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SUMMARY

SIRT1 regulates energy homeostasis by controlling
the acetylation status and activity of a number of
enzymes and transcriptional regulators. The fact
that NAD+ levels control SIRT1 activity confers
a hypothetical basis for the design of new strategies
to activate SIRT1 by increasing NAD+ availability.
Here we show that the deletion of the poly(ADP-
ribose) polymerase-1 (PARP-1) gene, encoding a
major NAD+-consuming enzyme, increases NAD+

content and SIRT1 activity in brown adipose tissue
and muscle. PARP-1�/� mice phenocopied many
aspects of SIRT1 activation, such as a higher mito-
chondrial content, increased energy expenditure,
and protection against metabolic disease. Also, the
pharmacologic inhibition of PARP in vitro and
in vivo increased NAD+ content and SIRT1 activity
and enhanced oxidative metabolism. These data
show how PARP-1 inhibition has strong metabolic
implications through the modulation of SIRT1
activity, a property that could be useful in the
management not only of metabolic diseases, but
also of cancer.
INTRODUCTION

Intracellular NAD+ levels control the activity of the type III deace-

tylase SIRT1, allowing it to act both as a metabolic sensor and

effector (Yu and Auwerx, 2009). Overexpression studies indi-

cated how activation of SIRT1 or of its orthologs extends life

span in lower eukaryotes and protects against high-fat-diet

(HFD)-induced metabolic disease in mice (Yu and Auwerx,

2009). These attractive properties spurred a quest to identify

small-molecule SIRT1 agonists that could be used in situations

of metabolic stress and damage. This strategy identified

compounds like resveratrol or SRT1720 (Howitz et al., 2003;

Milne et al., 2007), whose ability to directly interact with and

activate SIRT1 is, however, debated (Pacholec et al., 2010).
C

Therefore, a strong interest exists to develop alternative strate-

gies to activate SIRT1. Given the NAD+ dependency of SIRT1,

another potential way to activate it is by increasing NAD+ avail-

ability. This could be achieved by specifically inhibiting other

NAD+-consuming activities.

Poly(ADP-ribose) polymerase (PARP)-1 is a major cellular

NAD+ consumer (Sims et al., 1981). PARP-1 is activated upon

binding to damaged or abnormal DNA (Durkacz et al., 1980)

and catalyzes the formation of poly(ADP-ribose) polymers

(PAR) onto different acceptor proteins, including PARP-1 itself

(autoPARylation), using NAD+ as substrate (Adamietz, 1987).

PARP-1 activation depletes cellular NAD+ levels, using it to

form PAR (Sims et al., 1981). This led us to test the influence of

PARP-1 on SIRT1 activity and metabolic homeostasis. Our

results show how a reduction/ablation of PARP-1 activity boosts

NAD+ levels and SIRT1 activity, which in turn enhances mito-

chondrial content and function, culminating in a solid protection

against metabolic disease.

RESULTS

PARP-1–/– Mice Are Leaner and Have Increased Energy
Expenditure
Chow-fed PARP-1�/� mice (de Murcia et al., 1997) weighed

less (Figure 1A) and accumulated less fat than PARP-1+/+ litter-

mates upon aging (Figure 1B), despite eating significantly more

(Figure 1C). During indirect calorimetry, PARP-1�/� mice

consumed more O2 (Figure 1D), suggestive of higher energy

expenditure (EE). Resting EE was not different (Figure S1A),

indicating that the increase was due to changes at night,

when mice are active. Accordingly, PARP-1�/� mice were

more active at night (Figure S1B). In addition, the respiratory

quotient was also higher in PARP-1�/� mice during the dark

phase, indicating enhanced glucose oxidation during the

feeding period (Figure 1E). PARP-1�/� mice also maintained

a higher body temperature upon cold exposure (Figure 1F),

were more glucose tolerant (Figure 1G), and had a trend toward

lower fasting blood glucose levels (4.30 ± 0.17 mM in

PARP-1+/+ mice versus 3.98 ± 0.18 mM in PARP-1�/� mice;

p = 0.058), despite similar insulin levels (data not shown). During

euglycemic-hyperinsulinemic clamp, glucose infusion rates or

hepatic glucose production were similar to PARP-1+/+ mice,
ell Metabolism 13, 461–468, April 6, 2011 ª2011 Elsevier Inc. 461
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Figure 1. Phenotyping the PARP-1–/– Mice

(A) Body weight (BW) evolution in PARP-1+/+ and �/� mice (n = 8/9).

(B) Epididymal white adipose tissue mass.

(C) Average food consumption.

(D and E) O2 consumption (D) and respiratory quotient (RQ) (E) of PARP-1+/+ and �/� mice (n = 9/9) determined by indirect calorimetry.

(F) Body temperature after exposure to 4�C (n = 6/5).

(G) Oral glucose tolerance test (OGTT) (n = 5/5) and the area under curve (AUC).

(H) PARP-1 autoPARylation (arrow), analyzed in 100 mg of protein extract from gastrocnemius muscles of 16-week-old mice fed ad libitum or fasted (24 hr).

PARP-1 and tubulin levels were checked using 50 mg of protein extract.

(I) Gastrocnemius from mice on chow diet (CD) or HFD (12 weeks) were analyzed as in (H).

(J) BW evolution in PARP-1+/+ and �/� mice (n = 10/10) fed a CD (circles) or HFD (squares) from 8 weeks of age.

(K and L) OGTT (K) and an insulin tolerance test (L) in HFD-fed PARP-1+/+ and �/� mice at 16 weeks of age (n = 10/10). The AUC of the OGTT is shown on the top

right.

(M–O) BAT from PARP-1+/+ and �/� mice on CD was extracted and mitochondrial biogenesis was analyzed by transmission electron microscopy (M), mRNA

expression of the genes indicated (N), and the abundance of mitochondrial complexes (O) in 25 mg of total protein extracts.

(P) SDH staining of sections from gastrocnemius and soleus of PARP-1+/+ and �/� mice on CD.

(Q andR) Gastrocnemiuswas also used to analyzemRNA levels of the indicated genes (Q) and the abundance ofmitochondrial complexes in 25 mg of total protein

extracts (R). White bars represent PARP-1+/+ mice; black bars represent PARP1�/� mice. Values are expressed as mean ± SEM unless otherwise stated. *

indicates statistical difference versus PARP-1+/+ mice at p < 0.05. For abbreviations, see Table S1.
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but supporting the idea of their better glucose tolerance,

glucose uptake in PARP-1�/� muscle trended up (Figures

S1C–S1E). In line with the lower fat mass and improved glucose

tolerance, serum triglycerides (1.04 ± 0.07 mM in PARP-1+/+

versus 0.84 ± 0.05 mM in PARP-1�/� mice; p = 0.048) and

free fatty acids (FFA) (0.93 ± 0.09 mEq/l in PARP-1+/+ versus

0.72 ± 0.03 mEq/l in PARP-1�/� mice; p = 0.040) were reduced

in PARP-1�/� mice.
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PARP-1 Is Induced by Nutrient Availability
and Contributes to HFD-Induced Diabesity
The metabolic impact of PARP-1 deletion made us evaluate

whether nutrient scarcity (fasting) or overload (HFD) affects

PARP-1 activity. Despite similar PARP-1 protein levels, a 24 hr

fast sharply reduced PARP-1 autoPARylation levels, which

reflect global PARP activity (Adamietz, 1987), suggesting a lower

enzymatic activity (Figure 1H). In contrast, HFD robustly
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increased PARP-1 protein levels and activity (Figure 1I), indi-

cating a positive correlation between PARP-1 activity and

nutrient availability.

As nutrient availability induces PARP-1 activity and PARP-1

deletion prompts a leaner phenotype, we next explored how

PARP-1�/�mice responded to HFD-induced metabolic disease.

PARP-1�/� mice gained less weight after 2 months of HFD

(Figure 1J), due to a lower fat accumulation (Figure S1F). More-

over, PARP-1�/� mice on HFD were more glucose tolerant

(Figure 1K) insulin sensitized (Figure 1L) and had lower serum

FFAs (0.66 ± 0.05 mEq/l versus 0.53 ± 0.03 mEq/l; p = 0.026).

Mitochondrial Activation in Brown Adipose Tissue
and Muscle from PARP-1–/– Mice
The above results suggested improved mitochondrial activity in

key metabolic tissues of PARP-1�/� mice, such as skeletal

muscle and brown adipose tissue (BAT). PARP-1�/� mice had

a relatively higher amount of BAT, with a more intense red

appearance (Figure S1G). Transmission electron microscopy

revealed higher mitochondrial content in PARP-1�/� BAT (Fig-

ure 1M), which was further corroborated by the increased mito-

chondrial DNA content (Figure S1H) and mRNA expression of

genes involved in mitochondrial respiration (Ndufa2, Ndufb2,

Ndufb5, Cyt C, COX17), uncoupling (UCP1, UCP3), fatty acid

oxidation (MCAD), and thyroid hormone activation (Dio2). Mito-

chondrial biogenesis was also evidenced by the higher protein

content of subunits from different respiratory complexes in the

BAT from PARP-1�/� mice (Figure 1O).

Also, PARP-1�/� skeletal muscle had a marked oxidative

profile. Succinate dehydrogenase (SDH) staining (Figure 1P)

and the expression of muscle fiber isotype genes (Trop I,

MHCI) (Figure 1Q) exposed an increase in oxidative fibers with

a high mitochondrial content. As in BAT, the increased mito-

chondrial content was linked to an induction of the mRNA

(Figure 1Q) and protein levels (Figure 1R) of mitochondrial

components. In contrast to BAT and muscle, the expression of

key metabolic genes was not altered in PARP-1�/� livers

(Figure S1I), reflecting a minor role of PARP-1 in the liver, prob-

ably due to its very low expression (Figure S1J).

Higher NAD+ Content and SIRT1 Activity in BAT
and Muscle from PARP-1–/– Mice
ThePARP-1�/�mice phenocopymany features seen after SIRT1

activation (Yu and Auwerx, 2009). As PARP-1 is a major NAD+

consumer (Sims et al., 1981), we speculated that the lack of

PARP-1 activity might increase NAD+ content, in turn activating

SIRT1. Illustrating how PARP-1 drives most PARP activity, the

ablation of PARP-1 reduced PARylation in both BAT and muscle

(Figure 2A). The expression of the other PARP enzymes was not

increased in PARP-1�/�BAT andmuscle (Figures S2A and S2B),

explaining the lack of compensation on PARylation. Confirming

previous studies (Allinson et al., 2003; Fong et al., 2009), terminal

dUTP nick-end labeling indicated that DNA damage was not

increased in PARP-1�/� tissues (data not shown). In line with

the attenuated NAD+-consuming PARP activity, NAD+ content

was robustly increased in PARP-1�/� BAT and muscle

(Figure 2B), while the levels of nicotinamide (NAM), a NAD+-

derived metabolite that inhibits sirtuin activity (Bitterman et al.,

2002), remained unaffected (Figure 2C).
C

We next tested if the increase in NAD+ correlated with SIRT1

activation. Indicative of SIRT1 activation, and supporting the

higher mitochondrial content, PGC-1a acetylation levels in BAT

and muscle of PARP-1�/� mice were reduced by �40% and

�90%, respectively (Figures 2D and 2E). The acetylation of

another SIRT1 target, forkhead box O1 (FOXO1), was also

reduced by �60% in BAT and �40% in muscle (Figures 2D

and 2E), supporting the idea that PARP-1 deficiency leads to

SIRT1 activation. Remarkably, SIRT1 protein was also robustly

induced in PARP-1�/� BAT and muscle (Figures 2D and 2E),

further amplifying SIRT1 activity.

As altered NAD+ levels could also potentially impact other sir-

tuins, we also tested the activity of SIRT2 and SIRT3, which act

as cytoplasmic and mitochondrial sirtuins, respectively. The

acetylation level of tubulin, a SIRT2 target (North et al., 2003),

was not altered in muscle from PARP-1�/� mice (Figure 2F).

Likewise, the acetylation of complex I, a target for SIRT3 (Ahn

et al., 2008), even showed a slight tendency to increase in

PARP-1�/� muscles (Figure 2G). These results indicate that not

all sirtuins are activated in PARP-1�/� tissues.

Reduced PARP-1 Activity in Cellular Models Enhances
Oxidative Metabolism
Next, we knocked down PARP-1 in HEK293T cells to evaluate

whether an acute reduction in PARP-1 activity enhances oxida-

tive metabolism. In these conditions, PARP-1 protein levels were

reduced by�80%, and the low PARP-1 autoPARylation demon-

strated that PARP activity was largely blunted (Figure 3A). The

reduced PARP activity was associated with enhanced NAD+

content and SIRT1 function, as illustrated by decreased

PGC-1a acetylation (Figures 3B and 3C). Importantly, this

happened despite unchanged SIRT1 protein levels (Figure 3C)

or changes in the activity of SIRT2 or SIRT3, as manifested in

tubulin, Ndufa9, or total mitochondrial acetylation levels (Figures

S3A–S3C). The induction of SIRT1 and PGC-1a activity culmi-

nated in a robust increase in mitochondrial DNA content (Fig-

ure 3D), mitochondrial-related gene expression (Figure 3E),

and O2 consumption (Figure 3F). Importantly, most of the meta-

bolic effects elicited by PARP-1 depletion were lost when SIRT1

was simultaneously knocked down (Figures 3D–3F).

In line with the results in HEK293T cells, the expression of

genes involved in mitochondrial function, mitochondrial DNA

content, and O2 consumption were also induced in PARP-1�/�

compared to PARP-1+/+ MEFs (Figures S3D–S3F). Consistent

with our observations in tissues from PARP-1�/� mice, SIRT1

protein was also induced in PARP-1�/� MEFs (Figure S3G).

Pharmacological PARP Inhibition Enhances Oxidative
Metabolism via SIRT1
To test the relation between SIRT1 and PARP-1 activities, we

exposed C2C12 myotubes to H2O2 (500 mM, 6 hr), a well-known

inducer of PARP-1 activity (Schraufstatter et al., 1986). H2O2

treatment vigorously increased PARP-1 (Figure 4A) and global

protein PARylation levels (Figure 4B), as manifested by the

slow migrating bands, in the absence of changes in PARP-1

levels (Figures 4A and 4B). Importantly, SIRT1 was not PARy-

lated in response to H2O2 (Figure 4A), indicating that it is not

a PARylation substrate. As reported (Schraufstatter et al.,

1986), the H2O2-induced increase in PARP-1 activity sharply
ell Metabolism 13, 461–468, April 6, 2011 ª2011 Elsevier Inc. 463
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Figure 2. PARP-1 Deletion Raises NAD+ Levels and Activates SIRT1

(A) Protein PARylation determined by a-PAR staining on formalin-fixed 7 mm BAT and muscle tissue sections of PARP-1+/+ and �/� mice. White bar = 10 mm.

(B and C) NAD+ (B) and NAM (C) levels in BAT and muscle from PARP-1+/+ (white bars) and PARP-1�/� (black bars) mice determined by mass spectrometry.

(D and E) PARP-1, SIRT1, and actin protein content in BAT (D) and muscle (E) were determined by western blot, using 100 mg of protein lysate. PGC-1a and

FOXO1 acetylation were examined by immunoprecipitation.

(F) Tubulin and acetylated-tubulin levels were tested in PARP-1+/+ and �/� gastrocnemius.

(G) The Ndufa9 subunit of mitochondrial complex I was immunoprecipitated from 400 mg of total protein from gastrocnemius, and acetylation levels were analyzed

by western blot. Values are expressed as mean ± SEM unless otherwise stated. * indicates statistical difference versus PARP-1+/+ mice at p < 0.05.
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depleted NAD+ content (Figure 4C), but did not affect SIRT1

protein levels (Figures 4A and 4B). This lower NAD+ availability

limited SIRT1 activity, as reflected in PGC-1a hyperacetylation

(Figure 4D). Interestingly, the inhibition of PARP activity with

PJ34 (Garcia Soriano et al., 2001) rescued the drop in NAD+

and recovered SIRT1 function during H2O2 exposure (Figures

4B–4D). These results indicate that PARP-1 activation restrains

SIRT1 activity and that PARP inhibitors relieve this limitation.

PARP-1 activity is not necessarily linked to DNA damage, and

it has been shown to fluctuate in a circadian fashion (Asher et al.,

2010). Therefore, we wondered whether prolonged PARP inhibi-

tion, even in the absence of DNA damage, would favor NAD+

accumulation and, potentially, SIRT1 activity. Supporting this

premise, PARP inhibition by PJ34 (Figure 4E) or a structurally

unrelated compound, TIQ-A (data not shown), gradually raised

NAD+ levels, becoming significant after 24 hr. At that time,

PARP activity, but not PARP-1 protein levels, was robustly

decreased (Figure 4F). PJ34 increased NAD+ levels dose depen-
464 Cell Metabolism 13, 461–468, April 6, 2011 ª2011 Elsevier Inc.
dently, in correlation with SIRT1 activity, as illustrated by

PGC-1a deacetylation (Figure 4G). Similar effects also happened

in vivo, as treatment of mice with PJ34 (10 mg/kg, b.i.d. for

5 days) blunted basal PARP activity in muscle (Figure 4H), while

increasing NAD+ and SIRT1 activity (Figure 4I). Despite the short

duration of the treatment, serum triglyceride (1.21 ± 0.08 mM

vehicle versus 1.11 ± 0.04 mM PJ34; p = 0.08) and FFA levels

(1.59 ± 0.06 mEq/l vehicle versus 1.44 ± 0.03 mEq/l PJ34; p =

0.03) were reduced in PJ34-treated mice. Of note, while

compounds like resveratrol impact SIRT1 through AMP-acti-

vated protein kinase (AMPK) (Cantó et al., 2010), PJ34 did not

alter AMPK activity, as reflected by the unchanged acetyl-CoA

carboxylase (ACC) phosphorylation in either C2C12 myotubes

(Figure 4J) or gastrocnemius muscle (Figure 4H). PJ34 did not

affect SIRT1 protein levels either (Figures 4H and 4J), but

robustly induced the expression ofmitochondrial and lipid oxida-

tion genes, both in C2C12 myotubes and muscle (Figures 4K

and 4L). Consistent with PGC-1a deacetylation and activation,
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Figure 3. PARP-1 Knockdown Promotes SIRT1 Activity and Oxidative Metabolism

(A–C) HEK293T cells were transfected with either scramble (control) or PARP-1 shRNA and HA-PGC-1a expression vector for 48 hr. Then, PARP-1 protein levels

and autoPARylation (arrowhead) were analyzed in total protein lysates (A). Intracellular NAD+ was measured on total acid extracts (B). PGC-1a acetylation was

analyzed in HA immunoprecipitates (C).

(D–F) HEK293T cells were transfected with either a pool of PARP-1 siRNAs, a pool of SIRT1 siRNAs, or different combinations of both using the corresponding

scramble siRNAs as control (�). The cells were simultaneously transfected with HA-PGC-1a for 48 hr. Then, relative mitochondrial DNA content (D), mRNA levels

of the genes indicated (E), and total O2 consumption (F) were analyzed. Values are expressed as mean ± SEM unless otherwise stated. * indicates statistical

difference versus respective control sh/siRNA-transfected cells at p < 0.05.
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PJ34 promoted the recruitment of PGC-1a to target gene

promoters (e.g., PDK4) (Figure S4A). Finally, the activation of

SIRT1/PGC-1a by PJ34 culminated in higher O2 consumption

rates (Figure 4M), testifying for enhanced oxidative metabolism.

The effect of PJ34 on PGC-1a acetylation in C2C12 myotubes

was blunted upon SIRT1 knockdown (Figure 4J). The role of

SIRT1 in mediating PJ34-induced PGC-1a deacetylation was

further confirmed in SIRT1�/� MEFs, where PJ34 was unable

to decrease PGC-1a acetylation (Figure S4B). In line with

impaired PGC-1a activation, mitochondrial gene expression

and O2 consumption were largely unresponsive to PJ34 upon

SIRT1 depletion in C2C12 cells (Figures 4K and 4M) and in

SIRT1�/� MEFs (Figures S4C and S4D), indicating that SIRT1 is

a key mediator of PJ34 action. However, PJ34 also had SIRT1-

independent effects, as reflected by the persistent increase in

UCP3 mRNA even after the SIRT1 knockdown (Figure 4K). This

could be explained by the fact that PJ34 does not regulate

UCP3 expression by recruitment of PGC-1a to its promoter
C

(Figure S4A). The pharmacological inhibition of PARP recapitu-

lates the phenotypic characteristics of the PARP-1�/� mice

and reveals that these effects are largely mediated by SIRT1.

DISCUSSION

The difficulty of identifying compounds that specifically and

directly bind and activate SIRT1 led us to test whether themodu-

lation of NAD+ availability could be an alternative path to activa-

tion of SIRT1. Our present work supports this concept by

showing how the attenuation of PARP-1, another NAD+-

consuming enzyme, increases intracellular NAD+ levels and

enhances SIRT1 activity. This prompts the deacetylation and

activation of key metabolic transcriptional regulators, such as

PGC-1a and FOXO1, leading to increasedmitochondrial content

and metabolism.

Our data suggest that PARP-1 limits NAD+ availability for

SIRT1 activation. This concept originates from the differences
ell Metabolism 13, 461–468, April 6, 2011 ª2011 Elsevier Inc. 465
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Figure 4. PARP-1 Inhibition Enhances Mitochondrial Function through SIRT1

(A–D) C2C12myotubes expressing FLAG-HA-PGC-1awere treated for 6 hr with either PBS (vehicle [Veh]), H2O2 (500 mM), or H2O2 and PJ34 (1 mM). Then, SIRT1,

PARP-1, and unspecific IgG immunoprecipitates from 500 mg of protein extracts were used to test PARylation and the proteins indicated (A). Proteins were

analyzed in total cell extracts, and the arrow indicates PARP-1 autoPARylation (B). NAD+ content was measured (C), and PGC-1a acetylation was tested in FLAG

immunoprecipitates (D). Tubulin was checked on the supernatants as input.

(E) C2C12 myotubes were treated with PJ34 (1 mM) for the times indicated, and NAD+ levels were evaluated in acidic extracts.

(F and G) C2C12myotubes expressing FLAG-HA-PGC-1awere treated for 24 hr with PBS (Veh) or with PJ34 (1 mM, unless stated otherwise). PARP-1 protein and

autoPARylation (arrow) were determined by western blot (F), and NAD+ content and PGC-1a acetylation were measured (G).

(H and I) Ten-week-old mice received PJ34 (10 mg/kg b.i.d, i.p.) or saline (Veh) for 5 days before sacrifice (n = 10/10); then PARP-1 autoPARylation (arrow),

p-ACC, and SIRT1 levels were determined in 100 mg of total protein extracts from gastrocnemius (H), and NAD+ and PGC-1a acetylation were determined (I).

PGC-1a was immunoprecipitated using 2 mg of protein from gastrocnemius muscle and 5 mg of antibody.

(J and K) C2C12myotubes expressing FLAG-HA-PGC-1a and either a control or a SIRT1 shRNAwere treatedwith PJ34 for 48 hr. Then, PGC-1a acetylation levels

were quantified in FLAG immunoprecipitates (J), and 50 mg of total protein extracts was used to measure the other markers indicated; mRNA levels of selected

genes were quantified (K).

(L) Mice were treated as in (H), and mRNA of selected genes was determined in gastrocnemius.

(M) C2C12 myotubes were treated as in (J), and cellular O2 consumption was measured. White bars represent Veh; black bars represent PJ34 treatment. Values

are expressed as mean ± SEM unless otherwise stated. * indicates statistical difference versus Veh group at p < 0.05. For abbreviations, see Table S1.
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in the KM and kcat/KM of both enzymes for NAD+, which indicate

that PARP-1 is a faster and more efficient NAD+ consumer than

SIRT1 (Knight and Chambers, 2001; Smith et al., 2009). There-

fore, it is likely that PARP-1 activity maintains NAD+ at limiting

levels for SIRT1 function. The prediction that PARP-1 deletion

would increase NAD+ levels and activate SIRT1 is perfectly

matched by our data. While previous work already speculated

on a link between PARP-1 and sirtuin activities (Kolthur-

Seetharam et al., 2006; Pillai et al., 2005), our study expands

the consequences of this link to energy homeostasis. In apparent

discrepancy, one report (Devalaraja-Narashimha and Padani-

lam, 2010) suggested that PARP-1�/� mice could be more
466 Cell Metabolism 13, 461–468, April 6, 2011 ª2011 Elsevier Inc.
susceptible to HFD-induced obesity. However, that study used

mice on an SV129 background, which are less suited for meta-

bolic studies than C57BL/6J mice. The convergent results of

our genetic, physiological, pharmacological, and in vitro studies

clearly support our conclusions.

Results from our lab indicate that the activation of SIRT1 after

a bout of exercise or cold exposure is not linked to decreased

PARP-1 activity (data not shown). Rather, only robust and/or

protracted changes, such as pharmacological (PJ34) or genetic

(knockdown or deletion) PARP-1 inhibition, influence SIRT1

activity. While PARP-1 might not always participate in the phys-

iological modulation of SIRT1 activity, our data suggest that the
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interplay between both proteins could be exploited

pharmacologically.

Our work illustrates the way in which SIRT1 is a key mediator

of the PARP-1-deficient phenotype, but the link between

PARP-1 and SIRT1 activities is still unclear. Several models

used in this work show that reducing PARP-1 activity controls

SIRT1 function, independent of changes in SIRT1 protein levels.

In all these cases, the levels of NAD+, the rate-limiting coenzyme

for SIRT1, correlated with SIRT1 activity, suggesting that NAD+

availability might influence SIRT1 activity. If this were true,

boosting NAD+ content through alternative strategies should

elicit similar metabolic phenotypes to those of the PARP-1�/�

mice. Supporting this notion, deletion of another NAD+

consumer, CD38, also activates SIRT1 (Aksoy et al., 2006),

resulting in protection against HFD-induced obesity (Barbosa

et al., 2007). Nutrient scarcity and AMPK activation also lead

to increased NAD+ levels and SIRT1 activation coupled to the

induction of oxidative metabolism (Cantó et al., 2009, 2010).

This correlative evidence indicates that the increased NAD+

availability might be a key mechanism by which PARP defi-

ciency activates SIRT1. However, we cannot exclude the possi-

bility that PARP inhibition also impacts SIRT1 via other means,

even though our results rule out direct PARylation of SIRT1 as

the mechanism (Figure 4A). In addition, SIRT1 content was

increased in PARP-1�/� tissues and MEFs, further amplifying

SIRT1 activity. The reason for this increase in SIRT1 levels

remains elusive, but is independent of changes in SIRT1

mRNA (P.B., C.C., and J.A., unpublished data).

Of note,PARP-1 depletion affects the activity of SIRT1, but not

that of SIRT2 and SIRT3, which occupy nonnuclear compart-

ments. If increased SIRT1 activity was mainly driven by changes

in NAD+, the unchanged SIRT2 and SIRT3 activities in

PARP-1�/� tissues suggest that the increase in NAD+ is either

not enough to enhance SIRT2 and SIRT3 activities or that it

only happens in specific cellular compartments, supporting an

independent regulation of different subcellular NAD+ pools

(Yang et al., 2007). Alternatively, PARP-1 and SIRT1 activities

might not be linked by changes in NAD+, and some yet unfound

mechanism drives the specificity toward this sirtuin.

Some results indicate that the effects of PARP deficiency

cannot be completely explained by SIRT1 (Figure 4K). Future

research will have to clarify the nature of these SIRT1-indepen-

dent effects of PARP inhibition on metabolism. It will be inter-

esting to explore whether PARylation can directly modulate the

activity of key metabolic transcriptional regulators, as PARP-1

may contribute to nuclear processes other than DNA repair

(Krishnakumar and Kraus, 2010).

PARP inhibitors are currently in clinical development as antitu-

moral drugs (Fong et al., 2009). While our data encourages

a possible utilization of PARP inhibitors as therapeutic agents

to activate SIRT1 and promote oxidativemetabolism, this should

be taken cautiously. PARP-1 has key roles in genomic mainte-

nance, and while neither this nor previous studies (Allinson

et al., 2003) detected enhanced DNA damage in PARP-1�/�

mice under basal conditions, it cannot be ignored that

PARP-1�/� mice are sensitive to ionizing radiation (de Murcia

et al.,1997). Hence, it will be important to analyze the impact of

aging and metabolic disease on DNA damage to establish the

therapeutic potential and limitations of PARP inhibition.
C

EXPERIMENTAL PROCEDURES

Detailed materials and procedures can be found in the Supplemental

Information.

Animal Experiments

Pure C57BL/6J male mice were used for the study. PARP-1+/+ and PARP-1�/�

were described (de Murcia et al., 1997). Mice were housed separately, had ad

libitum access to water and chow (10 kcal% of fat) (SAFE, Augy, France) or

HFD (60 kcal% of fat) (Research Diets, Inc., New Brunswick, NJ), and were

kept in a 12 hr dark/light cycle. Animal experiments were carried out according

to local, national, and EU ethical guidelines. Animals were sacrificed after 6 hr

of fast, and tissues were collected and processed as specified.

NAD+ and NAM Determination

NAD+ levels in cultured cells were determined using an enzymatic method

(EnzyChrom, BioAssays Systems, Hayward, CA), whereas for tissues (Fig-

ure 4), NAD+ and NAM levels were determined as described (Sauve et al.,

2005).

Statistics

All data were verified for normal distribution. Statistical significance was as-

sessed by Student’s t test for independent samples. Values are expressed

as mean ± SEM unless otherwise stated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Supplemental References, four figures, and three tables and can be found

with this article online at doi:10.1016/j.cmet.2011.03.004.
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