2 = u1

}
.

Note that e−jtL preservesER. More generally, ifF :R → C is a bounded measurable
function such thatF(�) = F(−�) then F(L) preservesER. Therefore i preservesER

and hence defines a complex structure onER. The space(ER, i, q) is a Kähler space.
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Definition 8.5. We denote by
(Eq,R, i, ( . , . )

)
the closure of(ER, i) for the scalar prod-

uct ( . , . ).

Proposition 8.6. The spaceEq,R is equal toh 1
2 ,R

⊕ h− 1
2 ,R

equipped with the complex
structure

i =
(
0 −�−1
� 0

)

and the scalar product(g, f ) = (g1, �f1)h + (g2, �−1f2)h + i ((g1, f2)h − (g2, f1)h).

8.2.2. Standard form of the real Klein–Gordon field
We set

UR: ER → h

f �→ (�
1
2f1 + i�− 1

2f2).

ThenUR extends to a unitary map between
(Eq,R, i, ( . , . )

)
andh. Let us describe the

various objects after conjugation byUR:
• Hamiltonian: The infinitesimal generator ofR � t �→ e−jtL on

(Eq,R, i, (·, ·)) is the
Hamiltonian denoted by h. After conjugation byUR,

h = �.

In particular, h is positive.
• Time reversal: We have�(f1, f2) = (f1,−f2). After conjugation byUR, one finds

�u1 = u1.
From the discussion above we obtain the following theorem.

Theorem 8.7. There exist a mapUR between(Eq,R, i, q, �) and (h, j, q, �) which is
unitary between

(Eq,R, i, ( . , . )
)
and

(
h, j, ( . , . )

)
, and satisfies

Uq,RaU−1
q,R = a f or a = h, t.

For later use we set� := � and h� := {h ∈ h | h = h}.

8.3. Free Klein–Gordon fields at positive temperature

We can now apply the results of Section4 to the real and complex Klein–Gordon
fields.



C. Gérard, C.D. Jäkel / Journal of Functional Analysis 220 (2005) 157–213 201

In the complex case we setX = h ⊕ h, h = � ⊕ �, q = 1l ⊕ −1l and introduce for
|�| < m the state�	,� on W(X) defined by the functional

�	,�(W(x)) := e−
1
4 (x,(1+2�)x), x ∈ X,

where � = (e	a − 1)−1 and a= h− �q. As recalled in Section4, �	,� is a (�,	)-
KMS state for the dynamics�t (W(x)) = W(eitax), which is invariant under the gauge
transformations�t (W(x)) = W(eitqx). For � = 0 the state�	,� will be denoted by
�	.
In the real case we setX = h, h = � and consider the state onW(X) defined by

the functional

�	 (W(x)) := e−
1
4 (x,(1+2�)x), x ∈ X,

where � = (e−	� − 1)−1. It is a (�,	)-KMS state for the dynamics�t (W(x)) =
W(eit�x).
In both cases we denote byF andU the algebras defined in Section4.3; note that

U is defined w.r.t. the appropriate conjugation�.
Applying Theorem4.5we obtain that the KMS system(F,U, �,�	) is stochastically

positive both for real and complex Klein–Gordon fields. Moreover, by Lemma4.6 and
Theorem6.10, the stochastic process associated to(F,U, �,�	) satisfies the Markov
property.
In the next lemma we show that for� '= 0, the KMS system(F,U, �,�	,�) is not

stochastically positive. The same is true, if we restrict the KMS state�	,� to gauge
invariant observables (see Section4.4).
The physical reason for this fact is that a system of charged particles is only invariant

under the combination of time reversal and charge conjugation. A non-zero chemical
potential introduces a disymmetry between particles of positive and negative charge
and hence breaks time reversal invariance, which is a necessary property shared by all
stochastically positive KMS systems, as we have seen in Proposition3.4.

Lemma 8.8. For � '= 0 the KMS systems(F,U, �,�	,�) and (A,A�, �,�	,�) are not
stochastically positive.

Proof. Using the results of Section2.4 we have

��(x) = a�(x+) + a∗
�(x−), �∗

�(x) = a∗
�(x+) + a�(x−),

which, by an easy computation using the results recalled in Section4.2, implies

�∗
�(x)��(x)
	,�=a∗

F

(
(1+ �)

1
2x+ ⊕ �

1
2x−

)
a∗
F

(
(1+ �)

1
2x− ⊕ �

1
2x+

)

	,�

+ ((x−, (1+ �)x−) + (x+,�x+)
)

	,�.
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SetH = d�(h⊕ −h) andQ = d�(q⊕ −q), so thatL = H − �Q. Then

e−sL�∗
�(x)��(x)
	,�=e−sH�∗

�(x)��(x)
	,�

=a∗
F

(
(1+ �)

1
2 e−shx+ ⊕ �

1
2 eshx−

)
×a∗

F

(
(1+ �)

1
2 e−shx− ⊕ �

1
2 eshx+

)

	,�

+ ((x−, (1+ �)x−) + (x+,�x+)
)

	,�.

Thus, forx, y ∈ X,

(
�∗(y)�(y)
	,�,e

−sL�∗(x)�(x)
	,�

)
=
(
(1+ �)

1
2y+ ⊕ �

1
2y−, (1+ �)

1
2 e−shx+ ⊕ �

1
2 eshx−

)
×
(
(1+ �)

1
2y− ⊕ �

1
2y+, (1+ �)

1
2 e−shx− ⊕ �

1
2 eshx+

)
+ ((x−, (1+ �)x−) + (x+,�x+)

) (
(y−, (1+ �)y−) + (y+,�y+)

)
.

Let us now restrict ourselves tox, y ∈ X�, i.e., x = (u, u), y = (v, v), u, v ∈ h. We
obtain x+ = u, x− = u, y+ = v and y− = v. If we set�± = (e	(�∓�) − 1)−1, then

(
�∗(y)�(y)
	,�, �t (�∗(x)�(x))
	,�

)
|t=is

= (
v, (e−s�(1+ �+) + es��−)u

)× (
u, (e−s�(1+ �−) + es��+)v

)
+ (u, (1+ �+ + �−)u

) (
v, (1+ �+ + �−)v

)
).

This quantity is not real ifs '= 0 and� '= 0. Since�∗
�(x)��(x) is a positive operator

affiliated toA� this shows that the KMS systems(F,U, �,�	,�) and (A,A�, �,�	,�)

are not stochastically positive.�

9. Scalar quantum fields at positive temperature with spatially cutoff interactions

In this section, we present the main results of this paper, namely the construction
of scalar quantum fields at positive temperature in one space dimension with spatially
cutoff interactions. For the real scalar quantum field the two kinds of interactions that we
will consider are the spatially cutoffP(
)2 and e�


2 models (the later one is known
as the Høegh-Krohn model). The first model is specified by the formal interaction∫
g(x)P (
(x))dx, whereP(�) is a real polynomial, which is bounded from below.

The second model is specified by
∫
g(x)e�
(x) dx for |�| < √

2�. In both casesg is a
positive function inL1(R) ∩ L2(R).
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For the complex scalar field we will consider the spatially cutoffP(�∗�)2 interaction,
specified by the formal interaction term

∫
g(x)P (�∗(x)�(x))dx.

9.1. Some preparations

In this subsection, we prove some auxiliary results, which we will need to prove
some properties of the interaction terms later on. We first recall a result of Klein and
Landau[KL1] .

Lemma 9.1. Let (F,U, �,�) be a stochastically positive KMS system and letH1 be
the closure ofU
. Let U1 := U|H1. Then
 is a cyclic and separating vector forU1,
and U1 and U are isomorphic asC∗-algebras.

Lemma 9.2. Let (F,U, �,�) be the stochastically positive KMS system introduced in
Section4.5. Let X� be the vector space X equipped with the scalar product(x, x)� =
(x, (1+ 2�)x) and set

j : X� → X ⊕ X

x �→ (1+ �)
1
2x ⊕ �

1
2�x.

Then

(i) �(j) is an isometry from�(X�) into �(X ⊕ X) such that

�(j)ei
(x) = W�(x)�(j), x ∈ X�;

(ii) H1 = �(j)�(X�) ≡ L2(Q,�0,�).

Proof. The mapx → �x is C-linear from X to X, hence j is C-linear. From the
results recalled in Section4.2 and the functional properties of�(j) we obtain that
�(j)ei
(x) = WF(jx)�(j). Now WF(jx) = W�(x) for x ∈ X�, and this proves (i).
Let us now prove (ii). The fact thatH1 is isomorphic toL2(Q,�0,�) follows from

the definition ofU in Section6.3. To prove the second equality, we note that� extends
to a conjugation onX�, since [�,�] = 0. By a well-known result on Fock spaces,
which we already recalled in the proof of Lemma4.6, the vacuum vector
 ∈ �(X�)

is cyclic for {W(x) | x ∈ X�,�x = x}.
Let now u ∈ �(X�). Because of the result recalled above we find

u = lim
n→∞ un, un =

N∑
1

�jW(xj )
, xj ∈ X�, �xj = xj .
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It follows that

�(j)u = lim
n→∞ vn, vn =

N∑
1

�jW�(xj )
.

Sincevn ∈ U
 we have�(j)u ∈ H1 and hence�(j)�(X�) ⊂ H1. Let us now prove
the converse inclusion: letv ∈ H1 with

v = lim
n→∞ vn, vn =

N∑
1

�jW�(xj )
, xj ∈ X, �xj = xj .

Then

vn = �(j)un for un =
N∑
1

�jW(xj )
.

Since �(j) is isometric,un → u ∈ �(X�) and v = �(j)u. This shows thatH1 ⊂
�(j)�(X�). �

9.2. Wick ordering

We recall some well-known facts concerning the Wick ordering of Gaussian random
variables. Let(Q,�0,�) be a probability space,F a real vector space equipped with
a positive quadratic formf �→ c(f, f ), called acovariance. Let F � f �→ 
(f ) be a
R-linear map fromF to the space of real measurable functions onQ.
The Wick ordering : 
(f )n : with respect to the covariancec is defined using a

generating series:

:e�
(f ) :c :=
∞∑
0

�n

n! :
(f )n :c= e�
(f )e−
�2
2 c(f,f ). (21)

Thus

:
(f )n :c=
[n/2]∑
m=0

n!
m!(n − 2m!) 
(f )n−2m(−1

2
c(f, f ))m. (22)

If now c1, c2 are two covariances onF, then

:e�
(f ) :c2=:e�
(f ) :c1 e−
�2
2 (c2−c1)(f,f ). (23)
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This implies the followingWick reordering identities(see e.g.[GJ]):

:
(f )n :c2=
[n/2]∑
m=0

n!
m!(n − 2m!) :
(f )n−2m :c1 (−1

2
(c2 − c1)(f, f ))m. (24)

9.3. The spatially cutoffP(
)2 interaction

We recall from Section8.2 that the real Klein–Gordon field in one space dimension
is described by the Weyl algebraW(h), whereh = L2(R,dk). Let � ∈ C∞

0 (R) be a
real cutoff function with

∫
R �(x)dx = 1. For x∈ R and � ∈ [1,+∞[ an ultraviolet

cutoff parameter, we definef�,x ∈ h by

f�,x(k) := 1

(4�)
1
2

e−ik.x�̂
(

k

�

)
�(k)−

1
2 .

We set


�(x) := √
2
�(f�,x) = a∗

�(f�,x) + a�(f�,x), x ∈ R.

Note thatf�,x ∈ h�, so 
�(x) is affiliated toU ; i.e., 
�(x) can be considered as a
measurable function on(Q,�0,�).
In order to define the spatially cutoffP(
)2 interaction we fix a real polynomial of

degree 2n, which is bounded from below, namely

P(�) =
2n∑
j=0

aj�
j with a2n > 0 (25)

and a real functiong ∈ L1
R(R,dx) ∩ L2(R,dx) with g�0.

We set

V� =
∫

g(x) :P(
�(x)) :0 dx,

where : :0 denotes the Wick ordering with respect to the covariance at temperature 0
given by c0(f, f ) = 1

2(f, f )h.
For technical reasons we will also need to consider similar UV cutoff interactions

with the Wick ordering done with respect to the covariance at inverse temperature	
given by c	(f, f ) = 1

2(f, f )� = 1
2(f, (1+ 2�)f ), f ∈ h. We set

V�,	 =
∫

g(x) :P(
�(x)) :	 dx,
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where::	 denotes Wick ordering with respect toc	. Note thatV� andV�,	 are affiliated
to U . We first collect some properties of these auxiliary interactions.

Lemma 9.3. The family{V�,	} is Cauchy in all spacesLp(Q,�0,�) for 1�p < ∞
and converges when� → ∞ to a functionV	 ∈ Lp(Q,�0,�), 1�p < ∞, which
satisfiese−tV	 ∈ L1(Q,�0,�) for all t > 0.We set

V	 =:
∫

g(x) :P(
(x)) :	 dx.

Proof. We use the identification ofL2(Q,�0,�) with �(h�) presented in Lemma9.2.
Then Wick ordering with respect toc	 coincides with Wick ordering with respect
to the Fock vacuum on�(h�). By exactly the same arguments as those used in the
0-temperature case (see e.g.[S-H.K] or [DG, Section 6]for a recent survey) we ob-
tain that, for 0�p�2n, the cutoff interactionV�,	 is a linear combination of Wick
monomials of the form

p∑
r=0

(
p

r

)∫
wp,�(k1, . . . , kr , kr+1, . . . , kp)a∗(k1)

· · · a∗(kr )a(−kr+1) · · · a(−kp)dk1 · · ·dkp,

where

wp,�(k1, · · · , kp) = ĝ(

p∑
1

ki)

p∏
1

�̂
(
ki

�

)
�(ki)−

1
2 .

Recalling that 1+ 2� = 1+e−	�

1−e−	� we see that

wp,� ∈ ⊗ph� = L2

(
Rp,

p∏
1

1+ e−	�(ki )

1− e−	�(ki )
dk1 . . . ,dkp

)
.

The sequence{wp,�} is Cauchy in this space. Consequentlywp,� → wp,∞ when
� → ∞, where

wp,∞(k1, · · · , kp) = ĝ(

p∑
1

ki)

p∏
1

�(ki)−
1
2 .

We can now apply these Wick monomials to the Fock vacuum and conclude that
V�,	
 converges to a vectorV	
 in �(h�), or equivalently thatV�,	 converges to
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V	 in L2(Q,�0,�). SinceV�,	
 is a finite particle vector, it follows from a standard
argument (see e.g.[Si2, Theorem 1.22]or [DG, Lemma 5.12]) that V�,	 → V	 ∈
Lp(Q,�0,�) for all 1�p < ∞.
We will now prove that e−tV	 ∈ L1(Q,�0,�). We argue as in the 0-temperature

case: we first verify that‖wp,� − wp,∞‖�C�−�0 for some �0 > 0 and therefore
‖V�,	 − V	‖L2(Q,�0,�)�C�−�0. Applying again[DG, Lemma 5.12]we find

‖V�,	 − V	‖Lp(Q,�0,�)�C(p − 1)n�−�0, p > 1. (26)

Using the Wick ordering identities (22) we obtain as identities between functions on
K (see, e.g.,[DG, Lemma 6.6])

: P(
�(x)) :	 � − C
(
‖
�(x)
‖2n + 1

)
.

Now ‖
�(x)
‖ = C‖�−1�̂ ( ·
�

) ‖h� �C(ln(�))
1
2 . This yields

V�,	� − C ln(�)n. (27)

Applying now [Si2, Lemma V.5]we deduce from (26) and (27) that e−tV	 ∈ L1(Q,

�0,�) for all t > 0. �

Proposition 9.4. The family {V�} is Cauchy in all spacesLp(Q,�0,�) for 1�p <

∞ and converges when� → ∞ to a functionV ∈ Lp(Q,�0,�), 1�p < ∞, which
satisfiese−tV ∈ L1(Q,�0,�) for all t > 0.We set

V =:
∫

g(x) :P(
(x)) :0 dx.

Proof. With the help of the Wick reordering identity (24) we find, for f ∈ h�,

:P(
�(f )) :0=
∑2n

j=0 aj :
�(f )n :0

=
∑2n

j=0
∑[j/2]

m=0 aj

j !
m!(j − 2m!) :
(f )j−2m :	

(
−1

2
(c0 − c	)(f, f )

)m

.

For f = f�,x

r�:=(c	 − c0)(f�,x, f�,x) = (f�,0,�f�,0)

=
∫
e−	�(k)�̂

(
k

�

)
dk = r∞ + O(�−∞),

where r∞ = ∫
e−	�(k) dk.
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On the other hand,

∫
Q

|
�(f�,x)|p d� ∈ O
(|c	(f�,x, f�,x)|p) ∈ O(ln(�)p

)
.

Therefore

:P(
�(x)) :0=: P̃ (
�(x)) :	 +O
(
ln(�)2n�−∞) uniformly for x ∈ suppg,

where

P̃ (�) =
2n∑
j=0

[j/2]∑
m=0

aj

j !
m!(j − 2m!) �j−2m

(
1

2
r∞
)m

.

We see thatP̃ (�)−P(�) is of degree less than 2n−1. Applying Lemma9.3 to P̃ this
yields

lim
�→∞

∫
g(x) :P(
�(x)) :0 dx= lim

�→∞

∫
g(x) : P̃ (
�(x)) :	 dx

=
∫

g(x) : P̃ (
(x)) :	 dx,

which completes the proof of the proposition.�

9.4. The spatially cutoffe�

2 interaction

As in Section9.3 we set, for|�| < √
2�,

V� =
∫

g(x) :e�
�(x) :0 dx

and

V�,	 =
∫

g(x) :e�
�(x) :	 dx.

Note that, as above,V� andV�,	 are affiliated toU .

Lemma 9.5. For |�| < √
2� the family{V�,	} is Cauchy inL2(Q,�0,�) and converges

when� → ∞ to a positive functionV	 ∈ L2(Q,�0,�). We set

V	 =:
∫

g(x) :e�
(x) :	 dx.
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Proof. The proof is completely similar to the 0-temperature case where� = 0 (see
e.g. [Si2,H-K2]). For completeness we will give an outline. Note first that by (21)
: e�
�(x) :	 is a positive function onQ, hence the same holds forV�,	 as g�0. We
now show thatV�,	 converges inL2(Q,�0,�), and we will identifyV�,	 with V�,	
.
We have

1l{n}(N)V�,	 = �n

n!
∫

g(x) :
n
�(x) : 
dx= �n

(4�)n/2
√

n! ĝ(
n∑
1

ki)

n∏
1

�̂
(
ki

�

)
1

�(ki)
1
2

.

Hence

‖1l{n}(N)V�,	‖2= 1

n!
(

�2

4�

)n ∫ ∣∣∣ĝ(∑n

1
ki)

∣∣∣2∏n

1
|�̂
(
ki

�

)
|21+ 2�(ki)

�(ki)
dk1 . . .dkn

� 1

n!
(

�2

4�

)n ∫ ∣∣∣ĝ (∑n

1
ki

)∣∣∣2 ∏n

1

1+ 2�(ki)
�(ki)

dk1 . . .dkn =: �n.

Next, we find

�n = 1

n!
(

�2

2�

)n ∫
g(x)g(y)K	(x− y)n dx dy

for

K	(x) = 1

2

∫
eikx

1+ 2�(k)
�(k)

dk.

We claim now that

e
�2
2� |K	(x)| ∈ L1(R) + L∞(R) for |�| < √

2�. (28)

This implies that

∞∑
n=0

�n�
∫

g(x)g(y)e
�2
2� |K	|(x−y) dx dy< ∞. (29)

If we set

K0(x) = 1

2

∫
eikx

1

�(k)
dk
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then because of the rapid decay of�(k) when |k| → ∞, we haveK0 − K	 ∈ L∞(R),
and (see[H-K2, Eq. (4)]) K0(x) ∈ O(1) in |x|�1, K0(x) = − ln(x) + O(1) in |x|�1.
This implies (28).
Now by the arguments in the proof of Lemma9.3, we see that

lim
�→∞

1l{n}(N)V�,	 = �n

n!
∫

g(x) :
(x)n : 
dx.

Since 1l{n}(N)V�,	 → Vn in L2(Q,�0,�) for eachn and sup� ‖1l{n}(N)V�,	‖2��n
with

∑
�n < ∞, we see thatV�,	 converges to some elementV ∈ L2(Q,�0,�),

which is a.e. positive as a limit of positive functions.�

Proposition 9.6. For |�| <
√
2�, the family {V�} is Cauchy inL2(Q,�0,�) and

converges to a positive functionV ∈ L2(Q,�0,�). We set

V =:
∫

g(x) :e�
(x) :0 dx.

Proof. By the Wick reordering identity (23) we have

:e�
�,x :0=:e�
�,x :	 e�2
2 r� .

Hence V� = e
�2
2 r�V�,	, which implies, using Lemma9.5, that V� converges in

L2(Q,�0,�) to the positive function e
�2
2 r∞V	. �

9.5. The spatially cutoffP(�∗�)2 interaction

We consider now the complex Klein–Gordon field in one space dimension which is
described by the Weyl algebraW(X) for X = h ⊕ h, h = L2(R,dk). We recall that

the Gibbs state at inverse temperature	 is given by�(W(x)) = e
1
4 (x,(1+2�x)), where

� = (e	h − 1)−1 and h= � ⊕ �.
We set

��(x) = ��(f�,x ⊕ f�,x), �∗
�(x) = �∗

�(f�,x ⊕ f�,x), x ∈ R.

Note thatf�,x is invariant under the conjugationh → h. This implies that��(x) is

affiliated toU , sincef�,x ⊕ f�,x ∈ X�. Moreover,�∗
�(x)��(x) = 1

2

(

2

�(f�,x ⊕ f�,x)

+
2
�(if�,x ⊕ −if�,x)

)
.
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For P a real polynomial of degree 2n, which is bounded from below, andg a positive
function in L1(R) ∩ L2(R), we set

V� =
∫

g(x) :P(�∗
�(x)��(x)) :0 dx,

where::0 denotes Wick ordering with respect to the 0-temperature covariancec0(x, x) =
1
2(x, x), and

V�,	 =
∫

g(x) :P(�∗
�(x)��(x)) :	 dx,

where : :	 denotes Wick ordering with respect to the covariance at inverse temperature
	 specified byc	(x, x) = 1

2(x, (1+ 2�)x). The following two results can be shown by
exactly the same methods as in Section9.3.

Lemma 9.7. The family{V�,	} is Cauchy in allLp(Q,�0,�) spaces and converges,
when� → ∞, to a functionV	 ∈ Lp(Q,�0,�), 1�p < ∞, which satisfiese−tV	 ∈
L1(Q,�0,�) for all t > 0.We set

V	 =:
∫

g(x) :P(�∗(x)�(x)) :	 dx.

Proposition 9.8. The family{V�} is Cauchy in all spacesLp(Q,�0,�) and converges,
when� → ∞, to a functionV ∈ Lp(Q,�0,�), 1�p < ∞, which satisfiese−tV ∈
L1(Q,�0,�) for all t > 0.We set

V =:
∫

g(x) :P(�∗(x)�(x)) :0 dx.

9.6. Scalar quantum fields at positive temperature with spatially cutoff interactions

To construct the space-cutoffP(
)2 and e�

2 models at positive temperature, we ap-

ply the general results of Section7.3. Note that by Sections9.3 and9.4, the interactions
termsV = ∫

g(x) :P(
(x)) :0 dx andV = ∫
g(x) :e�
(x) :0 dx for |�| < √

2� satisfy
all the hypotheses of Section7.3. Consequently we obtain the following theorem:

Theorem 9.9. Let (W,W�, �o,�) be the quasi-free	-KMS system describing the free
neutral Klein–Gordon field in one space dimension at temperature	−1, described in
Section8.3. LetH, L,
 be the associated GNS objects described in Section4.2. Let V
be the selfadjoint operator onH affiliated toW� equal either to

∫
g(x) :P(
(x)) :0 dx
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or to
∫
g(x) :e�
(x) :0 dx. Then the following statements hold true:

(i) L + V is essentially selfadjoint and
 ∈ D(e−
	
2HV ), whereHV := L + V .

(ii) Let �V (t) be theW ∗-dynamics generated byHV and �V be the vector state

induced by
V = ‖e− 	
2HV 
‖−1e−

	
2HV 
. Then�V is a group of∗-automorphisms

of W, continuous for the strong operator topology such that(W,W�, �V ,�V ) is
a stochastically positive	-KMS system.

(iii) The generalized path space associated to(W,W�, �V ,�V ) satisfies the Markov
property.

(iv) Let LV , JV be the perturbed Liouvillean and modular conjugation associated to
(W,W�, �V ,�V ). ThenJV = J and LV = HV − JV J .

Finally, we state the corresponding result for the charged Klein–Gordon field:

Theorem 9.10.Let (W,W�, �o,�) be the quasi-free	-KMS system describing the
free charged Klein–Gordon field in one space dimension at temperature	−1 and zero
chemical potential, described in Section8.3. LetH, L,
 be the associated GNS objects
described in Section4.2. Let V be the selfadjoint operator onH affiliated toW� equal
to∫
g(x) :P(�(x)�(x)) :0 dx. Then the following statements hold true:

(i) L + V is essentially selfadjoint and
 ∈ D(e−
	
2HV ), whereHV := L + V .

(ii) Let �V (t) be theW ∗-dynamics generated byHV and �V be the vector state

induced by
V = ‖e− 	
2HV 
‖−1e−

	
2HV 
. Then�V is a group of∗-automorphisms

of W, continuous for the strong operator topology such that(W,W�, �V ,�V ) is
a stochastically positive	-KMS system.

(iii) The generalized path space associated to(W,W�, �V ,�V ) satisfies the Markov
property.

(iv) Let LV , JV be the perturbed Liouvillean and modular conjugation associated to
(W,W�, �V ,�V ). ThenJV = J and LV = HV − JV J .
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