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Abstract
The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip
sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are
maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points
are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are
constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the
corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show
that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows
the separation phenomena change the turbine performance.
Copyright © 2016 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the recent years, various renewable energy sources have
been explored, and devices to harness such energy are devel-
oped. One such device is an Oscillating Water Column (OWC)
to harvest ocean wave energy. The device uses a Wells turbine
for its power-take off. The turbine is an axial-flow self-recti-
fying low-pressure turbine and rotates continuously in a
unique direction by the bidirectional action of air or working
fluid. The turbine blades have a stagger angle of 90� and are
constructed using symmetric aerofoils.

In the OWC, a reciprocating airflow is created by the action
of ocean waves and the air transfers energy to the turbine
blades. The air, which is the working fluid, reverses its di-
rection with wave but the turbine rotation direction does not
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change. The effect of turbine design parameters have been
investigated based on the experimental and numerical analysis
by several researchers (Brito-Melo et al., 2002; Raghunathan,
1995; Taha et al., 2010; Torresi et al., 2004; Halder et al.,
2015). However, there exists a limited number of systematic
optimization works to improve its design and performance.
One of such design parameters is the aerofoil shape of the
turbine blade, which is optimized to increase the power output
and efficiency (Mohamed et al., 2011).

The power output and the efficiency of the turbine depend
on the design parameters and nature of flow over the blade
Suction Surface (SS). The power transferred to the blade is
higher for the flow attached to SS. A backward swept blade
has a higher efficiency and torque over a wider operating range
(Webster and Gato, 2001, 1999a). The blade efficiency or
performance can be altered by modifying its shape (Kim et al.,
2002; Mohamed and Shaaban, 2013, 2014).

Modifications of blade shape have been reported for gas
turbine, steam turbine and hydro turbine, where the re-
searchers achieve the asymptotic enhancement of turbine
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Nomenclature

Abbreviations

CFD computational fluid dynamics
CV cross validation
FC flow coefficient
KRG Kriging method
LE leading edge
MOO multi-objective optimization
NSGA non-dominated sorting of genetic algorithm
OWC oscillating water column
PBA PRESS-based average
PoF Pareto optimal front
PS pressure surface
RANS Reynolds-averaged NaviereStokes
RB rotor blade
RBF radial basis function
Ref reference
RSA response surface analysis
SS suction surface
SST shear stress transport
TC tip clearance
TE trailing edge
TKE turbulent kinetic energy
WAS weighted average surrogate

Symbols

B rotor axial length
C rotor blade chord length
d1 constant of equation (2)
d2 constant of equation (2)
E error
F objective function
h ¼ Rhub

Rtip
hub-to-tip ratio

N speed of rotor, rpm
Nsm the number of basic surrogate model

T* ¼ T
ru3R5

tip

torque coefficient

DP* ¼ DPo

ru2R2
tip

pressure drop coefficient

DPo static pressure drop
Q volume flow rate
r* ¼ R

Rtip
non-dimensional radius

R radius
Rmid ¼ ð1þhÞ

2 Rtip mid-span radius
s ¼ ZC

2pRmid
turbine solidity

T blade thickness
T shaft torque
Utip rotor velocity
U* ¼ V

Utip
flow coefficient

U rotational speed
U* flow coefficient
V axial velocity
W weight

Z number of rotor blades
Q camber angle

L sweep angle
Р density
h ¼ Tu

QDPo efficiency
U angular velocity

Subscript

1 inlet
2 outlet
A axial
avg average
Cv cross validation
hub hub
mid mid
Sm surrogate models
Tip tip
was weighted average surrogate
* non-dimensional parameter
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performance. The Wells turbine is relatively newer develop-
ment and the references available on the application and
performance enhancement by modifying blade shape is
limited. Some key references (Table 1) show that the modifi-
cations are performed basically for blade sweep and aerofoil
profile. Some researchers focused on bi-plane Wells turbine,
guide vane angle, tip clearance, duct geometry modifications.

Several efficient search optimization techniques are easily
available to solve the optimization problems. One such opti-
mization technique is the surrogate based modelling, which
considerably reduces the design time to optimize a system
(Samad et al., 2008; Badhurshah and Samad, 2015; Goel et al.,
2007; Myers and Montgomery, 1995). In the surrogate base
technique, a limited number of data points are used to construct
multiple surrogates to obtain the optimal design. Goel et al.
(2007) developed a Weighted Average Surrogate (WAS)
model to identify the regions of high uncertainty. The WAS is
basically a weighted sum of basic surrogates; namely, the
Response Surface Approximation (RSA) (Myers and
Montgomery, 1995), the Kriging (KRG) (Jeong et al., 2005;
Martin and Simpson, 2005; Sacks et al., 2012; Simpson et al.,
2001; Wang et al., 2014) and the radial basis function (RBF)
(Orr, 1996). Several other articles (Valipour and Montazar,
2012a, 2012b, 2012c; Valipour et al., 2013, 2012)also reports
several surrogates, but those do not contain WAS model.

The real life engineering problems have multiple objectives
(Deb, 2001). A Multi-Objective Optimization (MOO) consists
of two or more objectives which provide better understanding
about the objectives and the variables in terms of performance
enhancement. This also assists the designers to determine the
best design or several design alternatives. In some design
problems, conflicting objectives are correlated via Pareto
optimal Front (PoF) of MOO (Collette and Siarry, 2003;
Marjavaara et al., 2007). Another widely used approach
based on a meta-heuristic algorithm includes a non-dominated
sorting of a genetic algorithm (NSGA-II). The WAS model has
been implemented for NSGA-II population generation for
ells turbine for wave energy extraction, International Journal of Naval Ar-
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Table 1

Important modification to enhance the performance of Wells turbines.

Design modification Advantage Description Profile

Sweep with and without guide vane

(Brito-Melo et al., 2002)

Turbine capable of operating

with good efficiency

over a wide range of flow rates.

Bypass pressure-relief valve produced

higher electrical energy.

NACA0015

Aerofoil shape (Mohamed et al., 2011) Increased power output

(average relative gain

of þ11.3%) and enhanced efficiency

(1% thought the operating range)

Incident angle varied: 5 to 14� NACA0021

Blade sweep (Webster and Gato, 1999a) Overall efficiency improved 30� backward sweep NACA0015

Blade sweep (Kim et al., 2002) Improve overall performance Blade sweep ratio: 0.25e0.75 NACA0020

Pitch angle (Mohamed and Shaaban, 2013) Improved efficiency: 2.3% and

AOP efficiency: 6.2%.

Optimum pitch angle: 0.3� NACA0021

Pitch angle (Mohamed and Shaaban, 2013) Average increase in efficiency:

3.4%, power: 1%.

Optimum pitch angle: 0.6� NACA0021

End plate (Takao et al., 2007) Improve efficiency 4% End plate thickness: 0.5 mm and

plate margin: 0e0.3 mm

NACA0020

Blade profile Thickness

(Raghunathan and Tan, 1985)

The NACA0021 produced

the peak efficiency.

Efficiency drop: ~10% with

blade roughened blade.

Thicker and modified aerofoil blades

improved performance of the turbine.

NACA0024,NACA0021,

NACA0015H,NACA0015,

NACA0012

Blade sweep and pitch angle

(Gato and Webster, 2001)

Improve turbine performance 30� backward sweep and blade

pitch angle 0 to 20�
NACA0015

Blade profile (Suzuki and Arakawa, 2008) Efficiency improved at an angle of

attack <7�. Stall angle ¼ 10� was smaller.

fan-shaped blades with

different sweep angles

NACA0021, NACA0012

Blade profile (Takao et al., 2006) Peak efficiency higher Optimum blade profile: NACA0015 NACA0015,NACA0020CA9,

HSIM 15-262133-1576

Blade geometry (Kim et al., 2001) Stall margin is higher

with higher hub to tip ratio.

Optimum blade-sweep ratio: 0.35

and solidity: ~0.67.

NACA0020

Blade profile (Thakker and Abdulhadi, 2007) Higher power output Preferable rotor blade profile CA9 NACA0015,NACA0020,CA9,

HSIM 15-262133-1576
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finite element analysis based design (Gorissen et al., 2010;
Samad and Kim, 2008). In a study by Kim et al. (2002), it
was concluded that a design modification of blade sweep re-
quires a check for applicability to higher efficiency and power
(Table 1).

The multi-operating point optimization is performed
through the automated optimization if the computational time
is low. The simulation based works impose a greater challenge
to design and simulate when a complex geometry and flow are
encountered. Turbomachinery flows have such complexity,
and any small numerical error or irregularity in geometry or
mesh can produce disastrous result. In transonic flows (Samad
and Kim, 2008), the solver time steps must be changed during
simulations to get a converged result. However, the Wells
turbine cannot be automated with a 3D CFD code and an
optimization algorithm without applying ample efforts of
observing each simulation to obtain the converged solution of
any individual design.

In the present work, a Wells turbine blade design-
optimization via surrogate based multi-objective optimiza-
tion approach coupled with 3D CFD analysis has been carried
out. A dual or two-level optimization has been performed to
improve the peak-torque-coefficient and the corresponding
efficiency by sweeping a blade. The flow phenomenon inside
the turbine passage is explained to find the reason of the
enhanced performance of the turbine.
Please cite this article in press as: Halder, P., et al., Numerical optimization of W
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2. Numerical methodology
2.1. CFD modelling
AWells turbine blade geometry was adopted (Torresi et al.,
2008) and a CAD model was prepared for the flow/computa-
tional domain. The turbine contains eight rotor blades. A blade
has a chord length of 0.125 m and NACA0015 profile. The
blade has a solidity of 0.644 m, a tip radius of 0.3 m, a hub
radius of 0.2 m and hub-to-tip ratio of 0.67. The tip clearance
is 1% of the chord length.

The performance of the turbine (Fig. 1) was investigated by
solving 3D steady, incompressible flow equations. The
Reynolds-averaged NaviereStokes (RANS) equations were
discretized by the finite volume method in Ansys-CFX® v14.5
(Ansys CFX, 2010), and the k-w SST turbulence closure
model captured the near-wall flow physics. The CFD code,
which is a coupled solver, solved the fluid flow equations (for
u, v, w and p) as a single system. The solution approach
adopted a fully implicit discretization scheme for given time
steps. The time step guided the approximate solutions and
minimizes the number of iterations. To increase the accuracy
in the results, high-resolution first-order advection scheme was
applied to the finite-volume equations (Ansys CFX, 2010;
Benini and Biollo, 2007). The maximum residual criterion
was1.0E-5 for the convergence.
ells turbine for wave energy extraction, International Journal of Naval Ar-
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Fig. 1. Oscillating water column.

Table 3

Meshing and boundary conditions.

Parameter Description

Flow domain Single turbine

Interface Rotational periodic

Mesh/Nature Unstructured

Nodes 0.6 million

Fluid nature Air at 25 �C
Turbulence model SST k-U

Inlet Uniform inlet velocity

Outlet Area averaged static pressure

Hub, tip and blade No-slip

Residual convergence value 1 � 10�5

Mass imbalance 0.001
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The specifications of the turbine, boundary conditions and
meshing statistics are given in Tables 2 and 3. The computa-
tional domain was extended to four and six times of blade-
chord lengths towards the upstream of the Leading Edge
(LE) and the downstream of the Trailing Edge (TE) of the
blade, respectively (Fig. 2). A single blade passage was
simulated, and rotational periodic boundary conditions were
applied in the circumferential direction. A rotating reference
frame with a constant angular velocity was applied. The
following boundary conditions were applied:

� Rotational periodicity in the circumferential direction.
� At the downstream outlet boundary (the outlet lateral-face
of the computational domain): Area averaged static
pressure.

� No-slip boundary conditions at blade, hub and tip.
� Uniform inlet velocity at the upstream inlet boundary.

Fig. 3 shows the mesh, which is generated in Ansys ICEM-
CFD, used in the computational domain. The unstructured
mesh allows the addition of blade tip clearance (TC ¼ 1%)
and was generated over the entire computational domain. The
fine mesh was used in the near wall region to capture the near
boundary flow physics. Ten layers of nodes were employed
near the wall, so that a lower value of Yþ near the wall can be
obtained. The number of grids was increased in three gradual
Table 2

Specification of the turbine model.

Parameter Dimension

Blade profile NACA0015

Chord length, C 0.125 m

Number of blades, z 8

Blade maximum thickness, t 15% of C

Solidity at mean radius 0.644

Casing radius 0.3 m

Hub radius 0.2 m

Mean radius 0.25 m

Tip clearance (TC) 1% of C

Turbine rotational speed 2000 rpm

Please cite this article in press as: Halder, P., et al., Numerical optimization of W
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steps from 472,823 to 815,049 nodes to check proper grid
independent result and the maximum deviation of ±0.4%,
±1.55% and ±1.11% in pressure coefficient, torque coefficient
and efficiency are obtained, respectively. Fig. 4 shows that the
optimum number of grids is 0.6 million. The Reynolds number
was approximately 5.2 � 105 at the peak efficiency point and
the uncertainty of the torque coefficient was ±1.4%.

To simulate the flow, parallel processors in the Virgo super-
cluster specifications of IBM System xiDataPlex dx360 M4,
2X Intel E5-2670 8C 2.6 GHz processor was used.
2.2. Objective functions and design variables
In the present problem, two parameters were defined to
modify the blade stacking line. These variables are the angels
that modify the blade sweep at the tip section and the mid-
section. The angles varied from þ10� to �10� (¼ltip) at the
tip and from þ5� to �5� (¼lmid) at the mid-section (Fig. 5).
The blade stacking line was defined by a third order poly-
nomial curve to ensure a smooth change in the blade shape.
The blade is swept backward if the blade tip section moves
towards the TE.

The primary objective of the work was to enhance the peak-
torque-coefficient and the corresponding efficiency therefore;
the objective function is expressed as:

Torque coefficient:
ells

.06.0
T* ¼ T

ru2R5
tip

ð1Þ
where T is the turbine shaft torque.
Fig. 2. Computational domain.
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Efficiency:

h¼ Tu

QDPo
ð2Þ

where Q is the volume flow rate. Where, DPo is the static
pressure drop across the turbine taking the pressure value at
the inlet and the outlet of the computational domain
respectively.

Both the objectives are conflicting in nature and help delay
in flow separation; therefore, the blade shape optimization was
used to explain the rationale behind the performance
enhancement. The delayed flow separation or attached flow or
the stall-delay implies that more energy is transferred to the
blade. Awider operating range of a turbine is always desirable
as it gives higher performance at different wave conditions.
These wave conditions alter due to the change in wave height
and period, which frequently occur under uneven climatic
conditions for a particular sea location during the day or night.

The turbine blades faces a sinusoidal air jet as the airflow is
alternating or bidirectional. Initially, the wave height increases
and reaches to its crest, thereafter it changes the direction and
forms a trough. As a result, the air velocity becomes zero at
the crest and the trough of the wave. Fig. 6 shows the sea
surface during wave-propagation, in which the air velocity is
maximum at point's w2, w6 and w4. The air velocities can be
zero at w1ew3, w5ew7 sections. The shaded zone near the
crest and trough has less air velocity and turbine may or may
not extract the appreciable amount of power from the air. The
Fig. 3. Mesh on the com
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turbine-mass has its own momentum because of rotation and a
fluctuation in speed can be expected due to the bidirectional
airflow. At a high air-velocity zone (shaded zone), the relative
tangential velocity of the blade is higher, and the turbine
dissipates more energy in the air and reduces the total power
output. Any effort to increase the operating zone or range
would increase the total power extracting capability of the
turbine during different wave heights and frequencies. Hence,
the present objectives increase the operating range.

To achieve a higher performance, two design variables are
used to modify the blade stacking line so that the blade sec-
tions or profiles can be moved in forward or backward di-
rections along the chord line. An angle at mid-span forms one
variable (lmid) while an angle at tip forms the other variable
(tip). The design parameters and the definitions of the variables
are shown in Table 4 and Fig. 5b, respectively.
putational domain.
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Table 4

Design space of the variables.

Variable Lower limit Upper limit

ltip �10 10

lmid �5 5
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The torque coefficient (T*) and efficiency (h) were chosen
as the primary objective functions. For each design, several
simulations at different flow coefficients (U*) were carried out
to determine the peak-torque and the corresponding efficiency.
The first step of optimization involved a single-variable,
namely the flow coefficient (U*) which was used to change
the blade sweep, and the torque values were calculated. For
each design, five simulations for a wider flow coefficient were
carried out. Subsequently, the B�ezier curves were fitted and the
peak-torque and corresponding efficiency value were extracted
from the curves. Each design produced a different operating
range as well as the objective function values and it was noted
that the peak efficiency shifted to different location of the FC
axis. This implies that each design (turbine) can run at
different flow velocity to give a peak-torque. Thus, a turbine
that provides higher torque as well as higher efficiency is
better for real life application. The turbine was operated
continuously at design and off design conditions and the air
velocity was varied over a wide range of operation. Hence, in
the present approach, two levels of optimization are per-
formed: a) initial level to find peak efficiency considering
single objective (torque) and single parameter (U*) and b)
MOO through surrogate modelling and genetic algorithm
ells turbine for wave energy extraction, International Journal of Naval Ar-
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technique. The detailed description of the complex optimiza-
tion procedure or MOO is given in the following sections.

3. Optimization technique
3.1. Overview
The optimization procedure for the study is illustrated in
Fig. 7. The reference geometry was created, simulated in a
CFD solver and validated with existing experimental results.
Then, a design space was created using the lower and the
upper limits of the variables. Nine different designs or design
points were selected via three-level full factorial design or
design of experiments technique. These designs were simu-
lated by the CFD solver. For each design, the solver was run
for a wide range of Flow Coefficient (FC) to get the peak-
torque (T*max) and the corresponding efficiency (h). The
Design of exp
Selection of design points fr

Hi-fidelity s
Calculation of objective function values at 

Problem 
Define problem and variabl

Clusterin
Using k-means cluste

Error che
CFD simulations to check erro

Apply NSG
Feed surrogates to NSGA-II fo

Produce Pareto op
Find Pareto optim

Design s
Create design space using the lower 

Grid dependency a
Several simulations to check grid dependency and to val

1st level optimization
Finding objective function 

l

Calculate Peak-torque and 

Construct Low-fidelity mode
RSA, RBNN and KRG fitting fo

Calculate CV 

Calculate We

Construct W

Fig. 7. Optimization procedure
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values of objective functions (T*max and h) and design vari-
ables were tabulated. During the two-level optimization pro-
cedure, the CFD simulations evaluate the initial design points
for different FCs. B�ezier polynomials were fitted, and values
of T*max and h were obtained. For example, if we have B
number of design points, we get B number of peak-torques and
B number of corresponding efficiencies.

Three basic surrogates namely Response Surface Approx-
imation (RSA), Kriging (KRG) and Radial Basis Function
(RBF) were constructed and the errors related to the surrogates
were evaluated via the Cross-Validation (CV) approach. The
errors were used to calculate weights to construct Weighted
Average Surrogate (WAS). Each objective function produced
one WAS, and both the surrogates (for the both objectives)
were applied as input to a controlled non-dominated sorting of
genetic algorithm (NSGA-II) function. The NSGA-II pro-
duced PoF (Pareto optimal Front), which yielded several
eriment
om values at each point 

imulation
wider flow coefficients using CFD code

setup
e numerical results etc.

g
ring algorithm  

ck
rs and further analysis 

A-II
r population generation 

timal front 
al design 

pace
and upper limits of the variables 
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designs and the clustering, was obtained (Kalyanmoy Deb,
2001). Eventually, five different cluster points were selected
and evaluated by CFD simulations to perform the flow ana-
lyses. This concept differs from the earlier research works
(Badhurshah and Samad, 2015); which optimized the wave
energy turbine system for a fixed U*.
3.2. Surrogate models
The RSA model is an approximation technique, which uses
several regression coefficients to fit a second order polynomial
curve (Myers and Montgomery, 1995). In the present study, a
minimum of seven data points were required to construct the
RSA for two variables and six such regression coefficients
were obtained. Since, KRG and RBF use less number of data
points, the surrogates were constructed using nine design
points only. The RBF was constructed using ‘newrb()’ func-
tion of the Neural Network Toolbox of Matlab R14 (Matrices,
2012). The network has three layers: an input layer, a hidden
layer and a liner output layer. These parameters define the
network sensitivity or error inclusion in the output of a new
dataset or design points fed into the network. Kriging method
or KRG is a combination of two components: a global model
and departures from the curve (Martin and Simpson, 2005). A
linear regression model along with zero mean also predicts the
functional behaviour of the KRG. The weighted average or
WAS model (Goel et al., 2007) is a derived from the basic
surrogates (RSA, KRG and RBF) and the predicted response
defined by the PBA model is given below:

fwasðxÞ ¼
XNsm

i

wiðxÞfiðxÞ ð3Þ

where Nsm is the number of basic surrogate models used to
construct WAS. The ith surrogate at design point x produces
weight wiðxÞ, and FiðxÞ is the response predicted by the ith
surrogate. The weighting scheme used is as follows:

wi ¼ w*
i

PNsm

i

w*
i

; where w*
i ¼

�
Ei þ d1Eavg

�d2 ;d1<1; d2<0; ð4Þ

Eavg ¼
XNsm

i

Ei=Nsm; Ei ¼ Ecv;i; i¼ 1;2 3&…Nsm

where Ecv is calculated from the leave-one-out CV error esti-
mation (Goel et al., 2007).
3.3. Cross-validation
In CV, the data points are randomly partitioned into k equal
points. A single point is retained as the validation point for
testing a surrogate and the remaining k-1 points are used to
construct the surrogate. The surrogate is constructed k times
with each of the k designs used exactly once as the
validation point. Hence, k errors were obtained and gross
Please cite this article in press as: Halder, P., et al., Numerical optimization of W
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mean square error or CV error (Ecv) was calculated. A single
surrogate gives exactly one Ecv. The Ecv is then used to
calculate the weights of each surrogate from the Eq. (4). If k
is equal to the number of data points, the CV is called leave-
one-out CV.
3.4. NSGA-II and POF
A variant of NSGA-II, called controlled elitist genetic al-
gorithm, is a Multi-Objective Optimization (MOO) algorithm
(Deb, 2001). An elitist genetic algorithm always favours in-
dividuals with better fitness value and a controlled NSGA-II
helps increasing the diversity of the population and forms a
better PoF. The algorithm takes an initial population from a
surrogate and proceeds through generations via mutations and
crossovers. The initial population is called a parent population
and initially the points are selected arbitrarily. The objective
function values are estimated at each design through actual
estimation of CFD or via surrogate model. Finally, the stop-
ping criterion reaches to accept the converged solution. In the
present computation, fifty generations were set as stopping
criterion and PoF was generated. Some of the Pareto-optimal
solutions were selected via clustering and reproduced
through RANS analysis.

NSGA-II requires a large number of initial populations,
which are expensive to evaluate by a high fidelity CFD model.
An easy way to reduce such expenses is to construct a cheaper
model or surrogate and generate the population from the
surrogate. A higher error in a surrogate may lead to a poor
relationship between the objectives. The CV error estimation
gives an idea of the goodness of surrogate fitting and helps
finding weights (Eq. (4)) for the basic surrogates. The feasible
solutions are plotted in PoF, and the points are clustered by k-
means clustering algorithm.

4. Result and discussion
4.1. Validation of numerical results
The CFD simulations are considered as the ‘high-fidelity’
simulations and need to be validated with the existing standard
experimental or numerical models. The present results have
been compared with other CFD (Torresi et al., 2008) and
experimental (Curran and Gato, 1997) results. The static
pressure coefficient (DP*), the torque coefficient (T*), and the
efficiency (h) are plotted for a wide range of flow coefficient.
Fig. 8 shows that the present results match well with the
existing results.

After validation, the ranges of the variables were fixed
through some initial computations or through the designer's
experience. For example, ltip ¼ �20� and lmid ¼ 20� yielded a
completely impractical design. In some cases, the convergence
in the optimization algorithm was not achieved. Hence, the
angles (ltip and lmid) were changed iteratively and finally a
feasible design space was created. Nine sample points (or
design points) were selected within the design space (Table 4).
ells turbine for wave energy extraction, International Journal of Naval Ar-
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Table 6

WASeWAS results at different clustered points.

Points lomid lotip NSGA-II predicted results CFD predicted results

h,NSGA T*
;NSGA h,CFD T*

;CFD

A 4.6 �6.70 0.498 0.201 0.465 0.201

B �4.7 �6.90 0.530 0.184 0.473 0.186

C �4.7 �3.20 0.539 0.162 0.507 0.139

D �2.2 �0.27 0.542 0.137 0.539 0.142

E 3.9 8.70 0.567 0.099 0.572 0.084

Ref 0.0 0.00 e e 0.538 0.138
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Fig. 9. Pareto optimal designs showing five cluster points only.
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The designs distributed in the design space were simulated
using the CFD solver to estimate the objective function values.

A surrogate's fidelity depends upon the nature of the data
points used in its construction. Several surrogates were con-
structed and the errors (Ei in Eq. (4)) were evaluated (Table 5).
The table shows that the objective functions have the same
surrogate (RBF) which produced least errors for this problem.
Prior to this calculation, it was unclear which surrogate pro-
duced the least error. Finally, the weighted average surrogates
were constructed using the Eq. (3). It was observed that the
RBF fetched the highest weight (w); whereas, the KRG got the
least for both the surrogates. However, it was not always true
that the RBF or KRG had the highest or lowest errors,
respectively (Badhurshah and Samad, 2015; Bellary et al.,
2014). The surrogate WAS was constructed twice (one for
T* and another for h) and the surrogates were used to generate
initial populations for the NSGA-II.

Table 6 shows that the cluster points were obtained from
the NSGA-II. Five cluster points were selected and the same
points were evaluated again using the CFD solver. These
points were sequentially named as A, B, C, D and E. Where,
point A shows the highest peak-torque coefficient (¼T*) and
lowest efficiency value (¼h) (Fig. 9) while point E shows the
lowest T* and the highest hin the present design. The results
differ owing to the errors induced in both the surrogates and
NSGA-II predictions.

Fig. 9 shows the relationship between the objectives. The
high efficiency design has a lower peak-torque. The reference
point is located nearby point D and the other points lie at the
left or right side of the PoF.

Fig. 10 shows the CFD computed results for a wider U* for
all the cluster points. As the turbine diameter or the hub
diameter does not change, the resistance to fluid flow is almost
similar for all the designs and increases with U*. The pressure
Table 5

Weights for the surrogates to construct WAS.

Objective functions CV error

KRG RSA RBF

T* 0.058 0.042 0.034

h 0.066 0.053 0.035

Fig. 10. Effect of blade sweep.
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drop across the turbine varies linearly with flow rate because
of the increase in the energy exchange. Fig. 10a and b shows
that the torque coefficient and efficiency are different design
point for all the cases. The reference case has a lower peak-
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torque and a lower operating-range. Nevertheless, the effi-
ciency is slightly higher in the reference case.

Fig. 11 shows the improvement in power output of the
optimized blade. The Maximum enhancement in power
(¼28.8%) is achieved in design A. The unswept blade has
hmax ¼ 0.648 at U* ¼ 0.125 and stalled at U* ¼ 0.225
(Fig. 12). The design A performs better as compared to design
E in terms of peak-torque enhancement, which conforms the
existing results (Brito-Melo et al., 2002; Webster and Gato,
1999a,b; Suzuki and Arakawa, 2008).

For further analysis, only two designs (A and E) from the
PoF are selected and detailed CFD analysis is presented below.
4.2. Internal flow analysis
Fig. 12. Optimized blades and their operating ranges.
Fig. 13 illustrates the comparison of static pressure co-
efficients at the mid-section of the flow passage for the Ref, A,
and E designs. The pressure is almost constant at lower U*
(¼0.125) on both the surfaces (PS and SS). As the FC in-
creases, the pressure coefficient also increases. At higher U*
(¼0.275), a higher pressure zone appears on the PS of the
design A, while a lower pressure zone appears on the suction
surface (SS) for Ref and E. Ref shows a drastic drop in effi-
ciency (Fig. 10b) because of the large flow separation. Again,
E has a lower efficiency than A at U* ¼ 0.275 (Figs. 10b and
13). A lower pressure region on SS of E covers more area than
that of A. This low pressure promotes flow separation and
gives lower efficiency.

Fig. 14 shows the streamlines patterns at mid-span of the
flow passage near TE. At lower U* (¼0.125). The flow is
attached to the SS and the efficiency remains almost same for
all the cases. The flow separation increases with the increase in
U*. At higher U* (¼0.275), the separation region is near the
TE on SS of A and E because of the low pressure on SS
(Fig. 13). Ref shows a wider flow separation zone which gives
a low efficiency (Figs. 10b and 14). In E for U* ¼ 0.275, two
vortex appeared near the TE, flow separation zone became
larger, and a lower efficiency was obtained as compared to
case A.

The streamline patterns on SS shows a lower flow separa-
tion and same efficiency at a lower U* (¼0.125) in all the
cases (Fig. 15). For a turbine operating at a constant speed
with a low flow rate, the aerofoil gets the highest lift as the
flow is attached. The low velocity fluid particles possess lower
Fig. 11. Power output of designs: Ref, A and E.
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kinetic energy and hence, the total efficiency or the power
transfer to the aerofoil is low. Small flow separation zone is
visible near the hub of TE and it leads to the inception of
smaller vortices. A further increase in flow velocity increases
the separation zone. At this point, we get the highest torque.
An increase in flow rate increases the angle of attack for a
given rotational speed.

Fig. 16 shows the circumferential velocity contours for
blade to blade passage at the blade mid-span. SS has a thinner
boundary layer attached to the blade surface at a lower flow
coefficient (U* ¼ 0.125). As the flow coefficient increases, the
boundary layer thickness increases due to increase in angle of
attract, and a wake appears at TE and gets deflected towards
the axial direction. A higher velocity region is noticed near the
LE of A. Because of the blade sweep, the distribution of the
flow is not perpendicular to the spans, hence the streamline
curvature is different for both SS and PS.

Fig. 17 represents a line from hub to tip at downstream of
the flow. The line is located at the mid-chord. The static
pressure distribution at the line is shown in Fig. 18. At a lower
flow coefficient (U* ¼ 0.125), a lower pressure is found near
the blade tip for Ref. At a higher angle of attack, a lower
pressure is observed near the hub of Ref as compared to the
other designs. The pressure distribution gradually decreases
with the span for A.

Fig. 19 shows the axial velocity distribution along the blade
span. At the lower flow coefficient (U* ¼ 0.125), the velocity
distribution is almost same for all the cases as the angle of
attack is low (Fig. 16). At the higher flow coefficient
(U* ¼ 0.275), the velocity is high for Ref while it is low for A
and E near the hub.
ells turbine for wave energy extraction, International Journal of Naval Ar-
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Fig. 13. Pressure contours at different flow coefficients.

Fig. 14. Streamline lines that show the recirculation zone at the blade mid-span near TE.

Fig. 15. Streamlines on the blade suction surface.
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Fig. 16. Circumferential velocity contours for blade to blade at the mid-span.
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5. Conclusions

Numerical analyses by solving the RANS equations with k-
w SST model and multi-objective optimization of Wells
Hub
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Fig. 17. Data reduction line at the downstream of the blade.
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turbine blade have been carried out in the present work. The
computational results are validated with the existing experi-
mental and numerical results and it is found that the results are
well matched. Nine design points are selected in the design
space by using full factorial. A weighted-average surrogate
based genetic algorithm has been implemented and multiple
optimal designs are produced in a Pareto optimal solutions.
Some cluster points are verified with CFD analyses.

From the solution, only two extreme designs, design A and
design E, are selected. It is found that a higher efficiency design
may not yield a higher peak-torque design. The design A has a
backward sweep at the mid-section and a forward sweep at the
(b) U*=0.275
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tip-section of the blade and gives a higher power output. The
peak torque-coefficient increases by 28.28% and the corre-
sponding efficiency decreases by 13.5%. However, the
operating-range increases by 18.18%. In design E, the peak-
torque coefficient decreases by 36% and the corresponding
efficiency increases by 6% as compared to the reference design.
The operating range decreases by 22.22%. The blade A has a
smaller separation region at the TE than the reference blade and
blade E and has a higher torque than the unswept blade. The
change in flow separation is responsible for efficiency change.
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