Upstream start codon in segment 4 of North American H2 avian influenza A viruses

Geneviève Girard a,1, Alexander P. Gultyaev a,b, René C.L. Olsthoorn a,∗

aDepartment of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
bDepartment of Virology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands

ARTICLE INFO

Article history:
Received 31 August 2010
Received in revised form 22 December 2010
Accepted 24 December 2010
Available online 11 January 2011

Keywords:
Influenza A virus
Hemagglutinin
Start codon
Kozak consensus
Untranslated region

ABSTRACT

H2N2 influenza A virus was the cause of the 1957 pandemic. Due to its constant presence in birds, the H2 subtype remains a topic of interest. 1993 work con. 19n of H2 leader sequences of influenza A segment 4 revealed the presence of an upstream in-frame start codon in a majority of North American avian strains. This AUG is located seven codons upstream of the conventional start codon and is in a good Kozak context. In vivo experiments, using a luciferase reporter gene fused to leader sequences derived from North American avian H2 strains, support the efficient use of the upstream start codon. These results were corroborated by in vitro translation data using full-length segment 4 mRNA. Phylogenetic analyses indicate that the upstream AUG, first detected in 1976, is stably nested in the North American avian lineage of H2 strains nowadays. The possible consequences of the upstream AUG are discussed.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.

1. Introduction

Influenza is a relatively common epidemic disease that became pandemic a few times in the past century. Influenza A viruses can be classified into subtypes based on the antigenicity of hemagglutinin (HA, 16 subtypes) and neuraminidase (NA, 9 subtypes), two glycoproteins found at the surface of the virions. Each HA and NA subtype has been detected in birds, whereas mostly HA types 1, 2 and 3 and NA types 1 and 2 have been found in humans. The influenza A virus genome consists of eight RNA segments of negative polarity encoding at least eleven proteins. Upon infection of a host by two different viral strains, reassortment of the segments can occur and this results into a novel strain. Particularly when this occurs between a human and a non-human strain, the new influenza virus has a higher probability for causing a pandemic in the human population.

In the twentieth century, several subtypes have caused seasonal and pandemic influenza. The 1957 and 1968 pandemics originated from H2N2 and H3N2 reassortants, respectively. Since then, H2 subtype has not been found anymore in the human population, meaning that most humans are immunologically naïve to H2. This subtype, still present in the avian population, is therefore a possible candidate for a future outbreak (Liu et al., 2004; Makarova et al., 1999; Schafer et al., 1993).

Phylogenetic analyses have uncovered two geography-linked lineages of avian H2 HA, Eurasian and North American (Schafer et al., 1993). Studies of American poultry have indicated an increasing prevalence of the H2 subtype, meaning a growing risk of transmission to human (Schafer et al., 1993). The two lineages are not completely isolated, as migratory birds have been shown to transmit Eurasian viruses to North American shorebirds (Makarova et al., 1999) and vice versa (Liu et al., 2004), thereby giving another dimension to the evolution of the virus. Recently, H2N3 influenza viruses were isolated from pigs. These strains showed adaptation to the mammalian host and therefore emphasize the importance of H2 surveillance (Ma et al., 2007).

In addition to the large variation in HA protein sequences there exists also large variation, both in length and composition, in the non-coding regions segment 4. The role of this variation is not known but may be related to the packaging of segment 4 or its translation. Upon comparing 5′-untranslated regions (5′-UTRs) of segment 4 in H2 viruses we noticed that some avian strains of H2 subtype exhibit an upstream AUG, which is in frame with the conventional AUG of segment 4. Here, we show...
that this upstream AUG is translationally active in a reporter system and may lead to increased HA expression in H2 viruses.

2. Materials and methods

2.1. Sequence analyses

Influenza sequences were retrieved from the NCBI Influenza Virus Resource (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) on the 12th of May 2010. Sequences were then aligned using the Mafft algorithm (Katoh and Toh, 2008) and UTRs were extracted with the ExtractAlign tool of EbioX tools (Barrio et al., 2009). Too incomplete sequences were removed, which allowed proper visualization and analysis of the UTRs alignment. Because some strains were sequenced multiple times, duplicate sequences were removed manually from the alignment.

2.2. Signal sequence and cleavage site prediction

We used the SignalP 3.0 server of the Technical University of Denmark (http://www.cbs.dtu.dk/services/SignalP/), the SOSU signal tool (http://bp.nuap.nagoya-u.ac.jp/sosui/sosui-signal/sosuisignal_submit.html) and the Sig-Pred tool (http://bmmbpcu36.leeds.ac.uk/prot-analysis/Signal.html). These tools were used to predict signal sequence and cleavage site for all possible additional 7-amino-acid stretches. For each of these stretches, a corresponding strain was selected. The prediction was performed using both the HA sequence starting at the usual start codon and the HA sequence starting at the upstream start codon. It was verified that in both cases, the cleavage site is predicted at the same location.

2.3. Cell culture

HeLa (human cervix cell line) cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM). The cultures were supplemented with 10% fetal bovine serum (FBS) and 100 μg/ml penicillin/streptomycin.

2.4. Nucleic acids and cloning

All oligonucleotides were synthesized by Eurogentec (Maastricht, The Netherlands). Enzymes were purchased from Fermentas (St. Leon-Rot, Germany). When necessary, nucleic acids quality and amounts were verified by electrophoresis and using Nanodrop (ThermoScientific, De Meer, The Netherlands). DNA isolations from bacteria were performed using Plasmid Midi and Mini kits from QIAGEN (Venlo, The Netherlands). For DNA purification from agarose gels or after restriction digestion, we used GFX columns from GE Healthcare (Hoevelaken, The Netherlands).

2.5. Construction of the luciferase reporter vectors and mutagenesis

The 1300-bp HindIII fragment of pDual-HIV (Dulude et al., 2006) was cloned into the HindIII unique site of pUC19 in order to obtain a vector (pUCR1) where Nhel and BstBI sites were unique. An MfeI site was introduced upstream of the Renilla luciferase ORF of pUCR by ligating hybridized oligonucleotides (5’-CTAGAGCTCCGTACCCTGGGATCCCATTGTG-3’ and 5’-CAGACATTTGGATCCCGGTGAGCGGCT-3’) between the Nhel and BstBI sites. Subsequently, the 1300-bp HindIII fragment containing the Renilla luciferase of this vector was ligated with the 7400-bp HindIII fragment of pRLHL (Honda et al., 2000) containing the firefly luciferase. The vector obtained was digested with Apal and NotI, subjected to Klenow treatment and religated to create pMRL, containing a CMV promoter, a T7 promoter, a unique MfeI site and the Renilla luciferase ORF.

Various 5’UTR sequences of influenza segment 4 were inserted between the CMV promoter and the Renilla luciferase sequence in pMRL by ligating hybridized oligonucleotides between the HindIII and MfeI sites. This cloning procedure allowed to eliminate as much as possible of non-influenza sequences, including the T7 promoter, in the reporter vector between the CMV transcription start and the influenza 5’-UTR.

2.6. Transfections and luciferase assay

HeLa cells from 80 to 90% confluent cultures in T75 flasks were seeded into 24-well plates to 7 × 10⁴ cells per well in a final volume of 500 μl antibiotic-free DMEM supplemented with 10% FBS. After 24 h incubation at 37 °C, cells were transfected with 50 ng of Renilla-luciferase vector and 50 ng Firefly-luciferase control vector, and 1 μl lipofectamine 2000 (Invitrogen, Breda, The Netherlands) according to the manufacturer’s instructions. 24 h after transfection, cells were washed with 500 μl PBS and lysed in 100 μl passive lysis buffer (Promega, Benelux) for 10 min at room temperature. 20 μl of lysate were transferred to a 96-well plate. Luciferase activities were measured with a dual luciferase reporter assay kit (Promega) on a Glomax Multi luminometer (Promega), using a 10 s integration step and 25 μl of each reagent per well.

2.7. In vitro translation

A pUC57 derivative containing the full-length sequence of the hemagglutinin gene of strain A/northern shoveler/California/HKWF1128/2007 (H2N7) (accession number CY033340 in GenBank) downstream of the T7 promoter was purchased from GenScript (Piscataway, NJ, USA). A GCT sequence was introduced just upstream of the hemagglutinin sequence to create an Nhel cloning site. In the influenza CY033340 sequence, a G87T mutation was introduced to create an Eco91I cloning site.

The following mutations were introduced by replacing the Nhel–Eco91I fragment in pUC57–CY033340 by different pairs of oligonucleotides: a C31T created a stop codon instead of the third codon (arginine) downstream of the upstream start codon, construct AUG–STOP–AUG; this mutation was also introduced in combination with mutation of the upstream start codon (AUA–STOP–AUG); an additional A was introduced upstream of C35 to create a +1 frameshift, construct AUG–FSH–AUG. The latter frameshift was also introduced in an upstream start-codon mutant (AUA–FSH–AUG). As a negative control both start codons were mutated in construct AUA–AUA.

The six pUC57-derivatives were isolated using the Plasmid Midi kit from Qiagen. Six micrograms of DNA was then digested with SacI and HindIII and purified. One microgram of digested DNA was used as template for transcription using a RiboMax Large Scale T7 Kit (Promega) in the presence of cap analog (Promega). After the DNase treatment, RNA was purified over 1 μl of each reagent Micro Bio-Spin 6 columns (BioRad). RNA was used at a final concentration of 30 nM in 10 μl volume as template for in vitro translation using Rabbit Reticulocyte Lysate (Promega) with 1 μl [35S]-methionine (1175 Ci/mmol, 10 mCi/ml) for 1 h. The firefly luciferase gene control provided by the manufacturer was used as positive control for translation. After translation, 2× Laemmli buffer was added and the samples were heated for 4 min at 95 °C, and electrophoresed in an 8% SDSPolyacrylamide-gel. The gel was dried and exposed to a phosphorimager screen (BioRad). Relative band intensities were calculated using Quantity One software (BioRad).
3. Results

3.1. Segment 4 harbors an additional upstream in-frame start codon in most North American avian H2 strains

Alignment of segment 4 sequences of avian H2 strains (Fig. 1) revealed that on a total of 78 strains for which the 5' UTR is available in GenBank, 29 exhibit an AUG located 21 nucleotides upstream of the regular start codon. This upstream start codon (AUAG) is in frame with the HA ORF and may therefore also be used for translation initiation. In three strains, A/Guinea/NJ/3070/91 (H2N2), A/Chicken/NY/29878/91 (H2N2), and A/Mallard/NY/6750/78 (H2N2), an upstream start codon is also present at the same position, but not in frame. In the remaining 46 strains AUA is found at the upstream location.

The optimal context for initiation of translation is known to be GCCRCACaugG in vertebrates (Kozak, 2005). Among these elements, the -3 purine and the +4 G are the most important. For influenza strains of the avian H2 group, the [GCCG, GCCG, GCCG] region is optimal neither for the usual nor for the upstream start codon when present. ACA is found upstream of the main AUG, whereas the slightly more optimal ACC is present upstream of the alternative AUG. The +4 G is found downstream of the main start codon in 31 out of the 46 strains that have no upstream start codon. Remarkably, when an upstream start codon is present, the +4 G at the main start is lost (29 strains) while at the same time the upstream start does possess a +4 G (27 strains). This almost perfect correlation strongly suggests that the upstream start is indeed functional. In only 2 cases both up and downstream starts have a +4 A.

3.2. Phylogeny of North American avian H2 strains

Using the known H2 phylogeny (Liu et al., 2004; Makarova et al., 1999; Schafer et al., 1993), which is based on the coding region of segment 4, the phylogenetic distribution of strains harboring the upstream start codon was investigated. The recent classification of the main H2 sublineages as proposed by Liu et al. (2009) was used to map these strains (Fig. 2). It appears that none of the avian strains of the branch h2.2 display an upstream AUG and all have a +4 G. This group corresponds to the Eurasian lineage of avian H2 viruses. Strains possessing an upstream AUG cluster in the North American lineage (group h2.1.2), most of them having upstream AUGG and downstream AUGA (Fig. 2, “AUG/G/AUGA”). Correlatively, strains isolated in Delaware (USA) are known to be part of the Eurasian lineage and do not exhibit any upstream AUG. However, not all strains of the North-American lineage h2.1 possess the upstream AUG: several strains having AUAG/AUGA (in h2.1.2) or AUAG/AUGG (in h2.1.1) cluster with the North American branch.

The upstream AUG is found in all type of birds, including mallard, green-winged and blue-winged teals, sanderling, laughing gull, northern shoveler, pintail, semi-palmated sandpiper, guinea fowl, silky chicken and chicken. There is no obvious correlation with the NA type as the upstream AUG is found in N1, N2, N3, N5, N7, N8, and N9 subtypes (N6 has not been found yet in American avian H2 strains, and of H2N4 only one sequence is known).

3.3. The upstream AUG is used in the context of an in vivo reporter fusion

In order to investigate whether this upstream AUG is functional in vivo, we selected the 5'UTR region of strain A/northern shoveler/California/HKWF1128/2007 (H2N7) (accession number CY033340), which displays the AUG/G/AUGA combination predominantly found in h2.1.2 strains (Fig. 2). The entire 5'-UTR, including the second AUG and one adjacent codon, was cloned upstream of Renilla luciferase in our pMRL reporter plasmid. Mutations were introduced that affected the context of the two starts (Fig. 3). As reference, the 5'UTR sequence of strain A/gull/MD/19/1977 (H2N9) (accession number EU742644) from the other major group (h2.1.1 with AUAG/AUGG) was also cloned in the reporter construct. HeLa cells were transfected with these constructs together with a reference construct producing firefly luciferase. Results are shown in Fig. 3. Fig. 3 shows that the upstream AUG is functional in translation (compare AUAG/AUAA with AUGC/AUAA, bars 3 and 9). In the presence of a +4 G, translation from leaders with an upstream AUG was only mildly enhanced by introducing the downstream AUG.
with a +4 A or G (compare bars 1–3), indicating that the vast majority of scanning ribosomes do not reach past the first AUG. Interestingly, expression from the upstream AUG is actually much higher than that from the second AUG (compare bars 3 and 7). In fact, the presence of the upstream AUG, irrespective of the identity of the +4 nucleotide of any of the two start codons, in all cases seemed to enhance expression by a factor of two (compare bars 5 and 8, or bars 4 and 7). We note that the 5′ UTR of A/gull/MD/19/1977 (AUAG/AUGG, bar 10) gave a 3-fold lower RL expression than the supposedly equivalent AUAG/AUGG mutant of the A/northern shoveler/California/HKWF1128/2007 (H2N7) strain (bar 7). This may be related to three nucleotide differences in the remainder of the UTR between these two constructs. Finally it is noteworthy that translation from the A/northern shoveler/California/HKWF1128/2007 strain leader is almost 10-fold higher than that from the A/gull/MD/19/1977 strain leader.

3.4. The upstream AUG in the context of the full-length segment 4 is active in vitro

As the above data were obtained with only a short region of segment 4, i.e. the 5′ UTR, we could not rule out that other features of segment 4 could play a role in translation. To examine this possibility, we tested the translational efficiency of the full-length segment 4 of the A/northern shoveler/California/HKWF1128/2007 (H2N7) strain in vitro. To investigate to what extent the first start codon was used, a frameshift mutation was introduced downstream of the first start codon. Translation from the first start codon would result in a product of 38 aa (not visible on the gel in Fig. 4) whereas translation from the second start codon would yield a product of 63 kDa. As can be seen in Fig. 4 this mutation resulted in a 5-fold decrease in the yield of the full-length product (lane 2). The remaining 22% probably derives from translation from the second start codon. Introduction of a stop codon downstream of the first start codon resulted in only a two-fold decrease in full-length product (lane 3). This could be due to the fact that...
ribosomes are very close the second AUG when dissociating at the introduced stop codon, which makes re-initiation more probable than when ribosomes terminate 38 codons further downstream in the case of the frameshift mutant. Knockdown of the first start codon in the frameshift mutant largely restored translation of the full-length product from the second start codon (lane 5), indicating that the reduced yield in lane 2 was not due to adverse effects of the frameshift mutation on translation from the second start codon, but was the result of ribosomes initiating mainly at the first start codon. Lane 6 shows that in the absence of the first AUG ribosomes efficiently initiate translation at the second AUG. In the absence of both start codons translational yield is close to background levels (lane 4). These results show that also in the context of the entire segment 4 mRNA of A/northern shoveler/California/HKWFI1128/2007 (H2N7) translation is initiated mainly at the upstream AUG.

3.5. Use of the upstream AUG is predicted not to affect signal peptide cleavage and HA secretion

HA is known to be translocated into the endoplasmic reticulum of host cells (Sabatini et al., 1982). This happens after recognition of an N-terminal signal sequence by the cellular machinery. Cleavage of the signal sequence is necessary for production of the mature HA protein and also involves molecular recognition within the amino-acid sequence (McQueen et al., 1984; Sekikawa and Lai, 1983). One can rightfully wonder whether the seven additional amino acids in the HA of North American strains could interfere with the translocation and cleavage signaling in the HA polypeptide. Algorithms are available that allow to predict the presence of a signal sequence and the location of the cleavage site. We used three of them and the same results were obtained; when an alternative start codon is present, a 24-amino acid signal peptide and a cleavage site can be predicted in both versions of the HA protein (starting at the conventional start codon or seven amino acids upstream) at the same location. This was checked for all the different stretches of seven amino acids predicted in the strains with upstream AUG: MNNQTGTK, MDNRTKTK, MENRTKTK, MDNQTGTK, MDNQTKK and MDNKTKK.

4. Discussion

Various studies suggest that the amounts of viral proteins produced during influenza infection are primarily under transcriptional control, but that post-transcriptional control plays an important role in fine-tuning (Hatada et al., 1989; Ortin, 1998; Tekamp and Penhoet, 1980; Yamanaka et al., 1988, 1991), particularly for late proteins, which include HA (Hatada et al., 1989). It is therefore relevant to pay attention to possible alternative translation initiation events in segment 4.

Here we have discovered a previously unrecognized alternative start codon in the leader of segment 4 of most North American avian H2 strains. This start codon is located seven codons upstream of the conventional start codon (Fig. 1) and is in a relatively strong Kozak context of ACCaugG, while the downstream Kozak consensus is weaker, suggesting that the upstream start is functional. Indeed, our in vivo data with the leader of one of the North American avian strains, having this upstream AUG (A/northern shoveler/California/HKWFI1128/2007[H2N7]) fused to a luciferase reporter gene, supported the efficient use of the upstream start codon (Fig. 3). These results were corroborated by in vitro translation data using the full-length segment 4 of A/northern shoveler/California/HKWFI1128/2007[H2N7] (Fig. 4).

What could be the consequences of the use of the upstream codon for the virus? Use of the upstream AUG leads to a longer N-terminus, but this is not retained in the mature version of the HA protein if cleavage occurs normally. By using several different algorithms we predicted no adverse effects on cleavage of the signal peptide, whose size increases to 24 amino-acids when translation starts at the upstream AUG. Besides, many proteins are known to have a signal sequence of 24 amino acids or more (von Heijne, 1983). Finally, in the case of HA itself, we verified that the position of the cleavage site can be variable between strains (data not shown and von Heijne, 1983), up to 21 amino acids from the N-terminus. All together, these observations suggest that the use of the alternative upstream start codon is unlikely to interfere with proper translocation and secretion of HA.

The data of the in vitro expression with full-length segment 4 mRNA showed that by leaky scanning the downstream start codon can be used as well. In the in vivo experiments the presence of the downstream start codon resulted in about 10% higher expression of the luciferase (Fig. 3, compare columns 2 and 3) suggesting that also in vivo a small percentage of ribosomes start translation from the second start codon.

The use of alternative start codons is not without precedent in influenza virus A mRNAs. In segment 2 (PB1), leaky scanning of ribosomes past the first AUG, which is not in an optimal Kozak context (AUUAUAAUugG), is postulated to produce the PB1-F2 product, which is in +1 frame with respect to the PB1 gene (Chen et al., 2001). An N-terminally truncated form of PB1, the so-called N40 product, is also postulated to result from leaky scanning past the first four AUGs (Wise et al., 2009).

There exist at least two models for describing ribosome behavior around a eukaryotic start codon. Whether the ribosome scans from 5′ to 3′ and starts translation at the first AUG with reasonably good Kozak context (Kozak, 2005) or that it is ‘fluttering’ as suggested by Matsuda and Dreher (2006), we are fairly confident that the context of the 5′UTR of this segment 4 is in favor of the upstream AUG when present, also in the whole virus situation. Indeed, its context is better than that of the conventional AUG, which is what matters for the first model. Concerning the second model, the 18-nucleotide distance between the two AUGs is larger than the postulated distance on which the ribosome can travel back and forth (Matsuda and Dreher, 2006).

One could argue that the upstream AUG is located too close to the 5′ end and when the influenza polymerase complex is bound to the 5′ end, as some models suggest (Burgui et al., 2007), such an AUG may not be used or recognized by the 40S subunit. However other HA segments have similarly-sized or even shorter 5′UTRs. So there is no reason why the H2 HA upstream AUG should not be used by the virus.

The presence of the upstream AUG resulted in a two to threefold higher translation efficiency as compared to leaders having...
Underlined nucleotides indicate single mutations. The upstream AUG (Fig. 2). We do not know whether this means strains, which are among the few North-American strains lacking cluster with the Eurasian avian strains, which lack the upstream AUGA/UGA strains with the upstream AUG were still isolated, indicates that the upstream AUG, first detected in 1976, is stably nested in the North American avian lineage of H2 strains. Concerning possible reassortment with human strains and/or transmission to human, the emergence and persistence of an HA segment with a putative longer N-terminus is of interest. Since the N-terminus of HA protein is cleaved off, it is not expected to have an impact on the antigenicity of the virus. However, our data reveals a number of strains that have an unannotated upstream in-frame start codon in addition to the conventional one (R.C.L.O., unpublished data). In the future, a more systematic investigation of effective start codons may complicate our view of influenza translation even more.

Acknowledgements

The authors thank Anton Tsyganov-Bodounov and Maarten de Smit for stimulating discussions. This study was supported by European Community grant no. 201607, also known under the acronym RNAFLU.

References

