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Abstract

In 1989, Vaughan Jones introduced spin models and showed that they could be used to form

link invariants in two different ways—by constructing representations of the braid group, or

by constructing partition functions. These spin models were subsequently generalized to the

so-called four-weight spin models by Bannai and Bannai; these could be used to construct

partition functions, but did not lead to braid group representations in any obvious way. Jaeger

showed that spin models were intimately related to certain association schemes. Yamada gave

a construction of a symmetric spin model on 4n vertices from each four-weight spin model on

n vertices.

In this paper, we build on recent work with Munemasa to give a different proof to

Yamada’s result, and we analyze the structure of the association scheme attached to this spin

model.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Spin models are a special class of matrices introduced by Jones [8] as a tool for
creating link invariants. There are two strands to their subsequent development that
are of interest to us. First, Jaeger and Nomura showed that all spin models could be
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realized as matrices in association schemes (see [10]). Hence spin models have a
combinatorial aspect and, perhaps more importantly, the search for new spin models
was reduced to the search for certain special classes of association schemes.
(This means that the search space is discrete rather than continuous.)
The second strand was the development of more general classes of models,

culminating in the four-weight spin models of Bannai and Bannai [2]. These models
are formed from a pair of matrices; they still provided link invariants, but apparently
lacked the intimate connection to association schemes.
In [4], Munemasa and the present authors developed a new approach to spin

models, based on what we called Jones pairs. We showed that these included the
four-weight spin models as a special case. As a result, we were able to show that each
four-weight spin model determines a pair of association schemes.
In [11], Yamada showed that each four-weight spin model of order n embeds in a

very natural way in a spin model of order 4n:We give a complete and different proof
to Yamada’s result. In addition, the tools we develop in Sections 2–5 allow us to
analyze the structure of NV ; which was not investigated in [11].

2. Invertible Jones pairs

Given two matrices A and B of the same order, we use A3B to denote their Schur
product, which has

ðA3BÞi;j ¼ Ai;jBi;j:

If all entries of A are non-zero, then we say A is Schur invertible and define its Schur-

inverse, Að�Þ; by

A
ð�Þ
i;j ¼ 1

Ai;j
:

Equivalently, we have Að�Þ
3A ¼ J; where J is the matrix of all ones.

For any n � n matrix C; we define two linear operators XC and DC as follows:

XCðMÞ :¼ CM; DCðMÞ :¼ C3M for all MAMnðCÞ:

Given a linear operator Y onMnðCÞ; we use YT to denote its adjoint relative to the

non-degenerate bilinear form trðMTNÞ onMnðCÞ; and call it the transpose of Y : It is
easy to see that

XT
C ¼ XCT ; DTC ¼ DC :

A Jones pair is a pair of n � n complex matrices ðA;BÞ such that XA and DB are
invertible and

XADBXA ¼ DBXADB; ð2:1Þ

XADBTXA ¼ DBTXADBT : ð2:2Þ
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Note that XA and DB are invertible only if A is invertible and B is Schur invertible.

It is also easy to observe that ðA;BÞ is a Jones pair if and only if ðA;BTÞ is a Jones
pair. Jones pairs are designed to give representation of braid groups using Jones’
construction. Please see Section 2 of [4] for a description of the construction.
An n � n matrix W is a type-II matrix if

WW ð�ÞT ¼ nI :

Note that a type-II matrix is invertible with respect to both matrix multiplication and
the Schur product. We say that a Jones pair ðA;BÞ is invertible if A is Schur invertible
and B is invertible. Theorems 7.1 and 7.2 of [4] imply that a Jones pair ðA;BÞ is
invertible if and only if A and B are type-II matrices.

Let W1; W2; W3 and W4 be n � n complex matrices and let d be such that d2 ¼ n:
A four-weight spin model is a 5-tuple ðW1;W2;W3;W4; dÞ that satisfies

W3 ¼ W
ð�ÞT
1 ; W2 ¼ W

ð�ÞT
4 ; ð2:3Þ

W1W3 ¼ nI ; W2W4 ¼ nI ; ð2:4Þ

Xn

h¼1
ðW1Þk;hðW1Þh;iðW4Þh;j ¼ dðW4Þi;jðW1Þk;iðW4Þk;j; ð2:5Þ

Xn

h¼1
ðW1Þh;kðW1Þi;hðW4Þj;h ¼ dðW4Þj;iðW1Þi;kðW4Þj;k: ð2:6Þ

From (2.3) and (2.4), we see that both W1 and W4 are type-II matrices and they
determine W3 and W2; respectively. Furthermore, it is straightforward to verify that
Eqs. (2.5) and (2.6) are equivalent to Eqs. (2.1) and (2.2) when W1 ¼ dA and W4 ¼ B:
Jaeger showed in [6] that ðA;BÞ and ðC;BÞ are invertible Jones pairs if and only if

C ¼ DAD�1 for some invertible diagonal matrix D:We say that these two invertible
Jones pairs are odd-gauge equivalent. Proposition 7 of [6] states that for every
invertible Jones pair ðA;BÞ; there exists an invertible diagonal matrix D such that

DAD�1 is symmetric. Since odd-gauge equivalent invertible Jones pairs give the same
link invariants, we suffer no loss by considering only invertible Jones pairs whose
first matrix is symmetric.

3. Nomura algebras

We start this section by defining the Nomura algebras NA;B andN0
A;B of a pair of

n � n matrices. When A is a type-II matrix and B ¼ Að�Þ; our construction gives the
Nomura algebras discussed in [7,10]. The definitions here are taken from [4].
Let A and B be n � n matrices, let e1;y; en be the standard basis vectors in Cn and

form the n2 column vectors

Aei3Bej for i; j ¼ 1;y; n:

ARTICLE IN PRESS
A. Chan, C. Godsil / Journal of Combinatorial Theory, Series A 106 (2004) 165–191 167



We define NA;B to be the set of matrices of which Aei3Bej is an eigenvector, for all

i; j ¼ 1;y; n: This set of matrices is closed under matrix multiplication and contains
the identity matrix In:
For each matrix MANA;B; we use YA;BðMÞ to denote the n � n matrix that

satisfies

MðAei3BejÞ ¼ YA;BðMÞi;jðAei3BejÞ:

We view YA;B as a linear map from NA;B to MnðCÞ and we use N0
A;B to denote the

image of NA;B: By the definition of YA;B; we have

YA;BðMNÞ ¼ YA;BðMÞ3YA;BðNÞ:

Consequently, the spaceN0
A;B is closed under the Schur product. Since InANA;B; the

matrix YA;BðInÞ ¼ Jn belongs to N0
A;B: We conclude that N

0
A;B is a commutative

algebra with respect to the Schur product.
If A is invertible, then the columns of A are linearly independent. Further if B is

Schur invertible, then for any j

fAe13Bej;Ae23Bej;y;Aen3Bejg
is a basis of Cn: In this case, the map YA;B is an isomorphism from NA;B; as an

algebra with respect to the matrix multiplication, toN0
A;B; as an algebra with respect

to the Schur product. We conclude from the commutativity of N0
A;B that NA;B is

commutative with respect to matrix multiplication.
The following result is called the Exchange Lemma. It will serve as a powerful tool

in Sections 6 and 7. The proof of Theorem 3.2 also demonstrates the usefulness of
this lemma.

Lemma 3.1 (Chan et al. [4, Lemma 5.1] [Exchange]). If A;B;C;Q;R;SAMnðCÞ
then

XADBXC ¼ DQXRDS

if and only if

XADCXB ¼ DRXQDST :

Theorem 3.2. If A and B are n � n type-II matrices, then the following are equivalent:

(a) RANA;B and S ¼ YA;BðRÞ:
(b) XRDBXA ¼ DBXADS:
(c) XRDAXB ¼ DAXBDST :
(d) DBTXBð�ÞTDnR ¼ XSTDAð�ÞTXAT :
(e) DAð�ÞTXATDnRT ¼ XSDBTXBð�ÞT :

Proof. The equivalence of (a) and (b) follows from Theorem 6.2 of [4].
Applying the Exchange Lemma to (b) gives (c), which is equivalent to

DAð�ÞXRDA ¼ XBDSTXB�1 : ð3:1Þ
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Applying the Exchange Lemma to Eq. (3.1) again, we get

DRXAð�ÞDAT ¼ XBDB�1XST :

Now we have B�1 ¼ n�1Bð�ÞT and Að�Þ ¼ nðA�1ÞT because A and B are type-II
matrices. The above equation becomes

DRXnðA�1ÞTDAT ¼ XBDn�1Bð�ÞTXST

which leads to

DBTXB�1DnR ¼ XSTDAð�ÞTXn�1AT : ð3:2Þ

We get (d) after multiplying both sides of Eq. (3.2) by n and replacing nB�1 by Bð�ÞT:
Taking the transpose of both sides of Eq. (3.2) gives

DnRXðB�1ÞTDBT ¼ Xn�1ADAð�ÞTXS

and

DATXAð�ÞTDnR ¼ XSDBð�ÞTXBT :

We get (e) after applying the Exchange Lemma to the above equation. &

Now we state an easy consequence of Theorem 3.2(b).

Corollary 3.3 (Chan et al. [4, Lemma 10.2]). Let A and B be n � n type-II matrices. If

RANA;B then

RTANAð�Þ;Bð�Þ and YAð�Þ;Bð�Þ ðRTÞ ¼ YA;BðRÞ:

4. Nomura algebras of a type-II matrix

When A is a type-II matrix and B ¼ Að�Þ; existing papers such as [7] useNA; N
0
A

and YA to denote NA;B; N
0
A;B and YA;B; respectively. The algebra NA is called the

Nomura algebra of A: We now present some results on NA due to Jaeger et al. [7]
which we will use later.

When B ¼ Að�Þ; Condition 3.2(e) becomes

DAð�ÞTXATDnRT ¼ XSDAð�ÞTXAT

and it implies

YATðSÞ ¼ YATðYAðRÞÞ ¼ nRT: ð4:1Þ

We conclude that if RANA then YAðRÞANAT and RTAN0
AT : Hence

N0
ADNAT and dimðNAÞ ¼ dimðNT

AÞpdimðN0
ATÞ:

Similarly AT is also a type-II matrix, so

N0
ATDNA and dimðNATÞpdimðN0

AÞ:
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ThereforeN0
A ¼ NAT andN0

AT ¼ NA; which implies thatNA andNAT are closed

under both matrix multiplication and the Schur product. It also implies that NA ¼
N0

AT is closed under the transpose. Since A is invertible and Að�Þ is Schur invertible,

the map YA is an isomorphism from NA to N0
A: Hence NA is commutative with

respect to matrix multiplication. In summary, the algebra NA is commutative with
respect to matrix multiplication, is also closed under the transpose and the Schur
product, and contains I and J: In other words, NA is a Bose–Mesner algebra.
We now investigate the properties of the map YA: Let M and N be matrices in

NA: Since YAT :NAT-NA is an isomorphism, there exist M 0 and N 0 in NAT such
that YATðM 0Þ ¼ M and YATðN 0Þ ¼ N: Hence

YAðM3NÞ ¼YAðYATðM 0Þ3YATðN 0ÞÞ

¼YAðYATðM 0N 0ÞÞ

which equals nðM 0N 0ÞT by Eq. (4.1). Since
YAðMÞ ¼ YAðYATðM 0ÞÞ ¼ nM 0T

and YAðNÞ ¼ nN 0T; we have

YAðM3NÞ ¼ 1
n
ðnN 0TÞðnM 0TÞ

¼ 1
n
YAðNÞYAðMÞ

¼ 1
n
YAðMÞYAðNÞ;

the last equality results from the commutativity of N0
A: Now we conclude that YA

swaps matrix multiplication with the Schur product.

Furthermore, applying 1
n
YA to the two rightmost terms of Eq. (4.1) gives

1

n
YAðYATðYAðRÞÞÞ ¼ YAðRTÞ:

It follows from Eq. (4.1) that the left-hand side equals YAðRÞT: Thus YA and the
transpose commute. From Corollary 3.3, we see that

YAð�Þ ðRÞ ¼ YAðRÞT:

Also note that by Eq. (4.1), we have

YAðJÞ ¼ YAðYATðIÞÞ ¼ nI :

We call YA a duality map from NA to NAT and say that these two Bose–Mesner
algebras form a formally dual pair. If NA ¼ NAT and YA ¼ YAT ; we say that it is
formally self-dual.

A spin model is an n � n matrix W such that ðW ;W ;W ð�Þ;W ð�Þ; dÞ is a four-
weight spin model, for d2 ¼ n: It follows from Section 9 of [4] that W is a spin model

if and only if ðd�1W ;W ð�ÞÞ is an invertible Jones pair. In [7], Jaeger et al. gave the
following characterization of a spin model W using its Nomura algebra NW :
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Theorem 4.1 (Jaeger et al. [7, Theorem 11]). Suppose W is a type-II matrix.

Then WANW if and only if cW is a spin model for some non-zero scalar c: In

this case,

NW ¼ NWT

is a formally self-dual Bose–Mesner algebra with duality map YW ¼ YWT :

5. Nomura algebras of an invertible Jones pair

We study the relation among the different Nomura algebras of an invertible Jones
pair.

Theorem 5.1 (Bannai [1, Theorem 3]). If ðA;BÞ is an invertible Jones pair, then

NA ¼ NAT ¼ NB ¼ NBT ;

the duality maps satisfy YA ¼ YAT and YB ¼ YBT :

Bannai et al. [1] proved this result for four-weight spin models, which are
equivalent to invertible Jones pairs. For an alternate proof using the Nomura
algebras of A and B; see Section 10 of [4].
Let A and B be type-II matrices. We see from Theorem 3.2(a) and (b) that ðA;BÞ is

an invertible Jones pair if and only if AANA;B-NA;BT ; YA;BðAÞ ¼ B and

YA;BTðAÞ ¼ BT: The next two results provide some insights to the relations among

NA;B; N
0
A;B and NA:

Theorem 5.2 (Chan et al. [4, Theorem 10.3]). Let A and B be n � n type-II matrices.

If FANA; GANA;B and HANB; then F3G; and G3H belong to NA;B and

YA;BðF3GÞ ¼ n�1YAðFÞYA;BðGÞ;

YA;BðG3HÞ ¼ n�1YA;BðGÞYBðHÞT:

Theorem 5.3 (Chan et al. [4, Theorem 10.4]). Let A and B be n � n type-II matrices.

If F ;GANA;B; then F3GTANA-NB and

YAðF3GTÞ ¼ n�1YA;BðFÞYA;BðGÞT;

YBðF3GTÞ ¼ n�1YA;BðFÞTYA;BðGÞ: ð5:1Þ

We list two consequences of Theorems 5.2 and 5.3.
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Theorem 5.4 (Chan et al. [4, Theorem 10.6]). Let A and B be n � n type-II matrices.

If NA;B contains a Schur invertible matrix G and H ¼ YA;BðGÞ; then

NA;B ¼ G3NA; N0
A;BHT ¼ NAT :

Corollary 5.5 (Chan et al. [4, Corollary 10.9]). If ðA;BÞ is an invertible Jones pair,
then

YBðMÞT ¼ B�1YAðMÞB

for all MANA:

Now we present an important application of Theorems 5.2 and 5.3, which implies

that the Nomura algebras NA; NA;B and N0
A;B have the same dimension.

Theorem 5.6. Let ðA;BÞ be an invertible Jones pair. Then

NA;B ¼ A3NA; N0
A;BBT ¼ NA

and

N0
A;B ¼ ðN0

A;BTÞT:

Proof. We get the first equality by letting G ¼ A in Theorem 5.4. Since B ¼ YA;BðAÞ;
we have

N0
A;BBT ¼ NAT :

By Theorem 5.1, we have NAT ¼ NA and hence the second equality holds.

If we replace B by BT in the above equality, then we get

N0
A;BTB ¼ NAT :

Since multiplication by B is injective, the dimensions of NA ¼ NAT and N0
A;BT are

equal. Now we let G equal A and replace B by BT in Eq. (5.1). We get

N0
BTDðN0

A;BTÞTBT:

By Theorem 5.1,NA ¼ NB ¼ N0
BT : SinceNA andN0

A;BT have the same dimension,

we have

NA ¼ ðN0
A;BTÞTBT:

Thus N0
A;BBT ¼ ðN0

A;BTÞTBT; which leads to the last equality of the theorem. &

Corollary 5.7. Let ðA;BÞ be an invertible Jones pair. Then

NA;B ¼ NA;BT :
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Moreover, if A is symmetric, then

NA;B ¼ ðNA;BÞT:

Proof. Applying Theorem 5.6 to the invertible Jones pairs ðA;BÞ and ðA;BTÞ gives

NA;B ¼ A3NA ¼ NA;BT :

Using the same equation, we have NT
A;B ¼ AT

3NT
A: Since NA is closed under the

transpose and A is symmetric, we conclude that NA;B ¼ NT
A;B: &

6. A Bose–Mesner algebra of order 4n

From now on, we assume that ðA;BÞ is an invertible Jones pair and A is
symmetric.

Lemma 6.1. For each H in NA;B; there exists a unique matrix K in ðNA;BTÞT such that

YA;BðHÞ ¼ YA;BTðKTÞT: ð6:1Þ

Proof. Existence follows directly from the last equality in Theorem 5.6, while
uniqueness holds because YA;BT is an isomorphism. &

Given any matrix H in NA;B; we say that the unique K in N0
A;B satisfying

Eq. (6.1) is paired with H:

Lemma 6.2. For each H in NA;B; K in N0
A;B is paired with H if and only if KT is

paired with HT: Moreover we have

YAðH3AÞ ¼ YBTðKT
3AÞ: ð6:2Þ

Proof. Multiplying each side of Eq. (6.1) by n�1YA;BðAÞT ¼ n�1YA;BTðAÞ gives

n�1YA;BðHÞYA;BðAÞT ¼ n�1YA;BTðKTÞTYA;BTðAÞ:

We apply Theorem 5.3 to both sides of the above equation to get

YAðH3ATÞ ¼ YBTðKT
3ATÞ:

Since A is symmetric, we see that Eq. (6.1) is equivalent to Eq. (6.2).
In addition, taking the transpose of both sides gives

YAðHT
3AÞ ¼ YBTðK3AÞ:

Therefore H and K satisfy Eq. (6.1) if and only if HT and KT satisfy Eq. (6.1). &
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For any FANA and H;GANA;B; we define the 4n � 4n matrix MðF ;G;HÞ to be
YAðFÞ þ H YAðFÞ � H YA;BðGÞ YA;BðGÞ
YAðFÞ � H YAðFÞ þ H YA;BðGÞ YA;BðGÞ
YA;BðGTÞT YA;BðGTÞT YBð�Þ ðFÞ þ K YBð�Þ ðFÞ � K

YA;BðGTÞT YA;BðGTÞT YBð�Þ ðFÞ � K YBð�Þ ðFÞ þ K

0
BBBB@

1
CCCCA;

where K is paired with H: We consider the space

B :¼ fMðF ;G;HÞ : FANA and H;GANA;Bg: ð6:3Þ

Now we show that B is a Bose–Mesner algebra. It turns out that B contains the
4n � 4n type-II matrix V defined at the beginning of Section 7 and it is a subscheme
ofNV : This leads to the main result of this paper which says that V is a spin model
if and only if ðA;BÞ is an invertible Jones pair.
To convince ourselves that B is a Bose–Mesner algebra, we need to check that B

contains the identity matrix I4n and the matrix of all ones J4n; it is closed under the
transpose; it is a commutative algebra with respect to matrix multiplication; it is
closed under the Schur product.

Lemma 6.3. The vector space B contains I4n and J4n:

Proof. The matrix K that is paired with 1
2

In satisfies

YA;BTðKTÞT ¼ YA;B
1

2
In

� 	
¼ 1

2
Jn:

SinceYA;BT is an isomorphism, we conclude that K ¼ 1
2 In:Note thatYAð 12n

JnÞ ¼ 1
2 In:

Thus Mð 1
2n

Jn; 0;
1
2

InÞ ¼ I4n belongs to B:

Since YAðInÞ ¼ YA;BðInÞ ¼ Jn; the matrix MðIn; In; 0Þ ¼ J4n belongs to B: &

Lemma 6.4. The vector space B is closed under transpose.

Proof. Let MðF ;G;HÞAB: Now MðF ;G;HÞT equals

YAðFÞT þ HT YAðFÞT � HT YA;BðGTÞ YA;BðGTÞ
YAðFÞT � HT YAðFÞT þ HT YA;BðGTÞ YA;BðGTÞ
YA;BðGÞT YA;BðGÞT YBð�Þ ðFÞT þ KT YBð�Þ ðFÞT � KT

YA;BðGÞT YA;BðGÞT YBð�Þ ðFÞT � KT YBð�Þ ðFÞT þ KT

0
BBBB@

1
CCCCA:

SinceNA;B is closed under the transpose, the matrices GT and HT belong toNA;B: It

follows from Lemma 6.2 that KT is paired with HT: Moreover, YAðFÞT ¼ YAðFTÞ:
As a result we conclude that

MðF ;G;HÞT ¼ MðFT;GT;HTÞ

and the vector space B is closed under the transpose. &
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Lemma 6.5. The vector space B is a commutative algebra under matrix multiplication.

Proof. Let M ¼ MðF ;G;HÞ and M1 ¼ MðF1;G1;H1Þ be any matrices in B:
By Theorem 5.3, we have

YA;BðGÞYA;BðGT
1 Þ

T ¼ nYAðG3G1Þ:

Hence the top left 2n � 2n block of MM1 equals

2nYAðF3F1 þ G3G1Þ þ 2HH1 2nYAðF3F1 þ G3G1Þ � 2HH1

2nYAðF3F1 þ G3G1Þ � 2HH1 2nYAðF3F1 þ G3G1Þ þ 2HH1

� 	
:

Similarly, by Theorem 5.3

YA;BðGTÞTYA;BðG1Þ ¼ nYBðGT
3GT

1 Þ

¼ nYBðG3G1ÞT

¼ nYBð�Þ ðG3G1Þ:

Consequently the bottom right 2n � 2n block of MM1 equals

2nYBð�Þ ðF3F1 þ G3G1Þ þ 2KK1 2nYBð�Þ ðF3F1 þ G3G1Þ � 2KK1

2nYBð�Þ ðF3F1 þ G3G1Þ � 2KK1 2nYBð�Þ ðF3F1 þ G3G1Þ þ 2KK1

� 	
;

where K and K1 are paired with H and H1; respectively. Now we need to show that
KK1 is paired with HH1: From Eq. (6.1), we have

YA;BðHÞ ¼ YA;BTðKTÞT and YA;BðH1Þ ¼ YA;BTðKT
1 Þ

T:

Therefore

YA;BðHH1Þ ¼YA;BðHÞ3YA;BðH1Þ

¼YA;BTðKTÞT3YA;BTðKT
1 Þ

T

¼YA;BTðKTKT
1 Þ

T:

Since NA;BT is commutative with respect to matrix multiplication,

YA;BðHH1Þ ¼ YA;BTððKK1ÞTÞT:

We now consider the top right 2n � 2n block of MM1: Note that

2YAðFÞYA;BðG1Þ þ 2YA;BðGÞYBð�Þ ðF1Þ

¼ 2YAðFÞYA;BðG1Þ þ 2YA;BðGÞYBðF1ÞT:

Applying Theorem 5.2 to each term, we get

2nYA;BðF3G1 þ G3F1Þ:

Thus the top right 2n � 2n block of MM1 is

2nYA;BðF3G1 þ G3F1Þ 2nYA;BðF3G1 þ G3F1Þ
2nYA;BðF3G1 þ G3F1Þ 2nYA;BðF3G1 þ G3F1Þ

� 	
:
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Consider the bottom left 2n � 2n block of MM1; we have

2YA;BðGTÞTYAðF1Þ þ 2YBð�Þ ðFÞYA;BðGT
1 Þ

T

¼ 2YA;BðGTÞTYAðF1Þ þ 2YBðFÞTYA;BðGT
1 Þ

T:

Since each of YA and YB commutes with the transpose, the above expression
becomes

2YA;BðGTÞTYAðFT
1 Þ

T þ 2YBðFTÞYA;BðGT
1 Þ

T

which equals

2nYA;BðFT
1 3G

T þ GT
1 3F

TÞT

by Theorem 5.2. Hence the bottom left 2n � 2n block of MM1 is

2nYA;BðFT
1 3G

T þ GT
1 3F

TÞT 2nYA;BðFT
1 3G

T þ GT
1 3F

TÞT

2nYA;BðFT
1 3G

T þ GT
1 3F

TÞT 2nYA;BðFT
1 3G

T þ GT
1 3F

TÞT

 !
:

Now we conclude that

MM1 ¼ Mð2nF3F1 þ 2nG3G1; 2nF3G1 þ 2nG3F1; 2HH1Þ
belongs to B:
It follows from the commutativity ofNA;B ¼ NA;BT that HH1 ¼ H1H and KK1 ¼

K1K : Therefore all four 2n � 2n blocks of MM1 remain unchanged after swapping F

with F1; G with G1; H with H1 and K with K1: Consequently, the matrices M and M1

commute. &

Lemma 6.6. The algebra B is closed under the Schur product.

Proof. Let M ¼ MðF ;G;HÞ and M1 ¼ MðF1;G1;H1Þ be two matrices in B: We
want to write M3M1 asMðF 0;G0;H 0Þ; for some F 0 inNA and G0 and H 0 inNA;B: If
we divide M3M1 into sixteen n � n blocks naturally, then the ð1; 1Þ- and ð2; 2Þ-blocks
of M3M1 are equal to

YAðFÞ3YAðF1Þ þ H3H1 þYAðFÞ3H1 þYAðF1Þ3H

¼ ðYAðFF1Þ þ H3H1Þ þ ðYAðFÞ3H1 þYAðF1Þ3HÞ:
The ð1; 2Þ- and ð2; 1Þ-blocks of M3M1 are equal to

ðYAðFF1Þ þ H3H1Þ � ðYAðFÞ3H1 þYAðF1Þ3HÞ:
The ð3; 3Þ- and ð4; 4Þ-blocks of M3M1 are equal to

ðYBð�Þ ðFF1Þ þ K3K1Þ þ ðYBð�Þ ðFÞ3K1 þYBð�Þ ðF1Þ3KÞ:
The ð3; 4Þ- and ð4; 3Þ-blocks of M3M1 are equal to

ðYBð�Þ ðFF1Þ þ K3K1Þ � ðYBð�Þ ðFÞ3K1 þYBð�Þ ðF1Þ3KÞ:

To determine F 0; we need to show that there exists F̂ANA such that

H3H1 ¼ YAðF̂Þ and K3K1 ¼ YBð�Þ ðF̂Þ
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and F 0 ¼ FF1 þ F̂: Now the matrix K is paired with H: Right-multiplying both sides

of Eq. (6.1) by Bð�ÞT yields

YA;BðHÞBð�ÞT ¼ YA;BTðKTÞTBð�ÞT

which is rewritten as

YA;BðHÞYA;BðA�1ÞT ¼ YA;BTðKTÞTYA;BTðA�1Þ:

Since A�1 ¼ 1
n

Að�ÞT; the above equation is equivalent to

1

n
YA;BðHÞYA;BðAð�ÞTÞT ¼ 1

n
YA;BTðKTÞTYA;BTðAð�ÞTÞ:

Applying Theorem 5.3 to each side, we get

YAðH3Að�ÞÞ ¼ YBTðKT
3Að�ÞÞ:

Applying Corollary 3.3 to the right-hand side, we get

YAðH3Að�ÞÞ ¼YBð�ÞTðK3Að�ÞTÞ

¼YBð�ÞTðK3Að�ÞÞ:

Similarly, M1AB: By Lemma 6.2, the matrices H1 and K1 satisfy Eq. (6.2)

YAðH13AÞ ¼ YBTðKT
1 3AÞ ¼ YBð�ÞTðK13A

TÞ:

Since A is symmetric,

YAðH3Að�ÞÞYAðH13AÞ ¼ YBð�ÞTðK3Að�ÞÞYBð�ÞTðK13AÞ

and

YAðH3Að�Þ
3H13AÞ ¼ YBð�ÞTðK3Að�Þ

3K13AÞ

which simplifies to

YAðH3H1Þ ¼ YBð�ÞTðK3K1Þ:

If we let F̂ ¼ 1
n
YAðH3H1ÞT; then

YAðF̂Þ ¼
1

n
YAðYAðH3H1ÞTÞ

¼ 1
n
YAðYAðH3H1ÞÞT:

Since A is symmetric, it follows from Eq. (4.1) that YAðF̂Þ ¼ H3H1 and

YBð�Þ ðF̂Þ ¼ 1
n
YBð�Þ ðYBð�ÞTðK3K1ÞTÞ

¼K3K1:

As a result we have F 0 ¼ FF1 þ 1
n
YAðH3H1ÞT:

We see from the ð1; 1Þ- and ð1; 2Þ-blocks of M3M1 that H 0 should be equal
to YAðFÞ3H1 þYAðF1Þ3H: We now need to verify that YBð�Þ ðFÞ3K1 þYBð�Þ ðF1Þ3K
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is paired with H 0: That is,

YA;BðYAðFÞ3H1 þYAðF1Þ3HÞ ¼ YA;BTððYBð�Þ ðFÞ3K1 þYBð�Þ ðF1Þ3KÞTÞT:
ð6:4Þ

Applying Theorem 5.2 gives

YA;BðYAðFÞ3H1 þYAðF1Þ3HÞ

¼ 1

n
YAðYAðFÞÞYA;BðH1Þ þ

1

n
YAðYAðF1ÞÞYA;BðHÞ

¼ FTYA;BðH1Þ þ FT
1 YA;BðHÞ:

By Eq. (6.1), the above expression equals

FTYA;BTðKT
1 Þ

T þ FT
1 YA;BTðKTÞT ¼ ðYA;BTðKT

1 ÞF þYA;BTðKTÞF1ÞT:

By Eq. (4.1), we see that F ¼ n�1YBTðYBðFÞÞT and consequently the above
expression is equal to

1

n
YA;BTðKT

1 ÞYBTðYBðFÞÞT þ 1

n
YA;BTðKTÞYBTðYBðF1ÞÞT

� 	T
:

Applying Theorem 5.2 yields

YA;BTðKT
1 3YBðFÞÞT þYA;BTðKT

3YBðF1ÞÞT

¼ YA;BTðKT
1 3YBð�Þ ðFÞT þ KT

3YBð�Þ ðF1ÞTÞT

¼ YA;BTððK13YBð�Þ ðFÞ þ K3YBð�Þ ðF1ÞÞTÞT:

Hence, Eq. (6.4) is satisfied and H 0 ¼ YAðFÞ3H1 þYAðF1Þ3H:
Since

YA;BðGÞ3YA;BðG1Þ ¼ YA;BðGG1Þ

and

YA;BðGT
1 Þ

T
3YA;BðGTÞT ¼YA;BðGT

1 GTÞT

¼YA;BððGG1ÞTÞT;

the top right 2n � 2n and the bottom left 2n � 2n blocks of M3M1 are

YA;BðGG1Þ YA;BðGG1Þ
YA;BðGG1Þ YA;BðGG1Þ

� 	

and

YA;BððGG1ÞTÞT YA;BððGG1ÞTÞT

YA;BððGG1ÞTÞT YA;BððGG1ÞTÞT

 !
;
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respectively. We conclude that G0 ¼ GG1 and that

M3M1 ¼ M FF1 þ
1

n
YAðH3H1ÞT;GG1;YAðFÞ3H1 þYAðF1Þ3H

� 	

belongs to B: &

Theorem 6.7. The algebra B is a Bose–Mesner algebra whose dimension is three times

the dimension of NA:

Proof. It follows from Lemmas 6.3–6.6 that B is a Bose–Mesner algebra. By the
definition of the matrices in B; the algebra B is the direct sum of three vector spaces.
The first one consists of matricesMðF ; 0; 0Þ for all FANA: This space is isomorphic
toNA: The second vector space consists of matricesMð0;G; 0Þ for all GANA;B: The
third one consists of matrices Mð0; 0;HÞ for all HANA;B: Both the second and
the third vector spaces are isomorphic to NA;B: By Theorem 5.4, NA and NA;B

have the same dimension. Therefore, the dimension of B is three times the dimension
of NA: &

7. A 4n � 4n symmetric spin model

Let A and B be n � n type-II matrices, and assume A is symmetric. Let d be such

that d2 ¼ n: In [11], Yamada defined a symmetric 4n � 4n matrix

V :¼

dA �dA Bð�Þ Bð�Þ

�dA dA Bð�Þ Bð�Þ

Bð�ÞT Bð�ÞT dA �dA

Bð�ÞT Bð�ÞT �dA dA

0
BBB@

1
CCCA

and showed that V is a spin model if and only if ðA;BÞ is an invertible Jones pair.
This extends Nomura’s result in [9] which covers only the invertible Jones pairs
ðA;BÞ where both A and B are symmetric. We give below a different proof for
Yamada’s result.
First, it is straightforward to check that V is also a type-II matrix. Let B be the

Bose–Mesner algebra of order 4n defined in the previous section.

Theorem 7.1. If ðA;BÞ is an invertible Jones pair and A is symmetric, then V belongs

to B:

Proof. Let H ¼ dA: By Eq. (6.1), the matrix K paired with H satisfies

YA;BTðKTÞT ¼ YA;BðdAÞ ¼ dB:

Since YA;BT is an isomorphism and YA;BTðdAÞT ¼ dB; we conclude that K ¼ dAT ¼
dA: Hence V is equal to Mð0;A�1; dAÞ and it belongs to B: &
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Assume ðA;BÞ is an invertible Jones pair and A is an n � n symmetric matrix. We
use the next four lemmas to show that BDNV : If M ¼ MðF ;G;HÞ in B; we want

to show that Ver3V
ð�Þes is an eigenvector of M for all r; s ¼ 1;y; 4n:

In the following, we divide V into sixteen n � n blocks. We use Ya;b
i;j to denote

Ver3V
ð�Þes when Ver is the ith column of the ath block and V ð�Þes is the jth column

of the bth block. We display the vectors Ya;b
i;j to make checking the computation

easier.

Y
1;1
i;j ¼ Y

2;2
i;j ¼

Aei3A
ð�Þej

Aei3A
ð�Þej

Bð�ÞTei3B
Tej

Bð�ÞTei3B
Tej

0
BBB@

1
CCCA; Y

1;2
i;j ¼ Y

2;1
i;j ¼

�Aei3A
ð�Þej

�Aei3A
ð�Þej

Bð�ÞTei3B
Tej

Bð�ÞTei3B
Tej

0
BBB@

1
CCCA;

Y
3;3
i;j ¼ Y

4;4
i;j ¼

Bð�Þei3Bej

Bð�Þei3Bej

Aei3A
ð�Þej

Aei3A
ð�Þej

0
BBB@

1
CCCA; Y

3;4
i;j ¼ Y

4;3
i;j ¼

Bð�Þei3Bej

Bð�Þei3Bej

�Aei3A
ð�Þej

�Aei3A
ð�Þej

0
BBB@

1
CCCA;

Y
1;3
i;j ¼ �Y2;4i;j ¼

dAei3Bej

�dAei3Bej

d�1Bð�ÞTei3A
ð�Þej

�d�1Bð�ÞTei3A
ð�Þej

0
BBB@

1
CCCA;

Y
1;4
i;j ¼ �Y2;3i;j ¼

dAei3Bej

�dAei3Bej

�d�1Bð�ÞTei3A
ð�Þej

d�1Bð�ÞTei3A
ð�Þej

0
BBB@

1
CCCA;

Y
3;1
i;j ¼ �Y4;2i;j ¼

d�1Bð�Þei3A
ð�Þej

�d�1Bð�Þei3A
ð�Þej

dAei3B
Tej

�dAei3B
Tej

0
BBB@

1
CCCA

and

Y
4;1
i;j ¼ �Y3;2i;j ¼

d�1Bð�Þei3A
ð�Þej

�d�1Bð�Þei3A
ð�Þej

�dAei3B
Tej

dAei3B
Tej

0
BBB@

1
CCCA:
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Lemma 7.2. Let M ¼ MðF ;G;HÞ be in B: Then for i; j ¼ 1;y; n; Y1;1i;j ; Y
1;2
i;j ; Y

2;1
i;j and

Y
2;2
i;j are eigenvectors of M:

Proof. Note that MY
1;1
i;j equals

2

YAðFÞðAei3A
ð�ÞejÞ þYA;BðGÞðBð�ÞTei3B

TejÞ
YAðFÞðAei3A

ð�ÞejÞ þYA;BðGÞðBð�ÞTei3B
TejÞ

YBð�Þ ðFÞðBð�ÞTei3B
TejÞ þYA;BðGTÞTðAei3A

ð�ÞejÞ
YBð�Þ ðFÞðBð�ÞTei3B

TejÞ þYA;BðGTÞTðAei3A
ð�ÞejÞ

0
BBBB@

1
CCCCA

which in turn equals

2

YAðYAðFÞÞi;jðAei3A
ð�ÞejÞ þYA;BðGÞðBð�ÞTei3B

TejÞ
YAðYAðFÞÞi;jðAei3A

ð�ÞejÞ þYA;BðGÞðBð�ÞTei3B
TejÞ

YBð�ÞTðYBð�Þ ðFÞÞi;jðBð�ÞTei3B
TejÞ þYA;BðGTÞTðAei3A

ð�ÞejÞ
YBð�ÞTðYBð�Þ ðFÞÞi;jðBð�ÞTei3B

TejÞ þYA;BðGTÞTðAei3A
ð�ÞejÞ

0
BBBBB@

1
CCCCCA:

Now, we show that Y1;1i;j is an eigenvector of M and compute the corresponding

eigenvalue, which is the ijth entry in the ð1; 1Þ-block of YV ðMÞ: Since A is
symmetric, it follows from Eq. (4.1) that

YAðYAðFÞÞ ¼YATðYAðFÞÞ

¼ nFT

¼YBð�ÞTðYBð�Þ ðFÞÞ: ð7:1Þ

Moreover, applying Theorem 3.2(e) with R equal to G; we have

XYA;BðGÞDBTXBð�ÞT ¼ DAð�ÞTXATDnGT :

Since A is symmetric, the above equation is equivalent to

YA;BðGÞðBð�ÞTei3B
TejÞ ¼ nGT

i;jðAei3A
ð�ÞejÞ ð7:2Þ

for i; j ¼ 1;y; n: Similarly, applying Theorem 3.2(d) with R equals to GT gives

XYA;BðGTÞTDAð�ÞXA ¼ DBTXBð�ÞTDnGT

which implies

YA;BðGTÞTðAei3A
ð�ÞejÞ ¼ nGT

i;jðBð�ÞTei3B
TejÞ ð7:3Þ
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for i; j ¼ 1;y; n: From Eqs. (7.1)–(7.3), we see that

MY
1;1
i;j ¼

2nFj;iðAei3A
ð�ÞejÞ þ 2nGj;iðAei3A

ð�ÞejÞ
2nFj;iðAei3A

ð�ÞejÞ þ 2nGj;iðAei3A
ð�ÞejÞ

2nFj;iðBð�ÞTei3B
TejÞ þ 2nGj;iðBð�ÞTei3B

TejÞ
2nFj;iðBð�ÞTei3B

TejÞ þ 2nGj;iðBð�ÞTei3B
TejÞ

0
BBB@

1
CCCA

¼ 2nðFj;i þ Gj;iÞY1;1i;j

and the ð1; 1Þ-block of YV ðMÞ is equal to 2nðFT þ GTÞ: Since Y1;1i;j ¼ Y
2;2
i;j ; the

ð2; 2Þ-block of YV ðMÞ is also 2nðFT þ GTÞ: For ða; bÞAfð1; 2Þ; ð2; 1Þg;

MY
a;b
i;j ¼ 2

�YAðFÞðAei3A
ð�ÞejÞ þYA;BðGÞðBð�ÞTei3B

TejÞ
�YAðFÞðAei3A

ð�ÞejÞ þYA;BðGÞðBð�ÞTei3B
TejÞ

YBð�Þ ðFÞðBð�ÞTei3B
TejÞ �YA;BðGTÞTðAei3A

ð�ÞejÞ
YBð�Þ ðFÞðBð�ÞTei3B

TejÞ �YA;BðGTÞTðAei3A
ð�ÞejÞ

0
BBBB@

1
CCCCA:

Using the above argument, the ð1; 2Þ- and ð2; 1Þ-blocks of YV ðMÞ are equal to
2nðFT � GTÞ: &

Lemma 7.3. Let M ¼ MðF ;G;HÞ be in B: Then for i; j ¼ 1;y; n; Y3;3i;j ; Y
3;4
i;j ; Y

4;3
i;j and

Y
4;4
i;j are eigenvectors of M:

Proof. We have MY
3;3
i;j equals

2

YAðFÞðBð�Þei3BejÞ þYA;BðGÞðAei3A
ð�ÞejÞ

YAðFÞðBð�Þei3BejÞ þYA;BðGÞðAei3A
ð�ÞejÞ

YBð�Þ ðFÞðAei3A
ð�ÞejÞ þYA;BðGTÞTðBð�Þei3BejÞ

YBð�Þ ðFÞðAei3A
ð�ÞejÞ þYA;BðGTÞTðBð�Þei3BejÞ

0
BBBB@

1
CCCCA

which is equal to

2

YBð�Þ ðYAðFÞÞi;jðBð�Þei3BejÞ þYA;BðGÞðAei3A
ð�ÞejÞ

YBð�Þ ðYAðFÞÞi;jðBð�Þei3BejÞ þYA;BðGÞðAei3A
ð�ÞejÞ

YAðYBð�Þ ðFÞÞi;jðAei3A
ð�ÞejÞ þYA;BðGTÞTðBð�Þei3BejÞ

YAðYBð�Þ ðFÞÞi;jðAei3A
ð�ÞejÞ þYA;BðGTÞTðBð�Þei3BejÞ

0
BBBBB@

1
CCCCCA:

We now show that Y3;3i;j is an eigenvector of M; and compute the corresponding

eigenvalue which is the ijth entry in the ð3; 3Þ-block of YV ðMÞ: By Corollary 5.5,
YBð�Þ ðYAðFÞÞ ¼YB YAðFÞð ÞT

¼B�1YAðYAðFÞÞB

¼ nB�1FTB: ð7:4Þ
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Applying Corollary 5.5 to the Jones pair ðA;BTÞ;
YAðYBð�Þ ðFÞÞ ¼BTYBTðYBð�Þ ðFÞÞTðB�1ÞT

¼BTYBð�ÞTðYBð�Þ ðFÞÞðB�1ÞT

¼ nBTFTðB�1ÞT

¼ nB�1ðBBTÞFTðB�1ÞT:

Since BAN0
A;B; it follows from Theorem 5.6 that BBTANA: Now FT belongs to

NA; the commutativity of NA implies

YAðYBð�Þ ðFÞÞ ¼ nB�1FTðBBTÞðB�1ÞT

¼ nB�1FTB: ð7:5Þ

From Theorem 5.6, there exists GT
1ANA;BT such that

YA;BðGÞ ¼ YA;BTðGT
1 Þ

T:

Hence G1 is paired with G: Applying Theorem 3.2(d) with R equals to GT
1 in NA;BT

yields

XY
A;BT ðGT

1
ÞTDAð�ÞTXAT ¼ DBXBð�ÞDnGT

1

which is equivalent to

XYA;BðGÞDAð�ÞXA ¼ DBXBð�ÞDnGT
1
:

Consequently

YA;BðGÞðAei3A
ð�ÞejÞ ¼ nðGT

1 Þi;jðBð�Þei3BejÞ: ð7:6Þ

By Lemma 6.2, GT
1 is also paired with GT: Applying Theorem 3.2(e) to R ¼ G1 in

NA;BT gives

XY
A;BT ðG1ÞDBXBð�Þ ¼ DAð�ÞTXATDnGT

1

which is equivalent to

XYA;BðGTÞTDBXBð�Þ ¼ DAð�ÞXADnGT
1

and

YA;BðGTÞTðBð�Þei3BejÞ ¼ nðGT
1 Þi;jðAei3A

ð�ÞejÞ: ð7:7Þ

It follows from Eqs. (7.4)–(7.7) that

MY
3;3
i;j ¼ 2

nðB�1FTBÞi;jðBð�Þei3BejÞ þ nðGT
1 Þi;jðBð�Þei3BejÞ

nðB�1FTBÞi;jðBð�Þei3BejÞ þ nðGT
1 Þi;jðBð�Þei3BejÞ

nðB�1FTBÞi;jðAei3A
ð�ÞejÞ þ nðGT

1 Þi;jðAei3A
ð�ÞejÞ

nðB�1FTBÞi;jðAei3A
ð�ÞejÞ þ nðGT

1 Þi;jðAei3A
ð�ÞejÞ

0
BBBBB@

1
CCCCCA

¼ 2nðB�1FTB þ GT
1 Þi;jY

3;3
i;j :
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Note that Y3;3i;j ¼ Y
4;4
i;j : Hence the ð3; 3Þ- and ð4; 4Þ-blocks of YV ðMÞ are equal to

2nðB�1FTB þ GT
1 Þ: It is easy to see from the block structure of Y3;4i;j and Y

4;3
i;j that the

ð3; 4Þ- and ð4; 3Þ-blocks of YV ðMÞ are equal to 2nðB�1FTB � GT
1 Þ: &

Lemma 7.4. Let M ¼ MðF ;G;HÞ be in B: Then for i; j ¼ 1;y; n; Y1;3i;j ; Y
1;4
i;j ; Y

2;3
i;j and

Y
2;4
i;j are eigenvectors of M:

Proof. We have

MY
1;3
i;j ¼ 2

dHðAei3BejÞ
�dHðAei3BejÞ

d�1KðBð�ÞTei3A
ð�ÞejÞ

�d�1KðBð�ÞTei3A
ð�ÞejÞ

0
BBB@

1
CCCA

¼ 2

YA;BðHÞi;jðdAei3BejÞ
YA;BðHÞi;jð�dAei3BejÞ

YBð�ÞT;Að�Þ ðKÞi;jðd�1Bð�ÞTei3A
ð�ÞejÞ

YBð�ÞT;Að�Þ ðKÞi;jð�d�1Bð�ÞTei3A
ð�ÞejÞ

0
BBBB@

1
CCCCA:

By Corollary 3.3,

YBð�ÞT;Að�Þ ðKÞ ¼ YBT;AðKTÞ ¼ YA;BTðKTÞT:

Since K is paired with H; by Eq. (6.1), the ð1; 3Þ-block of YMðVÞ is 2YA;BðHÞ:
Similarly, the ð2; 4Þ-, ð1; 4Þ-, ð2; 3Þ-blocks of YMðVÞ are equal to 2YA;BðHÞ: &

Lemma 7.5. Let M ¼ MðF ;G;HÞ be in B: Then for i; j ¼ 1;y; n; Y3;1i;j ; Y
3;2
i;j ; Y

4;1
i;j and

Y
4;2
i;j are eigenvectors of M:

Proof. We have

MY
3;1
i;j ¼ 2

d�1HðBð�Þei3A
ð�ÞejÞ

�d�1HðBð�Þei3A
ð�ÞejÞ

dKðAei3B
TejÞ

�dKðAei3B
TejÞ

0
BBB@

1
CCCA

¼ 2

YBð�Þ;Að�Þ ðHÞi;jðd�1Bð�Þei3A
ð�ÞejÞ

YBð�Þ;Að�Þ ðHÞi;jð�d�1Bð�Þei3A
ð�ÞejÞ

YA;BTðKÞi;jðdAei3B
TejÞ

YA;BTðKÞi;jð�dAei3B
TejÞ

0
BBBBB@

1
CCCCCA:
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By Corollary 3.3, we have

YBð�Þ;Að�Þ ðHÞ ¼YB;AðHTÞ

¼YA;BðHTÞT

¼YA;BTðKÞ

and the last equality follows from the fact that KT is paired with HT: Therefore the

ð3; 1Þ-block of YV ðMÞ is equal to 2YA;BðHTÞT: Similarly, the ð4; 2Þ- , ð4; 1Þ- and
ð3; 2Þ-blocks are equal to 2YA;BðHTÞT: &

Theorem 7.6. If ðA;BÞ is an invertible Jones pair and A is symmetric, then B is a

subscheme of NV :

Proof. For any MAB; we have shown in Lemmas 7.2–7.5 that Ya;b
i;j is an eigenvector

of M for all a; bAf1; 2; 3; 4g and i; jAf1;y; ng: Thus MANV and BDNV : &

Corollary 7.7. The Bose–Mesner algebra B is formally self-dual with duality map YV :

Proof. We see from the proof of Lemmas 7.2–7.5 that for M ¼ MðF ;G;HÞ in B;
YV ðMÞ equals

2

nFT þ nGT nFT � nGT YA;BðHÞ YA;BðHÞ
nFT � nGT nFT þ nGT YA;BðHÞ YA;BðHÞ
YA;BðHTÞT YA;BðHTÞT nB�1FTB þ nGT

1 nB�1FTB � nGT
1

YA;BðHTÞT YA;BðHTÞT nB�1FTB � nGT
1 nB�1FTB þ nGT

1

0
BBBB@

1
CCCCA;

where G1 is paired with G; that is

YA;BðGÞ ¼ YA;BTðGT
1 Þ

T:

Since nFTANA and NA ¼ N0
A; there exists a matrix F̂ANA such that nFT ¼

YAðF̂Þ: By Corollary 5.5, we have

B�1nFTB ¼ B�1YAðF̂ÞB ¼ YBðF̂ÞT ¼ YBð�Þ ðF̂Þ:

By Corollary 5.7, we have GTANA;B: It follows from Lemma 6.2 that GT
1 is also

paired with GT; whence we have

YV ðMÞ ¼ Mð2F̂; 2H; 2nGTÞ

belongs to B: Moreover, the map YV restricted to B is a duality map of B: &

We are ready to prove Yamada’s result.

Theorem 7.8 (Yamada [11, Theorem 1]). Let A be a symmetric n � n matrix. Then

ðA;BÞ is an invertible Jones pair if and only if V is a spin model.
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Proof. Suppose ðA;BÞ is an invertible Jones pair. By Theorems 7.1 and 7.6, the

matrix V is equal to Mð0;A�1; dAÞ and hence it belongs to NV : By Corollary 7.7,

YV ðVÞ ¼ Mð0; 2dA; 2nA�1Þ:

If K is paired with H ¼ 2nA�1; then

YA;BTðKTÞT ¼ 2nYA;BðA�1Þ ¼ 2nBð�Þ;

which implies K ¼ 2nA�1 ¼ 2Að�Þ: Therefore

YV ðVÞ ¼ 2

Að�Þ �Að�Þ dB dB

�Að�Þ Að�Þ dB dB

dBT dBT Að�Þ �Að�Þ

dBT dBT �Að�Þ Að�Þ

0
BBB@

1
CCCA

¼ 2 dV ð�Þ:

By Theorem 3.2, we have

XVDV ð�ÞXV ¼ DV ð�ÞXVD2dV ð�Þ :

Since V is symmetric, we conclude that ð 1
2d

V ;V ð�ÞÞ is an invertible Jones pair, which
is equivalent to saying V is a spin model.

Conversely, let V be a spin model, or equivalently, let ð 1
2d

V ;V ð�ÞÞ be an invertible
Jones pair. Since the ð1; 3Þ-block of V ð�Þ is equal to B; we have

VY1;3i;j ¼ 2dBi;jY
1;3
i;j :

This equation implies that

AðAei3BejÞ ¼ Bi;jðAei3BejÞ for all i; j ¼ 1;y; n:

By Theorem 3.2, we have

XADBXA ¼ DBXADB:

Similarly, the ð3; 1Þ-block of V ð�Þ is equal to BT; we get

VY3;1i;j ¼ 2dðBTÞi;jY
3;1
i;j

which implies

AðAei3B
TejÞ ¼ BT

i;jðAei3B
TejÞ for all i; j ¼ 1;y; n

and

XADBTXA ¼ DBTXADBT :

Thus ðA;BÞ is an invertible Jones pair. &

It follows from Theorem 4.1 and the above theorem that the Bose–Mesner algebra
NV is formally self-dual and YV is a duality map of NV :
Given any invertible Jones pair ðC;BÞ; it is easy find an odd-gauge equivalent

invertible Jones pair ðA;BÞ in which A is symmetric, see Section 8 of [4]. By the above
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theorem, we can always construct a symmetric spin model V from every invertible
Jones pair, or equivalently, every four-weight spin model.

8. Subschemes and induced schemes

Suppose A and B are n � n type-II matrices. It is easy to verify that the 2n � 2n

matrix

W ¼ A Bð�Þ

�A Bð�Þ

 !

is also a type-II matrix. Furthermore, if ðA;BÞ is an invertible Jones pair and A is
symmetric, then we have

NW ¼
F þ G F � G

F � G F þ G

� 	
: FANA;GANA;B

� 
ð8:1Þ

and

NWT ¼
YAðFÞ YA;BðGÞ

YBð�Þ;Að�Þ ðGÞ YBð�Þ ðFÞ

 !
: FANA;GANA;B

( )
: ð8:2Þ

Hence the dimensions of NW and NWT equal twice the dimension of NA: For
details, please see Section 11 of [4].
Now we have five Bose–Mesner algebras NV ; B; NW ; NWT and NA associated

to each invertible Jones pair ðA;BÞ with A symmetric. The aim of this section is to
show that they satisfy the relations described in the following diagram.

Let B be a Bose–Mesner algebra on vertex set V: Let Y be a non-empty subset
of V: For any jVj � jVj matrix M; we use MY to denote the jY j � jY j matrix
obtained from the rows and the columns of M indexed by the elements in Y :
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We let the set

BY :¼ fMY :MABg:

If BY is also a Bose–Mesner algebra, we say it is an induced scheme of B: Suppose the
vertex sets ofNA;NW andB are f1;y; ng; f1;y; 2ng and f1;y; 4ng; respectively.
If Y ¼ f1;y; ng; then it is obvious from Eq. (8.2) that the set ðNWTÞY is equal to

N0
A: Therefore NA ¼ N0

A is an induced scheme of NWT : Similarly, let Y 0 ¼
f1;y; 2ng: It follows from Eqs. (6.3) and (8.1) that BY 0 ¼ NW :
Let B be a Bose–Mesner algebra on vertex set V: Let p ¼ ðC1;y;CrÞ be a

partition of V: Define the characteristic matrix S of p to be the n � r matrix with

Su;k ¼
1 if uACk;

0 otherwise:

�

We say p is equitable relative to B if and only if for each matrix M in B; there is an
r � r matrix ZM satisfying

MS ¼ SZM :

We call the set fZM :MABg the quotient of B with respect to p: For i ¼ 1;y; n; let
Ci ¼ fi; n þ ig and let p ¼ ðC1;y;CnÞ: The characteristic matrix of p is

S ¼
In

In

� 	
:

Then a matrix

M ¼
F þ R F � R

F � R F þ R

� 	

in NW satisfies

MS ¼ Sð2FÞ:

Thus ZM ¼ 2F : By Eq. (8.1), we see that FANA and thus the quotient ofNW with
respect to p is equal to NA: Similarly let Ci ¼ fi; n þ ig; for i ¼ 1;y; n; 2n þ
1;y; 3n: The characteristic matrix of p0 ¼ ðC1;y;Cn;C2nþ1;y;C3nÞ is

S0 ¼

In 0

In 0

0 In

0 In

0
BBB@

1
CCCA:
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Then a matrix MðF ;G;HÞ in B satisfies

MðF ;G;HÞS0 ¼ 2

YAðFÞ YA;BðGÞ
YAðFÞ YA;BðGÞ

YA;BðGTÞT YBð�Þ ðFÞ
YA;BðGTÞT YBð�Þ ðFÞ

0
BBBB@

1
CCCCA

¼S0 2
YAðFÞ YA;BðGÞ

YA;BðGTÞT YBð�Þ ðFÞ

 ! !
:

By Corollary 3.3, we have

YBð�Þ;Að�Þ ðGÞ ¼ YA;BðGTÞT:

As a result, ZMðF ;G;HÞANWT and NWT is the quotient of B with respect to p0:
In addition, it is straightforward to check that the span of the following set

fMðF ; 0;HÞ : FANA and HANA;Bg,fMð0; In; 0Þg

is also a Bose–Mesner algebra. Therefore it is a subscheme of B whose dimension
equals 2 dimðNAÞ þ 1: Similarly, the span of the set

YAðFÞ 0

0 YBð�Þ ðFÞ

� 	
: FANA

� 
,

0 Jn

Jn 0

� 	� 

is a subscheme of NWT whose dimension equals dimðNAÞ þ 1:

9. Comments

We now give an explicit description ofNV : Let R be the space consisting matrices

0 0 N �N

0 0 �N N

N1 �N1 0 0

�N1 N1 0 0

0
BBB@

1
CCCA;

where N and N1 satisfy

XA�1DBð�ÞXNDAð�ÞXB�1 ¼ DS ¼ XBDAXN1
DBXA;

XBTDAXNDBTXA ¼ DS1 ¼ XA�1DBð�ÞTXN1
DAð�ÞXðB�1ÞT ;

for some n � n matrices S and S1: Then NV is equal to the direct sum of B and R;
see p. 124 of [3]. We see that if NA has dimension r; then dim ðNV Þ equals 3r þ
dimðRÞ: Unfortunately, we do not yet know how to determine the dimension of R:
We can only conclude that 3rpdimðNV Þp3r þ n: For example, for each of the
three 4� 4 four-weight spin models given in Section 5 of [2], the algebra NA has
dimension 4 and NV has dimension 16: The natural problem is to determine the
dimension of NV for any invertible Jones pair ðA;BÞ:
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We get two link invariants from an invertible Jones pair ðA;BÞ: one from ðA;BÞ
and the other from the spin model V : It is natural to ask how the two invariants are
related. In addition, it would be very useful to have a procedure that decides whether
any 4n � 4n spin model is gauge equivalent to a spin model that has the same
structure as V : Such procedure may lead us to the extraction of invertible Jones pairs
from the spin models of order divisible by four.
Any new examples of invertible Jones pair will be extremely desirable since there is

a rich family of Bose–Mesner algebras attached. On the other hand, we are also
interested in any Bose–Mesner algebras that fit the diagram in Section 8 because they
may lead to the discovery of new invertible Jones pairs, hence possibly new link
invariants. In particular, we have examined the formally dual pair of Bose–Mesner
algebras, B1 and B2; constructed from the Kasami codes in [5]. These algebras

consist of 24tþ2 � 24tþ2 matrices and they have dimension six. The Schur-idempotents
of, say, B1 have valencies

1; 22tþ1 � 1; 22tþ1 � 1; 22tþ1 � 1; ð22t � 1Þð22tþ1 � 1Þ and ð22t � 1Þð22tþ1 � 1Þ;

while the valencies of the Schur-idempotents of B2 are

1; 22tþ1 � 1; 2t�1ð2t � 1Þð22tþ1 � 1Þ; 2t�1ð2t � 1Þð22tþ1 � 1Þ;

2t�1ð2t þ 1Þð22tþ1 � 1Þ and 2t�1ð2t þ 1Þð22tþ1 � 1Þ:

We are interested in these algebras because they are the only known example of a
formally dual pair of Bose–Mesner algebras that are not translation schemes. They
are candidates for NW and NWT in our diagram.
In the following, we use the structure of NWT to rule out the possibility that B1

and B2 fit into the diagram in Section 8. We see from the previous section that

Ĵ ¼
0 J24tþ1

J24tþ1 0

� 	

belongs to NWT : Therefore if NWT equals to B1; then a subset of the Schur-

idempotents of B1 would sum to Ĵ: In this case, a subset of the valencies ofB1 would

sum to 24tþ1: However, we can use elementary computation to prove that it is

impossible to find a subset of the numbers in the first list above to sum to 24tþ1:
Consequently the algebra B1 cannot be NWT : Similarly, simple computation shows

that we cannot find a subset of valencies of B2 to sum to 24tþ1:We conclude that B2

cannot be NWT : As a result there does not exist any invertible Jones pair for which
fB1;B2g equals fNW ;NWTg:
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