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We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have
squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass
effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically
study its behavior for the QCD and SQCD cases.
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Since the experiments at the Large Hadron Collider (LHC) [1]
started there has been much anticipation for the signals of the
Higgs boson as well as for an evidence of the new physics beyond
Standard Model such as supersymmetry (SUSY). Once these signals
are observed more precise measurement needs to be carried out
at the future e+e− collider, so called International Linear Collider
(ILC) [2]. In such a case, it is important to know the theoretical
predictions at high energies based on QCD.

It is well known that, in e+e− collision experiments, the cross
section for the two-photon processes e+e− → e+e− + hadrons
dominates at high energies over the one-photon annihilation pro-
cess [3]. We consider here the two-photon processes in the double-
tag events where both of the outgoing e+ and e− are detected.
Especially, the case in which one of the virtual photon is far off-
shell (large Q 2 ≡ −q2), while the other is close to the mass-shell
(small P 2 = −p2), with Λ2 � P 2 � Q 2 (Λ: QCD scale parameter),
can be viewed as a deep-inelastic scattering where the target is a
virtual photon and we can calculate the photon structure functions
in perturbation theories [4–12].

Some time ago the effects of supersymmetry on two-photon
process were studied in the literature [13–16]. In this Letter based
on the framework of treating heavy parton distributions [17,18] we
reexamine the effects of the squarks and gluinos appearing in SUSY
QCD (SQCD) on the photon structure functions to the leading order
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Fig. 1. e+e− two-photon processes in supersymmetric QCD. The solid (dashed) line
denotes the quark (squark), while the spiral (spiral-straight) line implies the gluon
(gluino).

in SQCD which can be measured in the two-photon processes of
e+e− collision illustrated in Fig. 1.

1. Evolution equations for the SUSY QCD

We consider the DGLAP type evolution equations for the par-
ton distribution functions inside the virtual photon with the mass
squared, P 2, in SQCD where we have squarks and gluinos in addi-
tion to the ordinary quarks and gluons. Evolution equation to the
leading order (LO) in SQCD reads as in QCD [19]:
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dqγ (t)

dt
= qγ (t) ⊗ P (0) + α

αs(t)
k(0), (1)

where P (0) and k(0) are one-loop parton–parton and photon–
parton splitting functions, respectively (see Appendix A). The sym-
bol ⊗ denotes the convolution between the splitting function and
the parton distribution function. The variable t is defined in terms
of the running coupling αs as [20]:

t = 2

β0
ln

αs(P 2)

αs(Q 2)
,

dαs(Q 2)

d ln Q 2
= −β0

αs(Q 2)2

4π
+ O

(
αs

(
Q 2)3)

(2)

with the parton distributions probed by the virtual photon with
mass squared Q 2 as

qγ (t) = (G, λ,q1, . . . ,qn f , s1, . . . , sn f ), (3)

where n f is the number of active flavors. In Eq. (2), β0 = 9 − n f
for SQCD. We denote the distribution function of the ith flavor
quark, squark by qi(x, Q 2, P 2), si(x, Q 2, P 2), (i = 1, . . . ,n f ), and
the gluon, gluino by G(x, Q 2, P 2), λ(x, Q 2, P 2), respectively. The
one-loop splitting functions were obtained in [21,22]. We first con-
sider the case where all the particles are massless. Although this
is an unrealistic case, it is instructive to consider the massless case
for the later treatment of the realistic case with the heavy mass
effects.

For the massless partons the evolution starts at Q 2 = P 2 and
hence we have the initial condition qγ (t = 0) = 0 [11].

The one-loop splitting function is given by (see Appendix A)

P (0) =

⎛
⎜⎜⎜⎝

P GG PλG PqG P sG

P Gλ Pλλ Pqλ P sλ

P Gq Pλq Pqq P sq

P Gs Pλs Pqs P ss

⎞
⎟⎟⎟⎠ , (4)

where P AB is a splitting function of B parton to A parton with
A, B = G, λ,q and s. While the splitting functions of the photon
into the partons G, λ,q and s, are denoted as (see Appendix B)

k(0) = (kG ,kλ,kq,ks). (5)

We introduce the flavor-nonsinglet (NS) combinations of the
quark and squark distribution functions as

qNS
(
x, Q 2, P 2) =

n f∑
i=1

(
e2

i − 〈
e2〉)qi

(
x, Q 2, P 2), (6)

sNS
(
x, Q 2, P 2) =

n f∑
i=1

(
e2

i − 〈
e2〉)si

(
x, Q 2, P 2), (7)

where ei is the ith flavor charge and 〈e2〉 = ∑
i e2

i /n f is the aver-
age charge squared. We also define the flavor-singlet (S) combina-
tions for quarks and squarks

Σ
(
x, Q 2, P 2) =

n f∑
i=1

qi
(
x, Q 2, P 2), (8)

S
(
x, Q 2, P 2) =

n f∑
i=1

si
(
x, Q 2, P 2). (9)

We now rearrange the parton components of qγ (t) using the above
flavor nonsinglet and singlet combinations as:

qγ (t) = (G, λ,Σ, S,qNS, sNS). (10)
Then we have the following splitting function

P (0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

P GG PλG PqG P sG

P Gλ Pλλ Pqλ P sλ 0
P Gq Pλq Pqq P sq

P Gs Pλs Pqs P ss

Pqq P sq

0 Pqs P ss

⎞
⎟⎟⎟⎟⎟⎟⎠

. (11)

Thus for the flavor-nonsinglet parton distributions

qγ
NS = (qNS, sNS), (12)

satisfy the following evolution equation:

dqγ
NS

dt
= qγ

NS ⊗ P (0)
NS + α

αs(t)
k(NS), (13)

where the splitting functions are

P (0)
NS =

(
Pqq P sq

Pqs P ss

)
, k(NS) = (

K (NS)
q , K (NS)

s
)
, (14)

K (NS)
q =

n f∑
i=1

(
e2

i − 〈
e2〉)kqi , K (NS)

s =
n f∑

i=1

(
e2

i − 〈
e2〉)ksi . (15)

For the flavor-singlet parton distribution

qγ
S = (G, λ,Σ, S), (16)

we have

dqγ
S

dt
= qγ

S ⊗ P (0)
S + α

αs(t)
k(S), (17)

where

P (0)
S =

⎛
⎜⎜⎜⎝

P GG PλG PqG P sG

P Gλ Pλλ Pqλ P sλ

P Gq Pλq Pqq P sq

P Gs Pλs Pqs P ss

⎞
⎟⎟⎟⎠ , (18)

k(S) = (
K (S)

q , K (S)
s

)
, K (S)

q =
n f∑

i=1

kqi , K (S)
s =

n f∑
i=1

ksi . (19)

Now we should notice that there exist the following supersym-
metric relations for the splitting functions [21]:

Pqq + P sq = Pqs + P ss ≡ Pφφ, (20)

PqG + P sG = Pqλ + P sλ ≡ PφV , (21)

P Gq + Pλq = P Gs + Pλs ≡ P V φ, (22)

P GG + PλG = P Gλ + Pλλ ≡ P V V . (23)

Hence if we introduce the following combinations

φ ≡ Σ + S, V ≡ G + λ, (24)

then we obtain the following compact form for the mixing of the
flavor-singlet part:

dφ

dt
= Pφφ ⊗ φ + PφV ⊗ V + α

αs(t)
K (S)

φ , (25)

dV

dt
= P V φ ⊗ φ + P V V ⊗ V , (26)

where we denote K (S)
φ = K (S)

q + K (S)
s and the flavor-nonsinglet part

φNS = qNS + sNS becomes
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Fig. 2. The virtual photon structure function F γ
2 (x, Q 2, P 2) divided by the QED cou-

pling constant α for massless QCD (solid line) and SQCD (dashed line) with n f = 6,
Q 2 = (1000)2 GeV2 and P 2 = (10)2 GeV2. Also shown are the quark (dash-dotted
line) and the squark (double-dotted line) components.

dφNS

dt
= Pφφ ⊗ φNS + α

αs(t)
K (NS)

φ , (27)

where we introduced K (NS)
φ = K (NS)

q + K (NS)
s . In terms of the flavor

singlet and nonsinglet parton distribution functions we can express
the virtual photon structure function F γ

2 as

F γ
2

(
x, Q 2, P 2) = x

∑
i

e2
i

(
qi

(
x, Q 2, P 2) + si

(
x, Q 2, P 2))

= x
∑

i

(
e2

i − 〈
e2〉)(qi

(
x, Q 2, P 2) + si

(
x, Q 2, P 2))

+ x
〈
e2〉∑

i

(
qi

(
x, Q 2, P 2) + si

(
x, Q 2, P 2))

= x
(
qNS

(
x, Q 2, P 2) + sNS

(
x, Q 2, P 2))

+ x
〈
e2〉(Σ(

x, Q 2, P 2) + S
(
x, Q 2, P 2))

= xφNS
(
x, Q 2, P 2) + x

〈
e2〉φ(

x, Q 2, P 2). (28)

In Fig. 2 we have plotted the virtual photon structure func-
tion F γ

2 (x, Q 2, P 2) in the SQCD as well as in the ordinary QCD
for Q 2 = (1000)2 GeV2 and P 2 = (10)2 GeV2. We have also shown
the quark as well as the squark components of the virtual pho-
ton structure function F γ

2 in the case of the SQCD. In contrast
to the QCD, the momentum fraction carried by the quarks in the
SQCD case decreases due to the emission of the squarks and the
gluinos. Hence the x-distribution of the quarks for the SQCD in-
creases at small-x and decreases at large x, i.e. it becomes more
flat compared to the QCD case as seen from Fig. 2. Adding the
two components together we get the F γ

2 structure function for the
SQCD which shows a behavior quite different from that of the QCD.

2. Heavy parton mass effects

Many authors have studied heavy quark mass effects in the nu-
cleon [23] and the photon structure functions [24–26]. Now we
consider the heavy parton mass effects, and we decompose the
parton distributions in the case where we have n f − 1 light quarks
and one heavy quark flavor which we take the n f th quark and all
the squarks have the same heavy mass, while the gluino has an-
other heavy mass [17,18]:
qγ (t) = (G, λ,q1, . . . ,qn f −1, s1, . . . , sn f −1,qH , sH ). (29)

We denote the ith light flavor quark, squark by qi(x, Q 2, P 2),
si(x, Q 2, P 2) (i = 1, . . . ,n f − 1), one heavy quark and its super-
partner (squark) by qH , sH and the gluon, gluino by G(x, Q 2, P 2),
λ(x, Q 2, P 2), respectively.

We now define light flavor-nonsinglet (LNS) and singlet (LS)
combination of the quark and the squark as follows:

qLNS =
n f −1∑
i=1

(
e2

i − 〈
e2〉

L

)
qi, sLNS =

n f −1∑
i=1

(
e2

i − 〈
e2〉

L

)
si,

qLS =
n f −1∑
i=1

qi, sLS =
n f −1∑
i=1

si,
〈
e2〉

L = 1

n f − 1

n f −1∑
i=1

e2
i . (30)

Then we rearrange the parton distributions as

qγ (t) = (G, λ,qLS, sLS,qH , sH ,qLNS, sLNS). (31)

The evolution equations and the splitting functions read

dqγ (t)

dt
= qγ (t) ⊗ P (0) + α

αs(t)
k(0), P (0) =

(
P LS 0
0 P LNS

)
,

P LS ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P GG PλG
n f −1

n f
PqG

n f −1
n f

P sG
1

n f
PqG

1
n f

P sG

P Gλ Pλλ
n f −1

n f
Pqλ

n f −1
n f

P sλ
1

n f
Pqλ

1
n f

P sλ

P Gq Pλq Pqq P sq 0 0

P Gs Pλs Pqs P ss 0 0

P Gq Pλq 0 0 Pqq P sq

P Gs Pλs 0 0 Pqs P ss

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P LNS ≡
(

Pqq P sq

Pqs P ss

)
. (32)

While the photon–parton splitting functions are

k(0) = (kG ,kλ,kqLS ,ksLS ,kqH ,ksH ,kqLNS ,ksLNS ). (33)

Now we take into account the heavy mass effects by setting the
initial conditions for the heavy parton distribution functions as dis-
cussed in [18,27,28].

We note here that the structure function F γ
2 can be written

as a convolution of the parton distribution qγ (x, Q 2, P 2) and the
Wilson coefficient function C(x, Q 2):

F γ
2

(
x, Q 2, P 2)/x = qγ ⊗ C . (34)

The moments of the parton distributions are defined as

qγ (n, t) ≡
1∫

0

dx xn−1qγ
(
x, Q 2, P 2), (35)

where we put the initial conditions:

qγ (n, t = 0) = (
0, λ̂(n),0, ŝLS(n), q̂H (n), ŝH (n),0, ŝLNS(n)

)
, (36)

and require that the following boundary conditions are satisfied:

λ
(
n, Q 2 = m2

λ

) = 0, sLS
(
n, Q 2 = m2

sq

) = 0,

qH
(
n, Q 2 = m2

H

) = 0, sH
(
n, Q 2 = m2

sq

) = 0,

sLNS
(
n, Q 2 = m2

sq

) = 0, (37)
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where mλ , msq and mH are the mass of the gluino, squarks and
the heavy (here we take top) quark, respectively. Note that here
we take all the squarks have the same mass msq .

By solving the evolution equation taking into account the above
boundary condition we get for the moment of qγ :

qγ (n, t) = α

8πβ0

4π

αs(t)
K (0)

n

∑
i

Pn
i

1

1 + dn
i

{
1 −

[
αs(t)

αs(0)

]1+dn
i
}

+ qγ (n,0)
∑

i

Pn
i

[
αs(t)

αs(0)

]dn
i

, (38)

where the Pn
i is the projection operator onto the eigenstate λi of

the anomalous dimension matrices γ̂n:

γ̂n =
∑

i

Pn
i λn

i , (39)

where the anomalous dimension matrices γ̂n is related to the split-
ting function P (x) as

γ̂n ≡ −2

1∫
0

dx xn−1 P (x), (40)

and dn
i ≡ λn

i /2β0. K (0)
n is the anomalous dimension corresponding

to the photon–parton splitting function:

K (0)
n = 2

1∫
0

dx xn−1k0(x). (41)

The initial value qγ (n,0) is determined so that we have

qγ
j (t = tm j ) = 0, tm j = 2

β0
ln

αs(P 2)

αs(m2
j )

, (42)

or

0 = 4π

αs(tm j )

∑
i

(
K (0)

n Pn
i

)
j

1

1 + dn
i

{
1 −

[
αs(m2

j )

αs(P 2)

]1+dn
i
}

+
∑

i

(
qγ (n,0)

/ α

8πβ0
Pn

i

)
j

[
αs(m2

j )

αs(P 2)

]dn
i

, (43)

for j = λ, sLS,qH , sH and sLNS . By solving the above coupled equa-
tions we get the initial condition: qγ (n,0) = (0, λ̂(n),0, ŝLS(n),

q̂H (n), ŝH (n),0, ŝLNS(n)).
Now we write down the moments of the structure function in

terms of the parton distribution functions and the coefficient func-
tions, which are O(α0

s ) at LO. We take

C (0)
n (1,0)T = (

0,0,
〈
e2〉

L,
〈
e2〉

L, e2
H , e2

H ,1,1
)
. (44)

Then the nth moment of the structure function F γ
2 to the leading

order in SQCD is given by

Mγ
n =

1∫
0

dx xn−1 F γ
2 /x = qγ (n) · Cγ

n (1,0)

= 〈
e2〉

LqLS + 〈
e2〉

L sLS + e2
H q2

H + e2
H sH + qLNS + sLNS. (45)
Fig. 3. F γ
2 (x, Q 2, P 2)/α with SUSY particles as well as top threshold included. The

dashed (2dot-dashed) curve corresponds to the massless SQCD (QCD) case. The
double-dotted curve shows the massive QCD case. The dash-dotted (dotted) curve
corresponds to the quark (squark) component of the massive QCD. The solid curve
means the F γ

2 /α for the massive SQCD. The kink at x = 0.89 (0.74) corresponds to
the top (squark) threshold.

3. Numerical analysis

We have solved Eq. (43) for qγ (n,0) numerically, and plug
them into the master formula (38) for the parton distribution func-
tions and then evaluate the moments of the structure function F γ

2
based on the formula (45). By inverting the Mellin moment we get
the F γ

2 as a function of Bjorken x.
In Fig. 3, we have plotted our numerical results for the F γ

2 /α.
The 2dot-dashed and dashed curves correspond to the F γ

2 /α for
the massless QCD and SQCD, respectively, where all the quarks and
squarks are taken to be massless. Of course this is the unrealistic
case we discussed in the previous section. For the more realistic
case, we take n f = 6 and treat the u, d, s, c and b to be massless
and take the top quark t massive. We assume that all the squarks
possess the same heavy mass and the gluino has another heavy
mass. In these analyses, we have taken Q 2 = (1000)2 GeV2 and
P 2 = (10)2 GeV2. For the mass values we took the top mass mtop =
175 GeV, the common squark mass, ms = 300 GeV and the gluino
mass mλ = 700 GeV.

The double-dotted curve shows F γ
2 /α for the QCD with the

mass of the top quark as well as the threshold effects taken into
account. The dash-dotted curve shows the quark component for
the massive SQCD case with massive top quark, while the dotted
curve means the squark component for the same case. The sum
of these leads to the solid curve which corresponds to F γ

2 /α for
the massive SQCD with massive top and threshold effects included.
Here, we adopt the prescription for taking into account the thresh-
old effects by rescaling the argument of the distribution function
f (x) as [29]:

f (x) → f (x/xmax), xmax = 1

1 + P 2

Q 2 + 4m2

Q 2

, (46)

where xmax is the maximal value for the Bjorken variable. After
this substitution the range of x becomes 0 � x � xmax. At small x,
there is no significant difference between massless and massive
QCD, while there exists a large difference between massless and
massive SQCD. At large x, the significant mass-effects exist both
for non-SUSY and SUSY QCD. The SQCD case is seen to be much
suppressed at large x compared to the QCD. The squark contribu-
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tion to the total structure function in massive SQCD appears as a
broad bump for x < xmax. Here of course we could set the squark
mass larger than 300 GeV, e.g. around 1 TeV, as recently reported
by the ATLAS/CMS group at LHC, for higher values of Q 2.

4. Conclusion

In this paper we have studied the virtual photon structure func-
tion in the framework of the parton evolution equations for the
supersymmetric QCD, where we have PDFs for the squarks and
gluinos in addition to those for the quarks and gluons.

We considered the heavy parton mass effects for the top quark,
squarks and gluinos by imposing the boundary conditions for their
PDFs in the framework treating heavy particle distribution func-
tions [18]. The PDF for the heavy particle with mass squared,
m2 are required to vanish at Q 2 = m2. This can be translated into
the initial condition for the heavy parton PDFs, qγ (t = 0). Due to
the initial condition the solution to the evolution equation is al-
tered as given by (38). This change leads to the heavy mass effects
for the PDFs. As we have shown in Fig. 3, there is no significant
difference in the small-x region between QCD and SQCD, while at
large x, it turns out that there exists a sizable difference between
the massive QCD and SQCD. When compared to the squark con-
tribution to F γ

2 in the parton model calculation [30], the squark
component in the SQCD is suppressed at large x due to the ra-
diative correction. We expect that the future linear collider would
enable such an analysis to be carried out on photon structure func-
tions.

Appendix A. Anomalous dimensions for SUSY QCD

Note that the our convention for the anomalous dimension is
related to the above splitting function as

γ n
i j = −2

1∫
0

dx xn−1 Pij(x). (A.1)

The one-loop anomalous dimensions for SUSY QCD are given by

γ n
qq = 2C F

[
−2 − 2

n(n + 1)
+ 4S1(n)

]
,

γ n
sq = 2C F

[ −2

n + 1

]
,

γ n
qs = 2C F

[−2

n

]
,

γ n
ss = 2C F

[−2 + 4S1(n)
]
,

γ n
qG = −4n f

n2 + n + 2

n(n + 1)(n + 2)
,

γ n
sG = −4n f

2

(n + 1)(n + 2)
= −8n f

1

(n + 1)(n + 2)
,

γ n
qλ = −4n f

[
1

n
− 1

n + 1

]
,

γ n
sλ = −4n f

(
1

n + 1

)
,

γ n
Gq = −4C F

n2 + n + 2

n(n2 − 1)
,

γ n
λq = −4C F

1
,

n(n + 1)
γ n
Gs = −4C F

[
2

n − 1
− 2

n

]
,

γ n
λs = −4C F

1

n
,

γ n
GG = 2C A

[
−3 − 4

n(n − 1)
− 4

(n + 1)(n + 2)
+ 4S1(n)

]
+ 2n f ,

γλG = −4C A
n2 + n + 2

n(n + 1)(n + 2)
= −12

n2 + n + 2

n(n + 1)(n + 2)
,

γ n
Gλ = −4C A

[
2

n − 1
− 2

n
+ 1

n + 1

]
,

γλλ = 2C A

[
−3 − 2

n
+ 2

n + 1
+ 4S1(n)

]
, (A.2)

where C F = 4/3 and C A = 3 for SQCD. Hence we have the follow-
ing anomalous dimensions for the supersymmetric case:

γ n
φφ = γ n

qq + γ n
sq = γ n

qs + γ n
ss = 2C F

[
−2 − 2

n
+ 4S1(n)

]
,

γ n
φV = γ n

qG + γ n
sG = γ n

qλ + γ n
sλ = −4n f

1

n
,

γ n
V φ = γ n

Gq + γ n
λq = γ n

Gs + γ n
λs = −4C F

[
2

n − 1
− 1

n

]
,

γ n
V V = γ n

GG + γ n
λG = γ n

Gλ + γ n
λλ

= 2C A

[
−3 − 4

n − 1
+ 2

n
+ 4S1(n)

]
+ 2n f , (A.3)

where we have the following replacement: n f γ
n
φV → γ n

φV . In the
case of non-supersymmetric QCD we have the following anoma-
lous dimensions:

γ 0,n
ψψ = γ 0,n

NS = 8

3

[
−3 − 2

n(n + 1)
+ 4S1(n)

]
,

γ 0,n
ψG = −4n f

n2 + n + 2

n(n + 1)(n + 2)
,

γ 0,n
Gψ = −16

3

n2 + n + 2

n(n2 − 1)
,

γ 0,n
GG = 6

[
−11

3
− 4

n(n − 1)
− 4

(n + 1)(n + 2)
+ 4S1(n)

]
+ 4

3
n f .

(A.4)

Appendix B. Photon–parton mixing anomalous dimensions

The photon–parton splitting function can be connected to the
photon–parton mixing anomalous dimensions given by

K (0)
n = (

K 0,n
G , K 0,n

λ , K 0,n
qLS

, K 0,n
sLS

, K 0,n
qH

, K 0,n
sH

, K 0,n
qLNS

, K 0,n
sLNS

)
, (B.1)

where

K 0,n
G = K 0,n

λ = 0,

K 0,n
qLS

= 24(n f − 1)
〈
e2〉

L

n2 + n + 2

n(n + 1)(n + 2)
,

K 0,n
sLS

= 24(n f − 1)
〈
e2〉

L

[
1

n
− n2 + n + 2

n(n + 1)(n + 2)

]
,

K 0,n
qH

= 24e2
H

n2 + n + 2

n(n + 1)(n + 2)
,

K 0,n
sH

= 24e2
H

[
1 − n2 + n + 2

]
,

n n(n + 1)(n + 2)
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K 0,n
qLNS

= 24(n f − 1)
(〈

e4〉
L − 〈

e2〉2
L

) n2 + n + 2

n(n + 1)(n + 2)
,

K 0,n
sLNS

= 24(n f − 1)
(〈

e4〉
L − 〈

e2〉2
L

)[1

n
− n2 + n + 2

n(n + 1)(n + 2)

]
. (B.2)
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