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Abstract 

Batten, L.M., The nonexistence of finite linear spaces with v = n* points and b = nz + n+ 2 lines, 

Discrete Mathematics 115 (1993) 11-15. 

We show that any finite linear space on u = n* points and b = n2 + n + 2 lines has nd 4. We also 

describe all such spaces. 

1. Introduction 

In [S], Stinson considered the case of a finite linear space on u points and b lines, 
n2 < u < b = n2 + n + 2, and showed that it was necessarily the case that n G 3. (For n d 3, 
it is easy to compute those linear spaces satisfying the above conditions on u and b.) 

In this article, we consider the missing case o=n’. 
A Jinite linear space is a pair S = (P, L), where P is a finite set of elements, called 

points, and L a set of subsets of P of size at least two, called lines, such that any two 
distinct points p and 4 are in (on) a unique line, denoted by pq. 

The letters u and b denote IPI and 1 LJ, respectively. For any point p and line 1, b(p) 
and u(l) denote the number of lines on p and the number of points on 1. A point on 
r lines and a line on k points are also referred to as an r-point and a k-line. 

A projective plane of order n, n 2 2, is a linear space on n2 + n + 1 points in which 
each line has n+ 1 points. It follows that each point is on n+ 1 lines and b=v. 

An afine plane of order n, n 2 2, is a linear space on n2 points in which each line has 
n points. It follows that each point is on n+ 1 lines and b=n2 +n. 
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A near-pencil is a linear space in which v = b and, for some line, 1, u(l) = v - 1. 
Let S be a linear space, and IZ the unique integer such that n2 < v < (n + 1)‘. 
In the early 1970s de Witte proved, in a manuscript remaining unpublished due to 

his death, that b < n2 + n + 1 if and only if S is a near-pencil or embeds in a projective 
plane of order’ n. This was reproved in 1982 by Stinson [4]. 

In 1983, Stinson considered, as mentioned above, the case b = n2 + n + 2. Since v d b 
in any finite linear space [l], there was only one case not covered by Stinson: v = n2 
and b=n2 +n+2. This is the case we handle in this paper, obtaining the following 
result. 

Theorem 1.1. Let S be a finite linear space with v = n2 points and b = n2 + n + 2 lines, 
n 2 1. Then n < 4 and S is one of the following: 

(i) The unique linear space on 9 points and 14 lines, with intersecting 7-point and 
3-point lines (n = 3). All other lines have just two points. 

(ii) An afine plane of order n = 3 or 4 less one line and all (ifn = 3) or all but one (if 
n = 4) of its points, but with, in addition, three points at infinity joined by 2-lines, no point 
at infinity corresponding to the missing line zf n = 4. 

(iii) The unique linear space on 9 points and 14 lines, with a single 3-point on two 
4-lines and one 3-line, and with precisely three 5points, one on each line on the 3-point, 
joined to each other by 2-point lines; all other points are 4-points (n = 3). 

(iv) The unique linear space on 16 points and 22 lines, with a single 4-point on three 
5lines and one 4-line, and with precisely three 6-points, one on each 5line, joined to each 
other by 2-point lines; all other points are 5-points (n=4). 

2. Results used 

We shall use the results listed below. 

Theorem 2.1 (de Witte [2] or Stinson [4]). Let S be a finite linear space, not 
a near-pencil, on n2 G v < (n + 1)2 points. Then S embeds in a projective plane of order n tf 
and only zfb<n2+n+1. 

Theorem 2.2 ,(Metsch [3]). Let S be a finite linear space in which b < v + b(p) - 2 for 
some point p. Then one of the following cases occurs: 

(a) S is a projective plane of order b(p)- 1 less b-v points, and p is any point. 
(b) S is a near-pencil. 
(c) S is a projective plane or a near-pencil with one additional point p added to some 

line, and the necessary 2-point lines added. 
(d) S is an afine plane of order b(p) - 1 with one ‘point at in$nity’, p not the point at 

infinity. 
(e) S is an ‘s-fold injlated projective plane of order n’, some 1 Q s < n. (See [3] for the 

definition.) 
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Lemma 2.1. 1, u(l)(u(l)- 1) = U(D- 1). 

This is an easy counting argument, taking pairs of points in two ways. 

Lemma 2.2. Cpb(p)(b(p)- l)<b(b- 1). 

This also is easy, counting line pairs in two ways. 

3. Proof of Theorem 1.1. 

If for some point p, b-u < b(p)-2, then n +4< b(p). We apply Mets&’ theorem 
(Theorem 2.2). In cases (a) and (b), the numbers of points and lines are the same, which 
is not our situation. The parameters of case (c) do not match ours except for n = 3, 
which yields (i) of Theorem 1.1. In case (d), S has both a square, and one plus a square, 
number of points. This is not possible. Case (e) yields (ii) of Theorem 1.1. 

So, suppose that, for all points p, b(p)<n + 3.Then also u(l)< n+ 3 for all lines 1. 
If, for some point p, b(p) d n - 2, then u <(n - 2) (n + 2) + 1 = n2 - 3, a contradiction. So, 
we may assume n - 1 <b(p) < n + 3 for all p. 

Suppose there is an (n- 1)-point p. Then for all lines 1 not on p, u(l)<n- 1. Using 
Lemma 2.1, we get 

(n-l)(n+3)(n+2)+(n2+3)(n-l)(n-2)>n2(n2-l), 

yielding n <4. The cases n = 1,2,3 are not possible. If n = 4, v = 16, b =22, there is 
a unique 3-point p, u(l)<7 for all lines 1 and 4~ b(q)<7 for all points q#p. Let Ii, 
1 <i < 3, be the lines on p. There are three possibilities here for {U(li)}. They are (4,7}, 

{5,6,7}, (6). L t e a and c be the number of 2-lines and of 3-lines, respectively. So, 
a+c= 19. By Lemma 2.1, 

The first two possibilities for {u(li)} lead to the contradiction 4 138. The third case 
yields c = 28, which is too large. Thus, n = 4 cannot hold. 

Hence, n < b(p) d n + 3 for all points p. 

Let 1 be an (n + 3)-line. Counting lines meeting 1 yields b >(n + 3)(n- 1) + 1 = 

n2 + 2n - 2 and, so, n d 4. The cases n = 1,2 are trivially excluded, and n = 3 is quickly 
seen to be impossible. If n = 4, each line meets 1, and each point of 1 is a 4-point. It 
follows that every line other than 1 is a 4-line. But any point off I is a 7-point, and 
counting u at such a point gives a contradiction. 

Let 1 be an (n + 2)-line. If each point of 1 has B n + 1 lines on it, then b b (n + 2)n + 1, 
a contradiction. In fact, this counting argument shows that 1 has at least two n-points 
for n > 3. Clearly, n cannot be 2. So, let p and q be distinct n-points of 1. If some line # 1 

on p has > n points, we contradict q an n-point. Thus, u d n + 2 + (n - 1)2 = n2 - n + 3, 
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implying n= 3, v= 9, b = 14 and precisely two points of 1 are 3-points. This is not 
possible. So, (n+2)-lines do not exist. 

Suppose p is an n-point. Counting v at p, we see that p is on n- 1 (n+ 1)-lines and 
1 n-line. The cases n = 1,2 are not possible, and, if n > 3, p is unique. At least n2 + n lines 
meet an (n+ 1)-line and it follows that (n+2)- or (n+3)-points exist. Let x be such 
a point, and let 1 be an (n + 1)-line missing x. So, there is a line h on x missing I, and no 
point of h is an n- or (n+ 1)-point. 

If 1 h( 2 3, then h meets an (n + 1)-line 1’ in a point y, say, and each point of h\(y) is on 
a line missing 1’. Counting lines meeting and missing 1’ yields b 2 n2 + n + 3, a contra- 
diction. So, 1 h) = 2. Set h = {x, y} and now suppose that x is on an (n + 1)-line 1. There is 
a line h’ on y missing 1. Arguing as above, h’= {y, z} for some point z. Similarly, 
v(xz) = 2. So, the non-n- or non-@ + 1)-points form a triangle of just three points, and, 
counting b, each must be an (n + 2)-point and n = 3 or 4. Then S must be as in (iii) or 
(iv) of Theorem 1.1. 

We may now assume that n + 1 i b@)<n + 3 and v(l)<n + 1 for all points p and 
lines 1. 

Also, by Lemma 2.1, (n + 1)-lines exist. Let 1 be an (n + l)-line. At least n2 + n + 1 lines 
meet it; so, either there is a single (n + 2)-point in S and it is on 1, or there is a single line 
h of (n + 2)-points missing 1. (In either case, (n + 3)-points do not exist.) 

Suppose x is a unique (n + 2)-point and x E 1. If there is an (n + I)-line not on x, then 
there is a line of (n + 2)-points through x missing 1, a contradiction. So, all (n + I)-lines 
are on x. Let p be a point on no (n+ l)-line. Then p is on n+ 1 n-lines and, so, in 
particular, px is an n-line. Hence, all lines on x are n- or (n+ 1)-lines. Counting v at 
x now yields a contradiction. 

So, suppose that a line h of (n+2)-points misses 1, and all other points are 
(n + 1)-points. We may then assume that h misses all (n + l)-lines. Counting v at a point 
of h, we see that any point of h is on at least three n-lines. Considering an n-line 
meeting h, and counting b, we have Ih) <n/2 + 1. If some point of h is on a 2-line 
different from h, then n/2 + 2 + n(n - 1) > v implies n < 4. The cases n = 1,2 are trivially 
excluded. The case n = 3 leads to (ii) of Theorem 1.1. If n = 4, then (h) = 2 or 3. Consider 
first the case h= {x, y, z> and lxpl=2. Then p is on two .5-lines. Label these 
(p, 1, 2, 3,4) and (p, 5, 6, 7, S}. The remaining lines on x may be labelled (x, 1, 5, 121, 

{x, 2,6, 111, {x, 3,7, 101, (x, 4, 8391. S ince py and pz must be 4-lines, we may label 
these {p, 9, 10, y} {p, 11, 12, z}. The lines joining y to 11 and 12 must be 4-point lines. 
There are essentially three different situations: 

(i) 11 E ly, 12 E 2y. Consider lines on 9. We must have 3,5 E 911 and 3,6 E 912, 
a contradiction. 

(ii) 11 E ly, 12 E 3y. Consider lines on 9 and 10. We must have 3,5 E 911 and 
4,5 E 1011, a contradiction. 

(iii) 11 E 3y, 12 E 4~. It follows after some computation that the following sets must 
be lines: {y, 12,4, 6}, (10, 12, 2, 8}, (10, 11, 5,4}, {y, 11, 3, S>, (9, 11, 1, 7}, (9, 12, 3,6}, 
{z, 9,2, 5}, {z, 10, 1, 6}, {y, 2, 71, {y, 1, S}. Now z and 3 must be on a line with 5,6, or 8, 
which is not possible. 
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So, consider the case n = 4 and 1 h( = 2; h= {x, y} and xp a 2-line. There are two 
subcases: (a) p is on three 5-lines and 1 py I= 3; (b) p is on two 5-lines and two 4-lines. 

In case (a), let q be the third point on py. Then each line on q meets each of the 
5-lines and, so, q is on four 4-lines. But q is also on distinct lines qp and qx, 

a contradiction to b(q) = 5. 

In case (b), let q and z be the other two points on py, and let 1 be the 4-line on 
p distinct from py. Then xy misses 1 and, so, one of xq, xz meets 1, say xq. But then xq 

also meets the 5-lines on p and, so, is itself a 5-line, a contradiction. 
We may henceforth assume that no point of h is on a 2-line different from h. 
We prove now, by induction on 2 d ) hi <n/2 + 1, that S\h embeds in a projective 

plane of order n. 

1 hi =2. Delete one point of h. The induced linear space has n2 - 1 points and 
n2 + n + 1 lines. In addition, it contains n-lines. Use one n-line to induce a spread and 
to introduce a new point, but no new line. By de Witte’s theorem (Theorem 2.1), this 
new structure, and hence S\h, embeds in a projective plane of order n. 

2 < 1 h ( Q n/2 + 1. Suppose some n-line 1 misses h. Then each point of S is on a unique 
line, other than h, missing 1. Since (n + 1)-lines exist, there are n + 1 such lines, and we 
introduce a new (n + 1)-point while at the same time deleting a point of h. The number 
of lines in the new structure remains at n2 +n+2. A counting argument (relative to 
lines) shows that no (n+ 1)-line in the new system meets h less its point. Hence, by 
induction, S\h embeds in a projective plane of order n. 

So, suppose all n-lines meet h. If all n-lines meet each other, a given n-line 1 induces 
a partition of S\h into n+ 1 point sets, giving 

o-lhI<(n+l)(n-2)+n+l-2(lhI-l), 

yielding a contradiction. So, there exist disjoint n-lines 1 and I’. Two such n-lines 
induce a partition of S\h comprising precisely n + 1 lines. However, each of 1, I’ meets 
precisely n2 + 2 lines and together they meet n2 lines. So, precisely n - 2 lines miss both. 
Now any line missing 1 or 1’ is in the partition, while along with lines of the partition 
meeting 1 or 1’ at h, there are, therefore, n+2 lines in the partition, a contradiction. 

This completes the inductive proof. 
The linear space S’=S\h has b’=n2+n+1 lines and v’=n2-lhl points. An (n+2)- 

point of h, therefore, corresponds to a partition of n+ 1 lines in S’. Since S’ contains n2 + 

n + 1 lines, any two such partitions are already on a common line and, so, S does not exist. 
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