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Abstract

In 1989, Vaughan Jones introduced spin models and showed that they could be used to form
link invariants in two different ways—by constructing representations of the braid group, or
by constructing partition functions. These spin models were subsequently generalized to the
so-called four-weight spin models by Bannai and Bannai; these could be used to construct
partition functions, but did not lead to braid group representations in any obvious way. Jaeger
showed that spin models were intimately related to certain association schemes. Yamada gave
a construction of a symmetric spin model on 4n vertices from each four-weight spin model on
n vertices.

In this paper, we build on recent work with Munemasa to give a different proof to
Yamada’s result, and we analyze the structure of the association scheme attached to this spin
model.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Spin models are a special class of matrices introduced by Jones [8] as a tool for
creating link invariants. There are two strands to their subsequent development that
are of interest to us. First, Jacger and Nomura showed that all spin models could be
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realized as matrices in association schemes (see [10]). Hence spin models have a
combinatorial aspect and, perhaps more importantly, the search for new spin models
was reduced to the search for certain special classes of association schemes.
(This means that the search space is discrete rather than continuous.)

The second strand was the development of more general classes of models,
culminating in the four-weight spin models of Bannai and Bannai [2]. These models
are formed from a pair of matrices; they still provided link invariants, but apparently
lacked the intimate connection to association schemes.

In [4], Munemasa and the present authors developed a new approach to spin
models, based on what we called Jones pairs. We showed that these included the
four-weight spin models as a special case. As a result, we were able to show that each
four-weight spin model determines a pair of association schemes.

In [11], Yamada showed that each four-weight spin model of order n embeds in a
very natural way in a spin model of order 4n. We give a complete and different proof
to Yamada’s result. In addition, the tools we develop in Sections 2-5 allow us to
analyze the structure of ./"), which was not investigated in [11].

2. Invertible Jones pairs

Given two matrices 4 and B of the same order, we use A-B to denote their Schur
product, which has

(4°B),; = AijBij.

If all entries of 4 are non-zero, then we say A is Schur invertible and define its Schur-
inverse, A<_)7 by

- _ 1
A i

Equivalently, we have 4(-)o4 = J, where J is the matrix of all ones.
For any n x n matrix C, we define two linear operators X and A¢ as follows:

Xc(M)=CM, Ac(M)=C-M for all MeM,(C).
Given a linear operator Y on M,,(C), we use YT to denote its adjoint relative to the

non-degenerate bilinear form t7(MTN) on M, (C), and call it the transpose of Y. It is
easy to see that

XL =X, AL =4Ac.

A Jones pair is a pair of n x n complex matrices (A, B) such that X4 and Ap are
invertible and

XAABXA:ABXAAB, (21)

XAgXa = Agi X4l gr. (2.2)
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Note that X4 and 4p are invertible only if A is invertible and B is Schur invertible.
It is also easy to observe that (A4, B) is a Jones pair if and only if (4, BT) is a Jones
pair. Jones pairs are designed to give representation of braid groups using Jones’
construction. Please see Section 2 of [4] for a description of the construction.

An n x n matrix W is a type-1I matrix if

wwT = I

Note that a type-II matrix is invertible with respect to both matrix multiplication and
the Schur product. We say that a Jones pair (A4, B) is invertible if A is Schur invertible
and B is invertible. Theorems 7.1 and 7.2 of [4] imply that a Jones pair (4, B) is
invertible if and only if 4 and B are type-II matrices.

Let Wy, Wy, W5 and Wy be n x n complex matrices and let d be such that d*> = n.
A four-weight spin model is a 5-tuple (W, Wh, W5, Wy;d) that satisfies

wy=wIT w,=wT, (2.3)
W1 W3 = l’l], W2 W4 = nl, (2.4)
Z (Wl)k,h(Wl)hﬁi(W‘*)h,j =d( W4)i,j(W1)k7i(W4)k1/7 (2.5)
h=1
Z (Wl)lz,k(Wl)iJ1(W4)j,lz =d( W4)j,i(W1)i,k(W4)j,k' (2.6)
h=1

From (2.3) and (2.4), we see that both W, and W, are type-11 matrices and they
determine W3 and W,, respectively. Furthermore, it is straightforward to verify that
Eqgs. (2.5) and (2.6) are equivalent to Egs. (2.1) and (2.2) when W| = d4 and W, = B.

Jaeger showed in [6] that (4, B) and (C, B) are invertible Jones pairs if and only if
C = DAD™! for some invertible diagonal matrix D. We say that these two invertible
Jones pairs are odd-gauge equivalent. Proposition 7 of [6] states that for every
invertible Jones pair (A4, B), there exists an invertible diagonal matrix D such that
DAD™! is symmetric. Since odd-gauge equivalent invertible Jones pairs give the same
link invariants, we suffer no loss by considering only invertible Jones pairs whose
first matrix is symmetric.

3. Nomura algebras

We start this section by defining the Nomura algebras N 4 g and N ’A7 g of a pair of

n x n matrices. When A is a type-II matrix and B = A7), our construction gives the
Nomura algebras discussed in [7,10]. The definitions here are taken from [4].

Let 4 and B be n x n matrices, let ey, ..., e, be the standard basis vectors in C" and
form the n* column vectors

AejeBe; fori,j=1,...,n.
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We define ./ 4  to be the set of matrices of which Ae;oBe; is an eigenvector, for all
i,j=1,...,n. This set of matrices is closed under matrix multiplication and contains
the identity matrix 7.

For each matrix Me.A"4p, we use ©4p5(M) to denote the n x n matrix that
satisfies

M(Ae,'OBej) = @A,B(M)iJ(AeioBe./)'

We view O 4 p as a linear map from .4 4 g to M,,(C) and we use A" /A., g to denote the
image of /"4 5. By the definition of ©, 5, we have

O.45(MN) = @4 5(M)-0 4 5(N).

Consequently, the space A~ ’/17 g is closed under the Schur product. Since I, €.4"4 , the
matrix @4 5(l,) = J, belongs to A" 'A,B. We conclude that A4~ ’/,7 g 1S a commutative

algebra with respect to the Schur product.
If A is invertible, then the columns of A are linearly independent. Further if B is
Schur invertible, then for any j

{Ae\Be;j, AesoBe;, ..., Ae,°Be;}
is a basis of C". In this case, the map @, p is an isomorphism from /"4 p, as an
algebra with respect to the matrix multiplication, to A~ 24, g, as an algebra with respect

to the Schur product. We conclude from the commutativity of .47 p that 4" p is

commutative with respect to matrix multiplication.

The following result is called the Exchange Lemma. It will serve as a powerful tool
in Sections 6 and 7. The proof of Theorem 3.2 also demonstrates the usefulness of
this lemma.

Lemma 3.1 (Chan et al. [4, Lemma 5.1] [Exchange]). If 4,B,C,Q,R,SeM,(C)
then

X ApXc = AgXrds
if and only if
XydcXp = ApXodgr.

Theorem 3.2. If A and B are n x n type-1I matrices, then the following are equivalent:

(a) REJV-A,B and S = @A,B(R)-
(b) XrApX4 = AgX4As.

(C) XRAAXB = AAXBAST.

(d) ABTXB(—)TAHR = XsTAA(—)TXAT.
(€) Ay Xyrdygr = XsApr Xpor.

Proof. The equivalence of (a) and (b) follows from Theorem 6.2 of [4].
Applying the Exchange Lemma to (b) gives (c), which is equivalent to

A Xrdy = XgAst Xgoi. (3.1)
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Applying the Exchange Lemma to Eq. (3.1) again, we get
ARX yo A v = Xpdp1 Xgr.

Now we have B! =n'BO)T and A) =n(4~")" because 4 and B are type-II
matrices. The above equation becomes

ARX, i Aqr = XpA,o o Xsr
which leads to
At X1 Aug = Xt A g1 Xy 1. (3.2)
We get (d) after multiplying both sides of Eq. (3.2) by n and replacing nB~! by BT,
Taking the transpose of both sides of Eq. (3.2) gives
A X gyt Agr = X144 40 Xs
and
A Xyordyg = Xsdpor Xpr.
We get (e) after applying the Exchange Lemma to the above equation. [
Now we state an easy consequence of Theorem 3.2(b).
Corollary 3.3 (Chan et al. [4, Lemma 10.2]). Let A and B be n x n type-1I matrices. If

REJVA,B then
RTEQ/VA(f)’B(f) and @AH‘BH(RT) = @A,B(R)-

4. Nomura algebras of a type-II matrix

When 4 is a type-II matrix and B = 47, existing papers such as [7] use A" 4, 47,
and @, to denote A"y g, JV’A g and O, p, respectively. The algebra .4 is called the

Nomura algebra of 4. We now present some results on .44 due to Jaeger et al. [7]
which we will use later.

When B = A, Condition 3.2(e) becomes

AA(f)TXATAnRT = XSAA(—)TXAT
and it implies

0, (S) = 0, (04(R)) =nR". (4.1)
We conclude that if Re /"4 then @ 4(R)e A" 4 and RT e A”;r. Hence

NN o and  dim(A ) = dim(A]) <dim( A1),
Similarly 4T is also a type-1I matrix, so

141- c A4 and dlm(/VAT)<d1m(/V;1)
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Therefore A", = A" 4r and A"z = A4, which implies that .4" and 4" 4r are closed
under both matrix multiplication and the Schur product. It also implies that 4", =
A1 is closed under the transpose. Since 4 is invertible and 4~ is Schur invertible,
the map O, is an isomorphism from 44 to 4”,. Hence A" is commutative with
respect to matrix multiplication. In summary, the algebra /"4 is commutative with
respect to matrix multiplication, is also closed under the transpose and the Schur
product, and contains 7 and J. In other words, "4 is a Bose—Mesner algebra.

We now investigate the properties of the map @ 4. Let M and N be matrices in
N 4. Since O 41 : N 4 — AN 4 is an isomorphism, there exist M’ and N’ in A" 4 such
that @ 1(M') = M and O 4+ (N') = N. Hence

O4(MN) =0 4(0 41(M')6 41(N"))
=0,4(0 4 (M'N))
which equals n(M’N’)T by Eq. (4.1). Since
O4(M) =040, (M")) =nM"
and @4(N) = nN'T, we have

O4(M-N) :% (nN'")(nM'T)

:%@A(N)@A(M)

= 0.4(M)O.(N),

the last equality results from the commutativity of .4”,. Now we conclude that @
swaps matrix multiplication with the Schur product.
Furthermore, applying %@ 4 to the two rightmost terms of Eq. (4.1) gives

%@A(@AT(@A (R))) = O4(R").

It follows from Eq. (4.1) that the left-hand side equals @ A(R)T‘ Thus ® 4 and the
transpose commute. From Corollary 3.3, we see that

@4 (R) = O4(R)".
Also note that by Eq. (4.1), we have
O4(J)=040,4))=nl.

We call ©®,4 a duality map from A4 to A 4 and say that these two Bose—Mesner
algebras form a formally dual pair. If V' y = N 4 and O 4 = O 4, we say that it is
Sformally self-dual.

A spin model is an n x n matrix W such that (W, W, W) w().d) is a four-
weight spin model, for d> = n. It follows from Section 9 of [4] that W is a spin model
if and only if (d~'W, W(-)) is an invertible Jones pair. In [7], Jaeger et al. gave the
following characterization of a spin model W using its Nomura algebra A4 .
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Theorem 4.1 (Jaeger et al. [7, Theorem 11]). Suppose W is a type-II matrix.
Then We AN w if and only if ¢cW is a spin model for some non-zero scalar c. In
this case,

,/VW = e/V‘WT

is a formally self-dual Bose—Mesner algebra with duality map @y = O .

5. Nomura algebras of an invertible Jones pair

We study the relation among the different Nomura algebras of an invertible Jones
pair.

Theorem 5.1 (Bannai [1, Theorem 3]). If (4, B) is an invertible Jones pair, then
Ny=N = Np=Ng,
the duality maps satisfy @ 4 = O 4v and Op = Opr.

Bannai et al. [1] proved this result for four-weight spin models, which are
equivalent to invertible Jones pairs. For an alternate proof using the Nomura
algebras of A and B, see Section 10 of [4].

Let 4 and B be type-1I matrices. We see from Theorem 3.2(a) and (b) that (4, B) is
an invertible Jones pair if and only if Ade A ypn AN ypr, O4p(4) =B and
O, p57(A) = BT. The next two results provide some insights to the relations among
e/V,<LB7 /1/143 and JVA.

Theorem 5.2 (Chan et al. [4, Theorem 10.3]). Let A and B be n x n type-1I matrices.
If Fe Ny, Ge Ny p and He N'g, then FoG, and Go-H belong to N 4 p and

0,4 5(FoG) =n"'04(F)0 4 5(G),

0.4.5(G-H) =n710.4,5(G)O5(H)".

Theorem 5.3 (Chan et al. [4, Theorem 10.4]). Let A and B be n x n type-1I matrices.
IfF7 GEJVA‘B, then FOGTEJVA N N"g and

O4(F-G") =n"'0,43(F)0,45(G)",
Op(F-G") =n"'0,45(F) 0 ,45(G). (5.1)

We list two consequences of Theorems 5.2 and 5.3.
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Theorem 5.4 (Chan et al. [4, Theorem 10.6]). Let A and B be n x n type-1I matrices.
If N 4 p contains a Schur invertible matrix G and H = O 4 3(G), then

N ap = GoNy, JV'QLBHT = N yr.

Corollary 5.5 (Chan et al. [4, Corollary 10.9]). If (A, B) is an invertible Jones pair,
then

Os(M)" =B 'O ,4(M)B
for all Me NV 4.

Now we present an important application of Theorems 5.2 and 5.3, which implies
that the Nomura algebras A", 4”4 p and A", ; have the same dimension.
Theorem 5.6. Let (A, B) be an invertible Jones pair. Then

Nap=AoN 4, Ny gB =Ny
and

T
t/‘/“,AyB = (./V;LBT) .

Proof. We get the first equality by letting G = 4 in Theorem 5.4. Since B = O 4 3(A4),
we have

N 5B =N 4.

By Theorem 5.1, we have 4" 4r = .4/ 4 and hence the second equality holds.
If we replace B by BT in the above equality, then we get

JV‘;’"BTB = Q/VAT.

Since multiplication by B is injective, the dimensions of /"4 = .4 4 and A", ;r are
equal. Now we let G equal 4 and replace B by BT in Eq. (5.1). We get

e/‘/‘lBTg( C47BT)TBT.

By Theorem 5.1, 4"y = A" = A" Since A" 4 and A" 'A, pr have the same dimension,
we have

JVA = ( ;LBT)TBT.

Thus A7, pBT = (A", )" BT, which leads to the last equality of the theorem. [

Corollary 5.7. Let (A, B) be an invertible Jones pair. Then
Nap=N4pr.
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Moreover, if A is symmetric, then

N ap= («/VA,B)T~

Proof. Applying Theorem 5.6 to the invertible Jones pairs (4, B) and (4, B") gives
JVA"B = AOJVA = ./VA’BT.

Using the same equation, we have A" E’ 5= ATo /T Since A4 is closed under the
transpose and A4 is symmetric, we conclude that A4 p = Q/VE’B. O

6. A Bose—Mesner algebra of order 4n

From now on, we assume that (4,B) is an invertible Jones pair and A4 is
symmetric.

Lemma 6.1. For each H in N 4 g, there exists a unique matrix K in (e/‘/‘A,BT)T such that
O45(H) =05 (K")". (6.1)

Proof. Existence follows directly from the last equality in Theorem 5.6, while
uniqueness holds because @ 4 gr is an isomorphism. []

Given any matrix H in /"4 p, we say that the unique K in A~ /A.,B satisfying
Eq. (6.1) is paired with H.

Lemma 6.2. For each H in N 45, K in ,/V’A,B is paired with H if and only if KT is
paired with H'. Moreover we have

O (HoA) = Opr(KToA). (6.2)

Proof. Multiplying each side of Eq. (6.1) by n '@ 4 5(4)" = n='0, pr(A) gives
n'04p(H)O 4 5(A) =170 51 (K")'0 4 5r(A).

We apply Theorem 5.3 to both sides of the above equation to get
O(H-A") = Opr(KToAT).

Since A4 is symmetric, we see that Eq. (6.1) is equivalent to Eq. (6.2).
In addition, taking the transpose of both sides gives

O4(H A) = Opr(K-A).

Therefore H and K satisfy Eq. (6.1) if and only if HT and KT satisfy Eq. (6.1). O
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For any Fe /"4 and H,Ge A4 g, we define the 4n x 4n matrix .#(F, G, H) to be

Ou(F)+H O4F)-H 0 4,5(G) 0.45(G)
O4F)—H O F)+H @AB( ) 0,5(G)
045(G")" 045G Oy (F)+K Op(F)—K |’
045(G")"  O4p(G") Op(F) =K O (F)+K

where K is paired with H. We consider the space
B={MF,G,H):FeN 4 and H,Ge N 45} (6.3)

Now we show that # is a Bose—Mesner algebra. It turns out that % contains the
4n x 4n type-1I matrix V defined at the beginning of Section 7 and it is a subscheme
of A"y. This leads to the main result of this paper which says that V' is a spin model
if and only if (4, B) is an invertible Jones pair.

To convince ourselves that 4 is a Bose-Mesner algebra, we need to check that 4
contains the identity matrix Iy, and the matrix of all ones Jy,; it is closed under the
transpose; it is a commutative algebra with respect to matrix multiplication; it is
closed under the Schur product.

Lemma 6.3. The vector space B contains Iy, and J,.
Proof. The matrix K that is paired with %In satisfies

1 1
O 4 pr (KN = O4p <§ In) = EJn-

Since O 4 pr is an isomorphism, we conclude that K = 11,. Note that @ 4(5; J,) =1 1.
Thus .#(5-J,,0,11,) = I, belongs to 2.
Since @A( W) = 0 4.5(1,) = J,, the matrix .#(I,,1,,0) = Ju, belongs to 4. O

Lemma 6.4. The vector space A is closed under transpose.

Proof. Let .//(F,G, H)e%. Now ./(F,G,H)" equals

O4F)" +HT O0,4F)" —HT 0.,4.5(G") 0,.5(G")

O4F)" —HT O0,4F)"+HT 0,45(G") 0,45(G")
0.45(G)" 0.45(G)"  Op(F)'+KT O (F)' —KT
0.45(G)" 045G Oy (F)" =K Oy, (F)" +KT

Since .44 p is closed under the transpose, the matrices G" and HT belong to N ap- It

follows from Lemma 6.2 that K7 is paired with HT. Moreover, @ 4(F)" = @ 4(F").
As a result we conclude that

M(F,G,H)" = .4(F",G" H")

and the vector space 4 is closed under the transpose. [
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Lemma 6.5. The vector space A is a commutative algebra under matrix multiplication.
Proof. Let M = .#(F,G,H) and M, = .4 (F\, Gy, H) be any matrices in 4.
By Theorem 5.3, we have
0.45(G)0,45(GH" =16 4(G-G)).
Hence the top left 2n x 2n block of MM, equals

(2n@A(FoF1 + GDGl) + 2HH, 2n@A(FoF1 + GOG]) —2HH1)
ZHQA(FOFl—‘rGOGl)—ZHHl 21’1@A(F0F1+G0G1)+2HH1 ’

Similarly, by Theorem 5.3
0.45(G")"0.45(G1) =nO(G"-G)
=nO@p(G-G))"
=nO@g(G-Gy).
Consequently the bottom right 2n x 2n block of MM, equals

(21’1@3() (FOF1 + GOGI) + 2KK; 21’16‘)3(7) (FOF1 + GOG1) — 2KK; )
2)’[@3(71 (FOFl + GOGI) — 2KK1 2?1@3(7) (F0F1 + GOGl) + 2KK1 ’

where K and K, are paired with H and H|, respectively. Now we need to show that
KK is paired with HH;. From Eq. (6.1), we have

O4p(H) = 0,5 (K" and O45(H)) =05 (K"
Therefore
04 5(HH) =0 4 5(H)°0 4 5(H)
=0 pr (KT)TOOA,BT (K"
= 0,5 (K"K
Since 4”4 pr is commutative with respect to matrix multiplication,
O43(HH,) = 0 4 5 ((KK;)")".
We now consider the top right 2n x 2n block of MM;. Note that
204(F)0 4 5(G) +20 4 5(G)O g (F))
=20,4(F)0,5(G)) + 20 4 5(G)Os(F))".
Applying Theorem 5.2 to each term, we get
2n0 4 p(FoG, + G-F}).

Thus the top right 2n x 2n block of MM, is
(2n@A,B(FoG1 + GOFl) 2n@A,B(FoG1 + GOFl))
2n@A7B(FoG1 + GOFl) 2n@A’B(FDG1 + GOFl) '
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Consider the bottom left 2n x 2n block of MM, we have
20,4 8(GN) O 4(F)) + 205 (F)045(GN)"
=20,43(GN) O 4(F) +205(F) 045G

Since each of @, and @p commutes with the transpose, the above expression
becomes

20.4,5(G") O4(F)" +205(F1)045(G])"
which equals
210 4 p(FI-G" + GI-FT)"
by Theorem 5.2. Hence the bottom left 2n x 2n block of MM, is
210 4 p(FFoGT + GT-FT)' 200 4 p(FT-GT + GT-FT)"
(2n@A,B(F1ToGT + GToFNY" 2104 3(FT-G" 4+ GT-FT)" > '
Now we conclude that
MM, = 4 (2nF<F + 2nGoG,,2nF-G\ + 2nG-F,, 2HH,)

belongs to 4.

It follows from the commutativity of A" p = A" 4 pr that HH| = H1H and KK =
K K. Therefore all four 2n x 2n blocks of MM/ remain unchanged after swapping F
with F, G with G, H with H; and K with K;. Consequently, the matrices M and M,
commute. [l

Lemma 6.6. The algebra % is closed under the Schur product.

Proof. Let M = .#(F,G,H) and M, = .4 (F,G,,H;) be two matrices in 4. We
want to write MoM, as .4 (F',G',H'), for some F' in .44 and G’ and H' in A" 4 p. If
we divide MoM, into sixteen n x n blocks naturally, then the (1, 1)- and (2, 2)-blocks
of MM, are equal to

O4(F)oO4(F) + Ho-Hy + O 4(F)-H| + O 4(F)-H
= (O4(FF1) + HoHy) + (0 4(F)oHy + 0 4(F1)-H).
The (1,2)- and (2, 1)-blocks of M-M; are equal to
(O4(FF1) + HoHy) — (O4(F)oHy + O 4(F1)-H).
The (3,3)- and (4,4)-blocks of M-M, are equal to
(O ) (FF1) + KoKi) + (O (F)oKi + O i) (F1)°K).
The (3,4)- and (4, 3)-blocks of MoM, are equal to
(O ) (FF1) + KoKy) — (O (F)oKi + O g (F1)°K).
To determine F’, we need to show that there exists Fe. /"4 such that
HoH; = 04(F) and KoK, = Oy (F)
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and F' = FF, + F. Now the matrix K is paired with H. Right-multiplying both sides
of Eq. (6.1) by BT yields

043(H) BT =0, 5 (KT BT
which is rewritten as
045(H)O 4 5(A™) =0, 5(K") O 5r(47").

Since A~! =1 4T the above equation is equivalent to

1 1
n @A’B(H)@AyB(A(7>T)T = @A,BT(KT)T@A,BT (AT,

Applying Theorem 5.3 to each side, we get
O4(HoAD) = O (KToA ).
Applying Corollary 3.3 to the right-hand side, we get
O4(HoAT) =0 p 1 (KoATT)
= Oy (KoAD)).
Similarly, M;e%. By Lemma 6.2, the matrices H; and K, satisfy Eq. (6.2)
O4(HioA) = Opr (K[oA) = Opoy(KioA").
Since A is symmetric,
O4(H-AT)O 4 (HioA) = Op i (KoAT)Op i (KjoA)
and
O (HoA T ocHioA) = O pyr(KoA T oKjoA)
which simplifies to
O4(H-H,) = Op 11(K-K).
If we let F=10,(H-H;)", then
O 4(F) :% O4(O4(H-H))")
1 T
:;Z@A(@A(HoHl)) .

Since A is symmetric, it follows from Eq. (4.1) that © 4 (F') = HoH; and
A~ 1
O e (F) = 051 (0 5o (KoK)))
=KoK;.

As a result we have F' = FF; +%@A(H0H1)T.
We see from the (1,1)- and (1,2)-blocks of MoM; that H' should be equal
to @ 4(F)oH| + O 4(F))°H. We now need to verify that @ g (F)oK| + Oy (Fi)oK
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is paired with H'. That is,

O45(O4(F)oH) + O 4(F\)oH) = 04 g ((0p)(F)oKy + Oy (Fi)oK)")".

(6.4)
Applying Theorem 5.2 gives

04 3(O4(F)oH| + O 4(F1)°H)

= L 04(OAF)O4n(H) + - O.4(O.4(1))O.05(H])
=F'O,3(H) + F'O,5(H).

By Eq. (6.1), the above expression equals
F10 5 (K])" + Fl0151(K")" = (0,451(K)F + @ 151(K")F1)".

By Eq.(4.1), we see that F =n"'0m(0p(F))" and consequently the above
expression is equal to

1 1 T
(3 €400 (KD (@) 41040 (KO (O8(F))T)
Applying Theorem 5.2 yields
@A,BT(KlT"@B(F))T + 0,5 (K 05(F))"
= 0151(K 2O (F)" + Ko@) (F1)")"
= 0151 (K190 50 (F) + K@, (F1)")".

Hence, Eq. (6.4) is satisfied and H' = @ 4(F)oH, + O 4(F))-H.
Since

0.458(G)°045(G1) = O 45(GG)
and
0.4,5(G)) 0.45(G")" =6.45(G] G")"
=0.45((GG1)")",
the top right 2n x 2n and the bottom left 2n x 2n blocks of MoM; are

(@Aﬁg(GGl) @A7B(GGl))
0.45(GG\) 0O,45(GG)

and

<9A,B((GG1)T)T @A,B((GGl)T)T>
0.45(GG)NT 045(GG)NHT )
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respectively. We conclude that G’ = GG, and that
MoM, = .4 (FF1 + % O (H-H))", GGy, 0 4(F)-H, + O 4(Fy )oH)
belongs to 4. [

Theorem 6.7. The algebra % is a Bose—Mesner algebra whose dimension is three times
the dimension of N 4.

Proof. It follows from Lemmas 6.3-6.6 that % is a Bose—Mesner algebra. By the
definition of the matrices in %4, the algebra 4 is the direct sum of three vector spaces.
The first one consists of matrices .#(F,0,0) for all Fe.1"4. This space is isomorphic
to A" 4. The second vector space consists of matrices .# (0, G, 0) for all Ge A" 5. The
third one consists of matrices .# (0,0, H) for all He /"4 5. Both the second and
the third vector spaces are isomorphic to .44 g. By Theorem 5.4, 44 and A4 45
have the same dimension. Therefore, the dimension of 4 is three times the dimension
of K/V'A. O

7. A 4n x 4n symmetric spin model

Let A and B be n x n type-11 matrices, and assume A4 is symmetric. Let d be such
that d> = n. In [11], Yamada defined a symmetric 4n x 4n matrix
d4 —d4 B9 BY)
-d4 d4 B BO)
BOT BT d4 —dA
BT BT —d4  dA
and showed that V' is a spin model if and only if (4, B) is an invertible Jones pair.
This extends Nomura’s result in [9] which covers only the invertible Jones pairs
(4, B) where both 4 and B are symmetric. We give below a different proof for
Yamada’s result.

First, it is straightforward to check that V' is also a type-II matrix. Let 4 be the
Bose—Mesner algebra of order 4n defined in the previous section.

Theorem 7.1. If (A, B) is an invertible Jones pair and A is symmetric, then V belongs
toA.

Proof. Let H = dA. By Eq. (6.1), the matrix K paired with H satisfies
0,5 (K" = @4 5(d4) = dB.

Since @ 4 pr is an isomorphism and @AﬁgT(dA)T = dB, we conclude that K = dAT =
dA. Hence V is equal to .4 (0,A7",dA) and it belongs to 4. [
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Assume (A4, B) is an invertible Jones pair and 4 is an n X n symmetric matrix. We
use the next four lemmas to show that Z< A"y If M = .#(F,G,H) in %, we want

to show that Ve,o V(e is an eigenvector of M for all r,s =1, ..., 4n.

In the following, we divide V' into sixteen n x n blocks. We use Yf‘Jﬁ to denote
Ve,V (e, when Ve, is the ith column of the ath block and V(e is the jth column
of the fth block. We display the vectors Y?f to make checking the computation

easier.
AG,‘OA(i)ej —AeioA(*>ej
Yy oy AeoADe; Y12y —AejcA e
i ij B(f)TeiOBTej ’ i ij B(f)TeiOBTej )
B(*)TeioBTej B(f)TeioBTej
B(’>e,~oBej B(7>eioBej
v oy o | BB | ysa_yas | BBy
Ly L AeioA(,)ej ) 1N 1 _AeioA(,)ej )
AeoANe; —AejrA e
dAeioBej
v _y24 —dAe;oBe;
v W d_lB(_)Te,-oA(_)ej ’
—dilB(i)TEjOA(i)ej
dAe,-oBej
Y]’4 o 7Y2"3 B —dAe,-oBej
ij = ij = _dle(—)TeioA(—)ej ’
d_lB(_)TeioA(_)ej
d-1 B e A e,
Y3’1 . Y4"2 . —d‘lB(_)e[oA(‘)ej
A WO dAe,'OBTEj
—dAeioBTej
and
dilB(i)eiOA<7>€j
—d "B e.0d e,
41 32 i .
Yij =-Yij = /

—dAeioBTej
dAe,—oBTej



A. Chan, C. Godsil | Journal of Combinatorial Theory, Series A 106 (2004) 165-191 181

Lemma 7.2. Let M = .//(F,G,H) be in B. Then for i.j =1, ....n, Y} Y; 2, Y- and

22 :
Y; 7 are eigenvectors of M.
k!

Proof. Note that MY}J’-1 equals

which in turn equals
04(04(F)), (AejoAT)e;) + 0 4.5(G) (B eoBTe))
0.4(0 .4 (F))”(Ae,oA ¢j) + 0.4,5(G) (B TeoBTe))
(@01 (F)); (BT e BTe) + ©.,4.5(GT)" (AeodDey)
1(O g (F)), (B eroB e)) + 0,4 5(GT)" (AeioADey)

Now, we show that Y}f is an eigenvector of M and compute the corresponding

eigenvalue, which is the jjth entry in the (1,1)-block of @, (M). Since A4 is
symmetric, it follows from Eq. (4.1) that

04(04(F)) =0 41(04(F))
=nF"
= Oy (@p0) (F)). (7.1)
Moreover, applying Theorem 3.2(e) with R equal to G, we have
Xo, )4 Xpor = Ayon Xy Ayt
Since A4 is symmetric, the above equation is equivalent to
0.4,5(G)(B"Te0B ;) = nGl(AerA ;) (7.2)
for i,j =1, ...,n. Similarly, applying Theorem 3.2(d) with R equals to GT gives
Xo, pnyTdac Xa = Agr Xpordygr
which implies

0.45(G")" (Ae;oATe)) = nGl (B eroBe)) (7.3)
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for i,j =1, ...,n. From Egs. (7.1)-(7.3), we see that
2nF; (AejcATe;) + 2nG; i(AeoA T e;)
2nF;, ,(Ae,oA Je;) + 2nGj,(Ae,oA “e;)
2nFj,(B Te;oBTe;) + 2nG; (B Te;oBTe))
2nF; (B e;oB ;) + 2nG; (B e;oBe;)
=2n(Fj; + Gi) Y,

MY}J’.1 =

and the (1,1)-block of @y (M) is equal to 2n(F' + GT). Since Yil lelz, the
(2,2)-block of @y (M) is also 2n(FT + GT). For (o, ) e{(1,2),(2,1)},
—04(F)(AerATe;) + 0 4 5(G) (B TejoB ;)
—04(F) (Ae,oA Jej) + 0 4.5(G) (B e;oBTe;)
Op1 (F)(B ) TerBle)) — 045(G") (derr A ey)
O (F)(B e BTe)) — 0,4 5(G")" (derodDey)
Using the above argument, the (1,2)- and (2,1)-blocks of @y (M) are equal to
2n(FT - G'). O

MY =2

. . 33 34 vas
Lemma 7.3. Let M = M(F,G,H) bein #. Then fori,j=1,...,n,Y;7, Y;7, Y, and

4.4 . -
Y, are eigenvectors of M.

Proof. We have MY?’_J‘:3 equals

O4(F)(B (’)e,oBej) + @Aﬁg(G)(AB,OA e)
@A(F)(B Q,OBej) + @A,B(G)(A )
Oy (F)(AeeATej) + 0,45(GT)T (B eroBe))

BO) (F)(AezoA Jej) + 6.4 5(G")" (B e Bey)

which is equal to

O 5 1(0.4(F)),;(BeioBe;) + 6.4.5(G)(AerrA)ey)
O 51 (0.4(F)), (B eioBe) + 6.4,5(G)(AejoATey)
0.4(0p01(F)); (AerrATe)) + 0,4 5(GT)' (B eroBey)
O4(Op01(F));;(Aeo AT er) + ©.4,5(GT)' (B eieBey)

Al
(

ij

We now show that Y?f is an eigenvector of M, and compute the corresponding
eigenvalue which is the ijth entry in the (3, 3)-block of @ (M). By Corollary 5.5,

O30 (04(F)) =O5(O(F))"
=B '04(04(F))B
=nB 'F'B. (7.4)
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Applying Corollary 5.5 to the Jones pair (4, BY),
©.4(@p)(F)) =B Oy (050 (F)) (B)'
= B0z (@5 (F))(B)"
—nB"FT(B)"
—nB ' (BB")F' (B ")
Since Be.A"; p, it follows from Theorem 5.6 that BB €.4/"4. Now F' belongs to
N 4, the commutativity of .44 implies

04(Op- (F)) =nB'FT(BB")(B~!)"
=nB~'F'B. (7.5)
From Theorem 5.6, there exists GITEJVA,BT such that

0.4.5(G) = 0,4,(G])".
Hence G is paired with G. Applying Theorem 3.2(d) with R equals to G in N 4 g
yields

0, (T Aacn Xar = ApXpo Ay

which is equivalent to

Xo,n6)44Xa = ApXpy A6
Consequently

0.4,5(G)(AevA 7 e;) = n(GY), (B )e;oBey). (7.6)
By Lemma 6.2, G is also paired with GT. Applying Theorem 3.2(¢) to R = G in
N 4 pr gives

Xo, 1(6)A8Xp0) = Ayn X rd,gr

which is equivalent to

Xo, o A8Xp0) = 4400 Xaduin
and
0.45(G") (B eioBe;) = n(GY), (AejADe;). (7.7)
It follows from Egs. (7.4)—(7.7) that
n(B IFTB) (B )ejoBe)) +"(G}-)i.j(B< eioBe;)
MY 2 n(B~'FTB), (B~ e,oBej) +n(GY); (B e Be))
’ n(B~ IFTB)I,/(A ) + ”(GlT)i:/(AeloA(i)ej)
n(B IFTB)IJ(AQIOA lej) + "(G-lr)i.j(AeioA(i)ej)

=2n(B'F'B+ G),, Y.
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Note that Yff = Y?f. Hence the (3,3)- and (4,4)-blocks of @y (M) are equal to
2n(B~'FTB + GT). It is easy to see from the block structure of Y,3 ’/.4 and Y?f that the
(3,4)- and (4,3)-blocks of @y (M) are equal to 2n(B'F'B—-G). O

Lemma 7.4. Let M = /(F,G,H) be in B. Then fori,j =1,....n, Y7, Y} Y} and

2,4 : ,
Y;; are eigenvectors of M.

Proof. We have

dH (Ae;oBej)
—dH(Ae;oBej)
d'K (BT Te0AHe;)

—d ' K(BTTe;0ADe))
@A_,B(H),»J-(dAe,-oBej)
@A_,B(H)i_j(fdAe,-oBej)

O 400 (K) (d 7' B eredDey)
O 40 (K)i,j(_d71B(i)TeioA(i)ej)

MY} =2

By Corollary 3.3,
Oprt ) (K) = Opr 4(KT) = 0 4 pr (K.

Since K is paired with H, by Eq. (6.1), the (1,3)-block of @ (V) is 204 5(H).
Similarly, the (2,4)-, (1,4)-, (2,3)-blocks of @y (V) are equal to 20 4 5(H). O

Lemma 7.5. Let M = .4 (F,G,H) be in B. Then fori,j =1, .. Yfll, Y?/z, Y " and

42 . X
Y;; are eigenvectors of M.

Proof. We have

d"H(BDep0A ey

—d"H(BMej0ADe))
dK(Ae;-B'e))
—dK (Ae;oB"¢;)

Op) 40 (H)i,,-(d_lB(_)efOA(_)ej)
Op) a0 (H)iJ(—d*IB(*)eioA(f)ej)
O 4 p (K)I-J(dAe,»oBTej)

0 4,57 (K), j(—dAe;°Be;)

MYi}l =2
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By Corollary 3.3, we have
Oprac)(H) =Opa(H)
=05 H)T
=0 45 (K)
and the last equality follows from the fact that KT is paired with HT. Therefore the

(3,1)-block of @y (M) is equal to 2@A73(HT)T. Similarly, the (4,2)-, (4,1)- and
(3,2)-blocks are equal to 204 5(HT)". O

Theorem 7.6. If (A, B) is an invertible Jones pair and A is symmetric, then % is a
subscheme of Ny.

Proof. For any M € %, we have shown in Lemmas 7.2-7.5 that Yi}ﬁ is an eigenvector
of M for all o, e{1,2,3,4} and i,je{1,...,n}. Thus Me Ay and BZ=AN"p. O

Corollary 7.7. The Bose—Mesner algebra A is formally self-dual with duality map @y .
Proof. We see from the proof of Lemmas 7.2-7.5 that for M = #(F,G,H) in %,
O (M) equals
nFT +nGY nFT —nGT O45(H) 6 .45(H)
nFT —nG' nFT 4+ nGT O45(H) O45(H)
O43(HN' 0,45HY" nB'F'B+nGT nB'F'B—nGl |’
O043(HN' 0,43H"" nB'F'B—nGT nB'F'B+nGl
where G is paired with G, that is

0.45(G) = 0,5 (G])".

Since nFTe A"y and A4 = A", there exists a matrix Fe./"4 such that nFT =

0 4(F). By Corollary 5.5, we have
B 'nF"B =B '0,4(F)B=03(F)" =0, (F).

By Corollary 5.7, we have GTe /" p. It follows from Lemma 6.2 that G is also
paired with GT, whence we have

Oy (M) = .4 (2F,2H,2nG")
belongs to 4. Moreover, the map @ restricted to 4 is a duality map of 4. [

We are ready to prove Yamada’s result.

Theorem 7.8 (Yamada [11, Theorem 1]). Let A be a symmetric n X n matrix. Then
(A, B) is an invertible Jones pair if and only if V' is a spin model.
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Proof. Suppose (A4, B) is an invertible Jones pair. By Theorems 7.1 and 7.6, the
matrix V is equal to .#(0,A~',dA) and hence it belongs to ./"y. By Corollary 7.7,

Op(V) = .4(0,2dA4,2n4™").
If K is paired with H = 2nA~", then

0457 (K" =210 4 3(47") = 2nB,
which implies K = 2n4~" = 24). Therefore

AD) —4) 4B dB
—40) 4) dB dB
O=2| gt agt 40 40
dBT dBT -4 40
=2dv).

By Theorem 3.2, we have

Xydyo Xy = Ay Xy dyyyo.
Since V' is symmetric, we conclude that (3,7, V(=) is an invertible Jones pair, which
is equivalent to saying V is a spin model.

Conversely, let V' be a spin model, or equivalently, let (37, V(=) be an invertible
Jones pair. Since the (1,3)-block of ¥(-) is equal to B, we have
1,3 13

VYiJ = 2dBiJYi,/ .
This equation implies that

A(AeioBej) = B,’J(AE,’OBGJ') for all l,] = 1, o, n.
By Theorem 3.2, we have

X A X4 = ABXAAB.
Similarly, the (3, 1)-block of V(=) is equal to BT, we get

3,1 3,1

VY =2d(B"),;Y;;
which implies

A(Ae;oBle)) = BIj(Ae,-oBTej) foralli,j=1,...,n
and

XAABTXA == ABTXAABT.
Thus (4, B) is an invertible Jones pair. O

It follows from Theorem 4.1 and the above theorem that the Bose-Mesner algebra
Ny 1s formally self-dual and @y is a duality map of A"p.

Given any invertible Jones pair (C, B), it is easy find an odd-gauge equivalent
invertible Jones pair (A4, B) in which A is symmetric, see Section 8 of [4]. By the above
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theorem, we can always construct a symmetric spin model V' from every invertible
Jones pair, or equivalently, every four-weight spin model.

8. Subschemes and induced schemes

Suppose 4 and B are n x n type-II matrices. It is easy to verify that the 2n x 2n
matrix

4 BGO)
W:
<—A B<->>

is also a type-II matrix. Furthermore, if (4, B) is an invertible Jones pair and 4 is
symmetric, then we have

N {<F+G F_G> FeN4,GeN } (8.1)
= :Fe. € .
w F—-G F+G A A,B
and
0 4(F) 0 ,5(G)
Nyt = ’ cFeNy 4, Ge N . 8.2
w {(63()7A()(G) Op- (F) A 48 8.2)

Hence the dimensions of A7y and A"t equal twice the dimension of .4 4. For
details, please see Section 11 of [4].

Now we have five Bose—-Mesner algebras A"y, #, Ny, N pr and A4 associated
to each invertible Jones pair (4, B) with 4 symmetric. The aim of this section is to
show that they satisfy the relations described in the following diagram.

Ny

subscheme

quotient induced scheme
Ny Nw
induced scheme quotient
Ny

Let B be a Bose—-Mesner algebra on vertex set #". Let Y be a non-empty subset
of 7. For any |77| x |7"| matrix M, we use My to denote the |Y| x | Y| matrix
obtained from the rows and the columns of M indexed by the elements in Y.
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We let the set
BY = {MY : MEB}

If By is also a Bose—-Mesner algebra, we say it is an induced scheme of B. Suppose the
vertex sets of A"y, A"y and B are {1, ...,n}, {1, ...,2n} and {1, ..., 4n}, respectively.
If Y ={I1,...,n}, then it is obvious from Eq. (8.2) that the set (4 pr)y is equal to
N, Therefore A"y = A", is an induced scheme of A yr. Similarly, let Y’ =
{1, ...,2n}. It follows from Egs. (6.3) and (8.1) that Zy = N .

Let B be a Bose—Mesner algebra on vertex set #". Let n = (C),...,C,) be a
partition of ¥". Define the characteristic matrix S of 7 to be the n x r matrix with

{ 1 if ueCy,
Su.k = .
’ 0 otherwise.

We say = is equitable relative to B if and only if for each matrix M in B, there is an
r X r matrix Z,, satisfying

MS = SZy.

We call the set {Z,, : M eB} the quotient of B with respect to n. Fori =1, ...,n, let
C;={i,n+i} and let = = (C, ..., C,). The characteristic matrix of = is

s=(1)

Then a matrix

F+R F-R
M =
F-R F+R

in A"y satisfies
MS = S(2F).

Thus Z,; = 2F. By Eq. (8.1), we see that F e /"4 and thus the quotient of /"y with
respect to 7 is equal to A"4. Similarly let C;={i,n+i}, for i=1,...,n2n+

1, ...,3n. The characteristic matrix of ' = (Cy, ..., Cy, Copy1, ..., C3y) 18
I, 0
o I, 0
1o 1,
0 I,
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Then a matrix .Z(F, G, H) in % satisfies
O 4(F) O .45(
O4(F 045G

0.45(G")" Oy (F

0.45(G")" Op(

=5 (2( @A(FT) T @A‘B(G)>>.
0458(G")"  Op-(F)

By Corollary 3.3, we have
@40 (G) = @.45(G")".

AM(F,G,H)S =2

As a result, Z 4p.g,u)y€-AN wr and A"y is the quotient of # with respect to n'.
In addition, it is straightforward to check that the span of the following set

{M(F,0,H): FeN'y and HeN 5} u{#(0,1,0)}

is also a Bose—Mesner algebra. Therefore it is a subscheme of 4 whose dimension
equals 2 dim(.4"4) + 1. Similarly, the span of the set

0 0w el V)

is a subscheme of ./ whose dimension equals dim(.A4"4) + 1.

9. Comments

We now give an explicit description of 4"). Let Z be the space consisting matrices
0 0 N =N
0 0 -N N
N =N 0 0 |
-N; N 0 0
where N and N, satisfy
XA Xnd ) Xp1 = As = XpAdu Xy, 45X 4,
XprAuXyApr Xy = As, = Xy Ao Xy 440 Xy,

for some n x n matrices S and S;. Then 4"y is equal to the direct sum of % and %,
see p. 124 of [3]. We see that if .4"4 has dimension r, then dim (4"y) equals 3r +
dim (). Unfortunately, we do not yet know how to determine the dimension of .
We can only conclude that 3r<dim(.A4"y)<3r+ n. For example, for each of the
three 4 x 4 four-weight spin models given in Section 5 of [2], the algebra /"4 has
dimension 4 and /" has dimension 16. The natural problem is to determine the
dimension of /") for any invertible Jones pair (4, B).
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We get two link invariants from an invertible Jones pair (4, B): one from (4, B)
and the other from the spin model V. It is natural to ask how the two invariants are
related. In addition, it would be very useful to have a procedure that decides whether
any 4n x 4n spin model is gauge equivalent to a spin model that has the same
structure as V. Such procedure may lead us to the extraction of invertible Jones pairs
from the spin models of order divisible by four.

Any new examples of invertible Jones pair will be extremely desirable since there is
a rich family of Bose—Mesner algebras attached. On the other hand, we are also
interested in any Bose—Mesner algebras that fit the diagram in Section 8 because they
may lead to the discovery of new invertible Jones pairs, hence possibly new link
invariants. In particular, we have examined the formally dual pair of Bose—Mesner
algebras, #, and %,, constructed from the Kasami codes in [5]. These algebras
consist of 242 x 24+2 matrices and they have dimension six. The Schur-idempotents
of, say, %, have valencies

1722[-0—1 _ 1722t+1 _ 1722Z+1 _ 1’ (22[ _ 1)(221+1 _ 1) and (22[ _ 1)(221+1 _ 1)7
while the valencies of the Schur-idempotents of %, are
1’221‘+l _ 172t71(2r _ 1)(22t+1 _ 1)721‘71(21‘ _ 1)(22t+1 _ 1)

2712+ D22 = 1) and 2720+ D(2F - 1).

)

We are interested in these algebras because they are the only known example of a
formally dual pair of Bose—Mesner algebras that are not translation schemes. They
are candidates for A"y and A" in our diagram.

In the following, we use the structure of ./ "yt to rule out the possibility that %,
and %, fit into the diagram in Section 8. We see from the previous section that

) ( 0 J24,+1>
J:
J24I+1 0

belongs to A . Therefore if A pr equals to %), then a subset of the Schur-
idempotents of 4, would sum to J. In this case, a subset of the valencies of %, would
sum to 2**!. However, we can use elementary computation to prove that it is
impossible to find a subset of the numbers in the first list above to sum to 241,
Consequently the algebra 4, cannot be .4 jr. Similarly, simple computation shows
that we cannot find a subset of valencies of %, to sum to 2**!. We conclude that %,
cannot be A 1. As a result there does not exist any invertible Jones pair for which
{%1,%,} equals {N y, N yr}.

Acknowledgments
We thank the referees for their constructive comments and suggestions. Support

from a National Sciences and Engineering Council of Canada operating grant is
gratefully acknowledged by the second author.



A. Chan, C. Godsil | Journal of Combinatorial Theory, Series A 106 (2004) 165-191 191

References

[1] E. Bannai, Bose-Mesner algebras associated with four-weight spin models, Graphs Combin. 17 (4)
(2001) 589-598.
[2] E. Bannai, E. Bannai, Generalized spin models (four-weight spin models), Pacific J. Math. 170 (1)
(1995) 1-16.
[3] A. Chan, Jones pairs, Ph.D. Thesis, University of Waterloo, Waterloo, Canada, 2001.
[4] A. Chan, C.D. Godsil, A. Munemasa, Four-weight spin models and Jones pairs, Trans. Amer. Math.
Soc. 355 (6) (2003) 2305-2325 (electronic).
[5] D. de Caen, E.R. van Dam, Association schemes related to Kasami codes and Kerdock sets, Des.
Codes Cryptogr. 18 (1999) 89-102.
[6] F. Jaeger, On four-weight spin models and their gauge transformations, J. Algebraic Combin. 11
(2000) 241-268.
[7] F. Jaeger, M. Matsumoto, K. Nomura, Bose—Mesner algebra related with type II matrices and spin
models, J. Algebraic Combin. 8 (1998) 39-72.
[8] V.F.R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137
(1989) 311-334.
[9] K. Nomura, Twisted extensions of spin models, J. Algebraic Combin. 4 (1995) 173-182.
[10] K. Nomura, An algebra associated with a spin model, J. Algebraic Combin. 6 (1997) 53-58.
[11] M. Yamada, The construction of four-weight spin models by using Hadamard matrices and
m-structure, Austral. J. Combin. 10 (1994) 237-244.



	Bose-Mesner algebras attached to invertible Jones pairs
	Introduction
	Invertible Jones pairs
	Nomura algebras
	Nomura algebras of a type-II matrix
	Nomura algebras of an invertible Jones pair
	A Bose-Mesner algebra of order 4n
	A 4ntimes4n symmetric spin model
	Subschemes and induced schemes
	Comments
	Acknowledgements
	References


