On Meromorphically Normal Families of Meromorphic Mappings of Several Complex Variables into $P^N(C)$

Zhen-han Tu

Department of Mathematics, Huazhong University of Science and Technology,
Wuhan, Hubei 430074, People's Republic of China
E-mail: tuzhenhan@yahoo.com

Submitted by William F. Ames

Received December 1, 1998

We shall prove some meromorphic normality criteria for families of meromorphic mappings of several complex variables into $P^N(C)$, the complex N-dimensional projective space, related to Nochka's Picard type theorems. Some related results e.g., extension theorems, improved normality criteria, and quasi-normality criteria will be obtained also. The technique in this paper mainly depends on Stoll's normality criteria for families of non-negative divisors on a domain of C^n.

Key Words: complex projective spaces, extension theorems, hyperplanes in general position, meromorphic mappings, non-negative divisors, normal families, Picard type theorems.

1. INTRODUCTION

Montel [13] defined the notion of a quasi-normal family of meromorphic functions in one complex variable and obtained several results related to this notion. Afterwards, Rutishauser [16] generalized some of them to the case of meromorphic functions in several complex variables. By definition, a quasi-normal family of meromorphic functions on a domain D in C^n is a family F such that any sequence in F has a compactly convergent subsequence outside a nowhere dense analytic subset of D. Fujimoto [7] introduced the notion of a meromorphically normal family of meromorphic mappings into $P^N(C)$, the N-dimensional complex projective space, which improves the notion of quasi-normal family in [16], and gave some
sufficient conditions for a family of meromorphic mappings of a domain D in C^n into $P^N(C)$ to be meromorphically normal.

By using the technique from [2], recently the author [18, 19] got some normality criteria for families of holomorphic mappings of several complex variables into $P^N(C)$. Inspired by the idea in [18, 19], we shall give some meromorphic normality criteria for families of meromorphic mappings in several complex variables into $P^N(C)$ related to Nochka’s Picard type theorem. Many examples will be given to complement our theory.

2. STATEMENT OF MAIN RESULTS

For the general reference of this paper, see [4, 7, 15, 19].

Let A be a non-empty open subset of a domain D in C^n such that $S = D - A$ is an analytic set in D. Let $f: A \to P^N(C)$ be a holomorphic mapping. Let U be a non-empty connected open subset of D. A holomorphic mapping f from U into C is said to be a representation of f on some neighborhood of z in D.

Define the polydisc

$$\Delta_n := \Delta_n(z_0, r) = \{ (z_1, \ldots, z_n) \in C^n; |z_i - z_i^0| < r, i = 1, \ldots, n \}$$

for $z_0 = (z_1^0, \ldots, z_n^0) \in C^n$ and $r = (r_1, \ldots, r_n)$ with $r_i > 0 (i = 1, \ldots, n)$. Let f be a meromorphic mapping from $\Delta_n(z_0, r)$ into $P^N(C)$. Then f always has a representation $f(z) = (f_1(z), \ldots, f_{n+1}(z))$ on $\Delta_n(z_0, r)$ with

$$\dim \{ z \in \Delta_n(z_0, r); f_1(z) = \ldots = f_{n+1}(z) = 0 \} \leq n - 2.$$

A representation of f satisfying this condition is called a reduced representation of f on $\Delta_n(z_0, r)$.

Let f be a meromorphic mapping of a domain D in C^n into $P^N(C)$. Then for any $z \in D$, f always has a reduced representation on some neighborhood of z in D. We denote by $I(f)$ the set of all points of indetermination of f on D. Then $I(f)$ is an analytic set in D with $\dim I(f) \leq n - 2$. Obviously a meromorphic mapping from D into $P^N(C)$ is a holomorphic mapping from D into $P^N(C)$ if and only if $I(f) = \emptyset$.

DEFINITION 1. Let F be a family of holomorphic mappings of a domain D in C^n into a compact complex manifold M. F is said to be a normal family on D if any sequence in F contains a subsequence which converges
uniformly on compact subsets of D to a holomorphic mapping of D into M.

Definition 2. A sequence $\{f^{(p)}(z)\}$ of meromorphic mappings from a domain D in \mathbb{C}^n into $P^N(\mathbb{C})$ is said to **meromorphically converge** on D to a meromorphic mapping $f(z)$ if and only if, for any $z \in D$, each $f^{(p)}(z)$ has a reduced representation

$$\tilde{f}^{(p)}(z) = (f^{(p)}_1(z), \ldots, f^{(p)}_{N+1}(z))$$

on some fixed neighborhood U of z such that $(f^{(p)}_i(z))_{p=1}^\infty$ converges uniformly on compact subsets of U to a holomorphic function $f_i(z)$ $(i = 1, \ldots, N+1)$ on U with the property that

$$\tilde{f}(z) := (f_1(z), \ldots, f_{N+1}(z))$$

is a representation of $f(z)$ on U, where $f_{i_0}(z) \neq 0$ on U for some i_0.

For a detailed discussion on meromorphic convergence, see [7].

Definition 3. Let F be a family of meromorphic mappings of a domain D in \mathbb{C}^n into $P^N(\mathbb{C})$. F is said to be a **meromorphically normal family** on D if any sequence in F has a meromorphically convergent subsequence on D.

Definition 4. A sequence $\{f^{(p)}(z)\}$ of meromorphic mappings from a domain D in \mathbb{C}^n into $P^N(\mathbb{C})$ is said to be **quasi-regular** on D if and only if any $z \in D$ has a neighborhood U with the property that $\{f^{(p)}(z)\}$ converges compactly on U outside a nowhere dense analytic subset S of U; i.e., for any domain $G \subset U - S$ (the closure \overline{G} of G is a compact subset of $U - S$), there is some p_0 such that $\Delta(f^{(p)}) \cap G = \emptyset$ $(p \geq p_0)$ and $\{f^{(p)}|G; p \geq p_0\}$ converges uniformly on G to a holomorphic mapping of G into $P^N(\mathbb{C})$.

Remark. Obviously a meromorphically convergent sequence on D is always a quasi-regular sequence on D. But a quasi-regular sequence on D need not imply meromorphic convergence on D (see [7, (3.4)]).

Definition 5. Let F be a family of meromorphic mappings of a domain D in \mathbb{C}^n into $P^N(\mathbb{C})$. F is said to be a **quasi-normal family** on D if any sequence in F has a subsequence so as to be quasi-regular on D.

Let $f(z) \neq 0$ be a holomorphic function on the connected open neighborhood D of $a \in \mathbb{C}^n$. Then $f(z) = \sum_{m=0}^\infty p_m(z - a)$, where the series converges uniformly to f on an open neighborhood of $a \in \mathbb{C}^n$ and the term p_m is either identically zero or a homogeneous polynomial of degree m. The number $\mu_f(a) := \min\{m; p_m \neq 0\}$ is said to be the zero-multiplicity of f at a. By definition, a non-negative divisor on a domain D in \mathbb{C}^n is
a non-negative integer-valued function ν on D such that for every $a \in D$ there exists a holomorphic function $f(z) \neq 0$ on a neighborhood U of a with $\nu(z) = \nu_f(z)$ on U. Furthermore we define the support $\text{supp } \nu$ of the divisor ν on D by $\text{supp } \nu := \{z \in D; \nu(z) \neq 0\}$.

Let X be an analytic subset of a domain D in C^n and denote by $\text{Reg}(X)$ the set of all regular points of X. Let $\text{Reg}(X) = \bigcup_{\lambda \in \Lambda} X_\lambda$ be the decomposition of $\text{Reg}(X)$ into connected components. Then X_λ are locally closed complex submanifolds of D, the closures \overline{X}_λ are irreducible analytic subsets of D, and $X = \bigcup_{\lambda \in \Lambda} \overline{X}_\lambda$ is the irreducible decomposition of X. An irreducible analytic subset of D is of pure dimension and the irreducible decomposition is unique (see [15, p. 141, 4, p. 124] for references).

Let ν be a non-negative divisor on a domain D in C^n. Then $\text{supp } \nu$ is either empty or an analytic subset of pure dimension $n-1$ in D. Rewrite ν as the formal sum $\nu = \sum_{\lambda \in \Lambda} n_\lambda X_\lambda$, where X_λ are the irreducible components of $\text{supp } \nu$ and n_λ is $\nu(z)$ on $X_\lambda \cap \text{Reg}(\text{supp } \nu)$. ($\nu(z)$ is constant on $X_\lambda \cap \text{Reg}(\text{supp } \nu)$). We define $\sum_{\lambda \in \Lambda} \nu(X_\lambda \cap E)$ as the $(2n-1)$-dimensional Lebesgue area of $\nu \cap E$ regardless of multiplicities for any compact set $E \subset D$ and define $\sum_{\lambda \in \Lambda} n_\lambda \nu(X_\lambda \cap E)$ as the $(2n-1)$-dimensional Lebesgue area of $\nu \cap E$ with counting multiplicities for any compact set $E \subset D$, where $\nu(X_\lambda \cap E)$ is the $(2n-1)$-dimensional Lebesgue area of $X_\lambda \cap E$.

A subset H of $P^N(C)$ is called a hyperplane if there is a N-dimensional linear subspace \tilde{H} of C^{N+1} with $\rho(\tilde{H} - \{0\}) = H$. If we write $(C^{N+1})^*$ for the dual space of C^{N+1}, then there is a $\alpha \in (C^{N+1})^* - \{0\}$ such that $\tilde{H} = \{\alpha = 0\} := \{x \in C^{N+1}; \alpha(x) = 0\}$. Let B^* be the set of Euclidean unit vectors of $(C^{N+1})^*$. Then $\alpha, \beta \in B^*$ satisfy $\tilde{H} = \{\alpha = 0\} = \{\beta = 0\}$ if and only if $\alpha = c \beta$ with $c \in C$ and $|c| = 1$. Let H_1, \ldots, H_{N+1} be hyperplanes in $P^N(C)$ and let $\alpha_i = (\alpha_i^{(i)}, \ldots, \alpha_i^{(N+1)}) \in B^*$ with $H_i = \{\alpha_i = 0\}$ $(i = 1, \ldots, N+1)$. Define

$$
D(H_1, \ldots, H_{N+1}) := \det \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_{N+1}
\end{pmatrix},
$$

which is determined independently of a choice of $\alpha_i \in B^*$ with $H_i = \{\alpha_i = 0\}$ $(i = 1, \ldots, N+1)$. When $N = 1$, $D(a, b)$ is just the spherical distance between a and b in $P(C) = C \cup \{\infty\}$.

Definition 6. Let H_1, \ldots, H_q $(q \geq N + 1)$ be hyperplanes in $P^N(C)$. Define

$$
D(H_1, \ldots, H_q) := \prod D(H_1, \ldots, H_{N+1}),
$$
where the product \prod is taken over all $\{i_1, \ldots, i_{N+1}\}$ with $1 \leq i_1 < i_2 < \cdots < i_{N+1} \leq q$. We say that the hyperplane family H_1, \ldots, H_q ($q \geq N + 1$) in $\mathbb{P}^N(\mathbb{C})$ is located in general position if $D(H_1, \ldots, H_q) > 0$.

Let f be a meromorphic mapping from a domain D in \mathbb{C}^n into $\mathbb{P}^N(\mathbb{C})$. Take a hyperplane H in $\mathbb{P}^N(\mathbb{C})$ defined by

$$\tilde{H} := \{(z_1, \ldots, z_{N+1}) \in \mathbb{C}^{N+1}; a_1z_1 + \cdots + a_{N+1}z_{N+1} = 0\}.$$

For $a \in D$, taking a reduced representation

$$\tilde{f}(z) = (f_1(z), \ldots, f_{N+1}(z))$$

on a neighborhood U of a, we consider the holomorphic function

$$F(z) := a_1f_1(z) + \cdots + a_{N+1}f_{N+1}(z).$$

Then the divisor $\nu(f, H)(z) := \nu_f(z)$ ($z \in U$) is determined independently of a choice of reduced representations and hence is well defined on the totality of D and obviously $\text{Supp} \nu(f, H)$ is either empty or a pure $(n - 1)$-dimensional analytic set in D if $f(D) \not\subset H$ (i.e., $F(z) \neq 0$ on U). We define $\nu(f, H) := \infty$ on D and $\text{Supp} \nu(f, H) = D$ if $f(D) \subset H$. Sometimes we identify $f^{-1}(H)$ with the divisor $\nu(f, H)$ on D. Rewrite $\nu(f, H)$ as the formal sum $\nu(f, H) = \sum_{\lambda \in \Lambda} \lambda X_{\lambda}$, where X_{λ} are the irreducible components on $\text{Supp} \nu(f, H)$ and n_{λ} are the constant $\nu(f, H)(z)$ on $X_{\lambda} \cap \text{Reg}(\text{Supp} \nu(f, H))$. For any positive integer or infinite m, the closure

$$\{z \in \text{Supp} \nu(f, H); \nu(f, H)(z) < m\} = \bigcup_{\lambda: n_{\lambda} < m} X_{\lambda}$$

is either empty or a pure $(n - 1)$-dimensional analytic set in D and the $2(n - 1)$-dimensional Lebesque areas of the two sets

$$\{z \in \text{Supp} \nu(f, H); \nu(f, H)(z) < m\}$$

and

$$\{z \in \text{Supp} \nu(f, H); \nu(f, H)(z) < m\}$$

coincide. This concept is important in proving Theorems 1 and 4.

We note that $I(f) \subset \text{Supp} \nu(f, H)$ always holds for any hyperplane H in $\mathbb{P}^N(\mathbb{C})$ and $I(f) = \emptyset$ if $f(D) \cap H = \emptyset$ for some hyperplane H in $\mathbb{P}^N(\mathbb{C})$.

We say that a meromorphic mapping f intersects H with multiplicity at least m on D if $f(D) \subset H$, $f(D) \cap H \neq \emptyset$, and $\nu(f, H)(z) \geq m$ for all $z \in \text{Supp} \nu(f, H)$ and that f intersects H with multiplicity ∞ on D if $f(D) \subset H$ or $f(D) \cap H = \emptyset$.
Recently, by using the technique from [2], the author [18, 19] gave the following result related to the Picard type theorem given by Nochka [14].

THEOREM A. Let F be a family of holomorphic mappings of a domain D in C^n into $P^N(C)$. Suppose that for each $f \in F$, there exist $q \geq 2N + 1$ hyperplanes $H_1(f), \ldots, H_q(f)$ (which may depend on f) in $P^N(C)$ such that f intersects $H_j(f)$ with multiplicity at least m_j ($j = 1, \ldots, q$), where m_j ($j = 1, \ldots, q$) are fixed positive integers and may be infinite, with

$$\sum_{j=1}^{q} \frac{1}{m_j} < \frac{q - (N + 1)}{N}$$

and

$$\inf \{ D(H_1(f), \ldots, H_q(f)) ; f \in F \} > 0.$$

Then F is a normal family on D.

Fujimoto [7] introduced the notion of meromorphic convergence and gave the following result.

THEOREM B. Let F be a family of meromorphic mappings of a domain D in C^n into $P^N(C)$ and let H_i ($i = 1, \ldots, 2N + 1$) be $2N + 1$ hyperplanes in $P^N(C)$ located in general position such that for each $f \in F$, $f(D) \not\subset H_i$ ($i = 1, \ldots, 2N + 1$) and for any fixed compact subset K of D, the $2(n - 1)$-dimensional Lebesque areas of $f^{-1}(H_i) \cap K$ ($i = 1, \ldots, 2N + 1$) with counting multiplicities for all f in F are bounded above. Then F is a meromorphically normal family on D.

In this paper, we shall give the following improvement of Theorem B related to Theorem A.

THEOREM 1. Let F be a family of meromorphic mappings of a domain D in C^n into $P^N(C)$. Suppose that for each $f \in F$, there exist $q \geq 2N + 1$ hyperplanes $H_1(f), \ldots, H_q(f)$ (which may depend on f) in $P^N(C)$ with

$$\inf \{ D(H_1(f), \ldots, H_q(f)) ; f \in F \} > 0$$

and

$$f(D) \not\subset H_i(f) \quad (i = 1, \ldots, N + 1)$$

such that the following two conditions are satisfied.

1. For any fixed compact subset K of D, the $2(n - 1)$-dimensional Lebesque areas of $f^{-1}(H_i(f)) \cap K$ ($i = 1, \ldots, N + 1$) with counting multiplicities for all f in F are bounded above.
2. There exists a nowhere dense analytic set S in D such that for any fixed compact subset K of $D - S$, the $2(n - 1)$-dimensional Lebesgue areas of
\[
\{ z \in \text{supp } \nu(f, H_j(f)); \nu(f, H_j(f))(z) < m_j \} \cap K
\]
\[(j = N + 2, \ldots, q),
\]
regardless of multiplicities for all f in F, are bounded above, where $\{m_j\}_{j=N+2}^q$ are fixed positive integers and may be ∞ with $\sum_{j=N+2}^q (1/m_j) < \frac{2 - (N + 1)}{N}$.

Then F is a meromorphically normal family on D.

Remark. If $f(D) \subset H$, then $\nu(f, H)(z) = \infty$ on D and hence $\{ z \in D; \nu(f, H)(z) < \infty \} = \emptyset$ in condition 2 of Theorem 1.

We shall derive the following conclusion from Theorem 1.

Corollary 2. Let F be a family of holomorphic mappings of a domain D in \mathbb{C}^n into $\mathbb{P}^N(\mathbb{C})$. Suppose that for each $f \in F$, there exist $q \geq 2N + 1$ hyperplanes $H_1(f), \ldots, H_q(f)$ (which may depend on f) in $\mathbb{P}^N(\mathbb{C})$ with
\[
\inf \{ D(H_1(f), \ldots, H_q(f)); f \in F \} > 0
\]
such that the following two conditions are satisfied.

1. $f(D) \cap H_i(f) = \emptyset$ $(i = 1, \ldots, N + 1)$ for any f in F.
2. There exists a nowhere dense analytic set S in D such that for any fixed compact subset K of $D - S$, the $2(n - 1)$-dimensional Lebesgue areas of
\[
\{ z \in \text{supp } \nu(f, H_j(f)); \nu(f, H_j(f))(z) < m_j \} \cap K
\]
\[(j = N + 2, \ldots, q),
\]
regardless of multiplicities for all f in F, are bounded above, where $\{m_j\}_{j=N+2}^q$ are fixed positive integers and may be ∞ with $\sum_{j=N+2}^q (1/m_j) < \frac{2 - (N + 1)}{N}$.

Then F is a normal family on D.

Remark. A weakened version of Corollary 2 was announced in [18].

In order to obtain an insight into the version of Theorem A for meromorphic mappings, we shall prove the following extension theorem related to Nochka's Picard theorem.

Theorem 3. Let S be an analytic subset of a domain D in \mathbb{C}^n with $\dim S \leq n - 2$. Let f be a holomorphic mapping from $D - S$ into $\mathbb{P}^N(\mathbb{C})$. If there exist $q \geq 2N + 1$ hyperplanes H_1, \ldots, H_q in $\mathbb{P}^N(\mathbb{C})$ in general position such that f intersects H_j with multiplicity at least m_j $(j = 1, \ldots, q)$ on $D - S$,
where \(m_j (j = 1, \ldots, q) \) are positive integers and may be \(\infty \), with \(\sum_{j=1}^{q} \frac{1}{m_j} < \frac{2-(N+1)}{N} \), then the holomorphic mapping \(f \) from \(D - S \) into \(\mathbb{P}^N(\mathbb{C}) \) extends to a holomorphic mapping from \(D \) into \(\mathbb{P}^N(\mathbb{C}) \).

Theorem 3 will play a key role in proving the following result.

THEOREM 4. Let \(F \) be a family of meromorphic mappings of a domain \(D \) in \(\mathbb{C}^n \) into \(\mathbb{P}^N(\mathbb{C}) \). Suppose that for each \(f \in F \), there exist \(q \geq 2N + 1 \) hyperplanes \(H_1(f), \ldots, H_q(f) \) (which may depend on \(f \)) in \(\mathbb{P}^N(\mathbb{C}) \) with

\[
\inf \{ D(H_1(f), \ldots, H_q(f)); \ f \in F \} > 0
\]

such that for any fixed compact subset \(K \) of \(D \), the \(2(n-1) \)-dimensional Lebesque areas of

\[
\{ z \in \text{supp} \nu(f, H_j(f)); \nu(f, H_j(f))(z) < m_j \} \cap K \quad (j = 1, \ldots, q),
\]

regardless of multiplicities for all \(f \) in \(F \), are bounded above, where \(\{ m_j \}_{j=1}^{q} \) are fixed positive integers and may be \(\infty \) with \(\sum_{j=1}^{q} \frac{1}{m_j} < \frac{2-(N+1)}{N} \). Then \(F \) is a quasi-normal family on \(D \).

Theorem 4 greatly improves [16, Theorem 18]; cf. [7, Theorem 8.1].

3. SOME EXAMPLES

Here we give some examples to complement our theory in this paper.

EXAMPLE 1. Let \(D = \{ z \in \mathbb{C}; |z| < 1 \} \) and \(f_n(z) = nz \ (z \in D) \). Then \(\{ f_n(z) \} \) is normal on \(D \). Since \(f_n(z) \) has a reduced representation \(f_n(z) = (z, \bar{z}) \ (n = 1, 2, \ldots) \), \(\{ f_n \} \) is meromorphically normal on \(D \). Obviously \(\{ f_n \} \) satisfies the assumption of Theorem 1. Hence the assumption of Theorem 1 need not imply that \(F \) is normal on \(D \) even if \(F \) is a family of holomorphic mappings of \(D \) into \(\mathbb{P}^N(\mathbb{C}) \).

EXAMPLE 2. Let \(f_n(z) = (nz)^n \) be defined on \(D = \{ z \in \mathbb{C}; |z| < 1 \} \). Then \(\{ f_n(z) \} \) is not meromorphically normal on \(D \) but \(\{ f_n(z) \} \) is quasi-normal on \(D \) (see [7, p. 28] for references). For any compact subset \(K \) of \(D \), the numbers of points of \(f_n^{-1}(1) \cap K \) for all \(n \in \mathbb{N} \) are bounded above. Since \(\text{supp} f_n^{-1}(\infty) = \emptyset \) and \(\text{supp} f_n^{-1}(0) = \{ 0 \} \), the multiplicities required in condition 1 of Theorem 1 cannot be removed.

EXAMPLE 3. Let \(f_n(z) = e^{nz} \) be defined on \(D = \{ z \in \mathbb{C}; |z| < 1 \} \). Since \(\{ f_n \} \) has no subsequence which is convergent at any point in the subset \(\{ z = y\sqrt{-1}; 0 < y < 1 \} \) of \(D \), \(\{ f_n \} \) is not quasi-normal on \(D \) and hence \(\{ f_n \} \) is not meromorphically normal on \(D \). Obviously \(f_n^{-1}(0) = f_n^{-1}(\infty) = \emptyset \).
Then \(\{f_n\} \) satisfies condition 1 but does not satisfy condition 2 in the assumption of Theorem 1.

Example 4. Let \(\{f_n(z)\}_{n=1}^\infty \) be a sequence of holomorphic mappings of \(D := \{z \in \mathbb{C}; |z| < 1\} \) into \(\mathbb{P}^N(\mathbb{C}) \) which have reduced representations

\[
\tilde{f}_n(z) := (z, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}) \quad (n = 1, 2, \ldots)
\]

Then \(\{f_n(z)\} \) is only meromorphically convergent on \(D \) but is not normal on \(D \). Obviously \(f_n(z) \) intersects any a hyperplane \(H \) in \(\mathbb{P}^N(\mathbb{C}) \) with at most a point in \(D \) and has \(N \) exceptional hyperplanes \(H_i = \rho(\tilde{H}_i - \{0\}) \) where \(\tilde{H}_i := \{(z_0, z_1, \ldots, z_N) \in C^{N+1}; z_i = 0 \} \) \((i = 1, \ldots, N) \). Then the \(N + 1 \) exceptional hyperplanes in the assumption of Corollary 2 cannot be reduced.

Example 5. Let \(f_n(z) = nz \) be defined on \(D = \{z \in \mathbb{C}; 0 < |z| < 1\} \). Then \(\{f_n(z)\} \) is a normal family on \(D \). It is easy to verify that for any \(a_n, b_n, c_n \in P(\mathbb{C}) - \{nz; z \in D\} \), we have \(D(a_n, b_n, c_n) \rightarrow 0 \) as \(n \rightarrow \infty \) (see Definition 6 for \(D(a, b, c) \)). Hence \(\{f_n(z)\} \) does not satisfy the assumption of Corollary 2 in [19] but \(\{f_n(z)\} \) obviously satisfies the assumption of Corollary 2.

Example 6. Let

\[
B_r = \{ z = (z_1, \ldots, z_{n+1}) \in C^{n+1}; |z_1|^2 + \cdots + |z_{n+1}|^2 < r^2 \} \quad (r > 0)
\]

and

\[
E = \{ (u_1, \ldots, u_{n+1}) \in C^{n+1}; 1 \leq |u_1|^2 + \cdots + |u_{n+1}|^2 \leq 2 \}.
\]

Let \(u^{(j)} = (u_1^{(j)}, \ldots, u_{n+1}^{(j)}) \) \((j = 1, 2, \ldots) \) be a countable and dense subset of \(E \). Define a holomorphic mapping \(f_{(i,j)}(z) \) of \(B_{1/2} \) into \(\mathbb{P}^n(\mathbb{C}) \) which has a reduced representation

\[
\tilde{f}_{(i,j)}(z) := (z_1^i + u_1^{(j)}, \ldots, z_{n+1}^i + u_{n+1}^{(j)})
\]

from \(z \in B_{1/2} \) into \(C^{n+1} - \{0\} \) \((i, j = 1, 2, \ldots) \). Obviously \(\{f_{(i,j)}\}_{i, j=1}^\infty \) is a normal family on \(B_{1/2} \) and by [19, Theorem 4] there exist \(2n + 1 \) hyperplanes \(H_1^{(i,j)}, \ldots, H_{2n+1}^{(i,j)} \) located in \(\mathbb{P}^n(\mathbb{C}) \) such that

\[
\inf \{D(H_1^{(i,j)}, \ldots, H_{2n+1}^{(i,j)}); i, j = 1, 2, \ldots \} > 0
\]

and

\[
f_{(i,j)}(B_{r_0}) \cap H_k^{(i,j)} = \emptyset \quad (k = 1, \ldots, 2n + 1; i, j = 1, 2, \ldots)
\]
for some fixed small r_0 with $0 < r_0 < \frac{1}{2}$. Hence $(f_{i,j})$ restricted on B_{r_0} satisfies the assumption of Theorem 1.

But $(f_{i,j})$ does not satisfy the assumption of Theorem B on any neighborhood of $z = 0$ in $B_{1/2}$. In fact we shall verify that the $2n$-dimensional Lebesque areas of $f_{i,j}^{-1}(H) \cap B_r (i, j = 1, 2, \ldots)$ with counting multiplicities are not bounded above for any fixed $r (0 < r < \frac{1}{2})$ and any fixed hyperplane H in $P^n(C)$. Let H be defined by

$$H = \{(z_1, \ldots, z_{n+1}) \in C^{n+1}; \ a_1 z_1 + \cdots + a_{n+1} z_{n+1} = 0\}.$$ Then $\nu(f_{i,j}, H)$ is defined by the holomorphic function

$$\left(a_1 z_1^i + \cdots + a_{n+1} z_{n+1}^i\right) + \left(a_1 u_1^{(j)} + \cdots + a_{n+1} u_{n+1}^{(j)}\right).$$

Since $\{u^{(j)}\}$ is a dense subset of E, we can choose a subsequence $(f_{j_k})_{k=1}^\infty$ with

$$\lim_{k \to \infty} (a_1 u_1^{(j_k)} + \cdots + a_{n+1} u_{n+1}^{(j_k)}) = 0.$$ Hence $\lim_{k \to \infty} \nu(f_{i,j_k}, H) = \nu_0$, as a sequence of divisors on $B_{1/2}$ (see Definition 8 in Section 4 for the convergence of divisors), where $g(z) = a_1 z_1^i + \cdots + a_{n+1} z_{n+1}^i$. The $2n$-dimensional Lebesque area of $\nu_0 \cap B_r (0 < r < \frac{1}{2})$ with counting multiplicities is at least $c_0 r^{2n}$ for a fixed positive constant c_0 (see [3, Lemma 3, p. 140]). Thus the $2n$-dimensional Lebesque areas of $\nu_0 \cap B_r (i = 1, 2, \ldots)$ with counting multiplicities are not bounded above for any $0 < r < \frac{1}{2}$ and hence by [17, Lemma 2.23] the $2n$-dimensional Lebesque areas of $\nu(f_{i,j_k}, H) \cap B_r (i, k = 1, 2, \ldots)$ with counting multiplicities are not bounded above for any $0 < r < \frac{1}{2}$. Then the $2n$-dimensional Lebesque areas of $f_{i,j_k}^{-1}(H) \cap B_r (i, j = 1, 2, \ldots)$ with counting multiplicities are not bounded above for any fixed $r (0 < r < \frac{1}{2})$ and any fixed hyperplane H in $P^n(C)$.

4. SOME LEMMAS

To prove our results, we need some preparations.

We define the limit of a sequence $(F_k)_{k=1}^\infty$ of closed subsets of a locally compact Hausdorff space M as follows:

DEFINITION 7. A point x of M is called a limit point of (F_k) if there exist an integer k_0 and points $a_k \in F_k (k > k_0)$ such that $x = \lim a_k$. A point of M is called a cluster point of (F_k) if it is a limit point of some subsequence of (F_k). If the set of limit points coincides with the set of cluster points, (F_k) is said to converge to this set F, and write $\lim F_k = F$. (For a detailed discussion of this convergent concept, see [17, pp. 196–201]).
LEMMA 1. Let \(\{N_i\} \) be a sequence of pure \((n-1)\)-dimensional analytic subsets of a domain \(D \) in \(\mathbb{C}^n \). Suppose that the \(2(n-1) \)-dimensional Lebesgue areas of \(N_i \cap K \) regardless of multiplicities \((i = 1, 2, \ldots)\) are bounded above for any fixed compact subset \(K \) of \(D \) and \(\{N_i\} \) converges to \(N \) as a sequence of closed subsets of \(D \). Then \(N \) is either empty or a pure \((n-1)\)-dimensional analytic subset of \(D \). (See [17, Proposition 4.11, 3, Theorem 1] for more general analytic subsets.)

LEMMA 2. Let \(\{N_i\} \) be a sequence of pure \((n-1)\)-dimensional analytic subsets of a domain \(D \) in \(\mathbb{C}^n \). If the \(2(n-1) \)-dimensional Lebesgue areas of \(N_i \cap E \) regardless of multiplicities \((i = 1, 2, \ldots)\) are bounded above for any fixed compact set \(E \) of \(D \), then \(\{N_i\} \) is normal as a family of closed subsets of \(D \) (see [17, Proposition 4.12]).

Stoll [17] introduced the concept of convergence of a net of divisors. In the special case which we use, his definition reduces to the following:

DEFINITION 8. Let \(\{v_i\}_{i=1}^\infty \) be a sequence of non-negative divisors on a domain \(D \) in \(\mathbb{C}^n \). It is said to converge to a non-negative divisor \(v \) on \(D \) if and only if any \(a \in D \) has a neighborhood \(U \) such that there exist holomorphic functions \(h_i(z) (\neq 0) \) and \(h(z) (\neq 0) \) on \(U \) with \(v_i(z) = v_i^h(z) \) and \(v(z) = v^h(z) \) on \(U \) such that \(h_i(z) \) converges to \(h(z) \) uniformly on compact subsets of \(U \).

LEMMA 3. A sequence \(\{v_i\} \) of non-negative divisors on a domain \(D \) in \(\mathbb{C}^n \) is normal in the sense of the convergence of divisors on \(D \) if and only if the \(2(n-1) \)-dimensional Lebesgue areas of \(v_i \cap E \) \((i = 1, 2, \ldots)\) with counting multiplicities are bounded above for any fixed compact set \(E \) of \(D \) (see [17, Theorem 2.24]).

LEMMA 4. Let \(\{f_i\} \) be a sequence of meromorphic mappings of a domain \(D \) in \(\mathbb{C}^n \) into \(\mathbb{P}^N(\mathbb{C}) \) and let \(S \) be a nowhere dense analytic subset in \(D \). Suppose that \(\{f_i\} \) meromorphically converges on \(D - S \) to a meromorphic mapping \(f \) of \(D \) into \(\mathbb{P}^N(\mathbb{C}) \). If there exists a hyperplane \(H \) in \(\mathbb{P}^N(\mathbb{C}) \) such that \(f(D - S) \not\subset H \) and \((v_i(f_i), H) \) is a convergent sequence of divisors on \(D \), then \(\{f_i\} \) is meromorphically convergent on \(D \) (see [7, Proposition 3.5]).

LEMMA 5. Let \(\{f_i\} \) be a sequence of meromorphic mappings of a domain \(D \) in \(\mathbb{C}^n \) into \(\mathbb{P}^N(\mathbb{C}) \) and let \(S \) be a nowhere dense analytic subset in \(D \). Suppose that \(\{f_i\} \) meromorphically converges on \(D - S \) to a meromorphically mapping \(f \) of \(D - S \) into \(\mathbb{P}^N(\mathbb{C}) \). If for each \(f_i \) there exist \(N + 1 \) hyperplanes \(H_i(f_i), \ldots, H_{N+1}(f_i) \) in \(\mathbb{P}^N(\mathbb{C}) \) with

\[
\inf\{D(H_i(f_i), \ldots, H_{N+1}(f_i)) ; \ i = 1, 2, \ldots \} > 0
\]
such that $2(n - 1)$-dimensional Lebesgue areas of $f_i^{-1}(H_k(f_i)) \cap E$ ($k = 1, \ldots, N + 1; i = 1, 2, \ldots$) with counting multiplicities are bounded above for any fixed compact subset $E \subset D$, then $\{f_i\}$ has a meromorphically convergent subsequence on D.

Proof of Lemma 5. Without loss of generality we take $D = \Delta_n$ (a polydisc).

Case 1. We assume that $H_k(f_i)$ is the same for all f_i; i.e., $H_k := H_k(f_i)$ ($k = 1, \ldots, N + 1$) is independent of i. We can take some k_0 ($1 \leq k_0 \leq N + 1$) with $f(\Delta_n - S) \not\subset H_{k_0}$ because H_k ($k = 1, \ldots, N + 1$) are located in $P^N(C)$ in general position by the assumption of Lemma 5. On the other hand, the divisor sequence $\{\nu(f_i, H_{k_0})\}_{i=1}^\infty$ has a convergent subsequence $\nu(f_i, H_{k_0})_{i=1}^\infty$ on Δ_n by Lemma 3. Then by Lemma 4 $\{f_i\}$ has a meromorphically convergent subsequence $\{f_i\}_{i=1}^\infty$ on Δ_n.

Case 2. Here we shall prove Lemma 5 for the general case by taking linear coordinate transformation and using the conclusion of Lemma 5 in Case 1.

Consider the hyperplanes $H_k(f_i)$ ($k = 1, \ldots, N + 1$ and $i = 1, 2, \ldots$). Then there exist $\alpha_k(f_i) = (\alpha_k^1(f_i), \ldots, \alpha_k^{N+1}(f_i)) \in B^*$, the set of Euclidean unit vectors of $(C^{N+1})^*$, such that

$$H_k(f_i) = \{(z_1, \ldots, z_{N+1}) \in C^{N+1}; \alpha_k^1(f_i)z_1 + \cdots + \alpha_k^{N+1}(f_i)z_{N+1} = 0\}$$

for $k = 1, \ldots, N + 1$ and $i = 1, 2, \ldots$. Thus we have

$$\inf_i \det \begin{pmatrix} \alpha_1^1(f_i) & \cdots & \alpha_1^{N+1}(f_i) \\ \vdots & \ddots & \vdots \\ \alpha_{N+1}^1(f_i) & \cdots & \alpha_{N+1}^{N+1}(f_i) \end{pmatrix}$$

$$= \inf_i \{D(H_1(f_i), \ldots, H_{N+1}(f_i)) \geq 0.$$

Since $|\alpha_k^j(f_i)| \leq 1$ ($k, j = 1, 2, \ldots, N + 1$ and $i = 1, 2, \ldots$), without loss of generality we assume that $\alpha_k^j(f_i) \to \alpha_k^j$ ($k, j = 1, \ldots, N + 1$) as $i \to \infty$ (otherwise we can find a required subsequence of $\{f_i\}$). Hence we have

$$\geq \liminf_{i \to \infty} D(H_1(f_i), \ldots, H_{N+1}(f_i)) > 0.$$
Let $\tilde{f}_i = (f_i^1, \ldots, f_i^{N+1})$ be a reduced representation of f_i on Δ_n and define

$$
\tilde{g}_i(z) := (f_i^1(z), \ldots, f_i^{N+1}(z)) \left(\begin{array}{ccc}
\alpha_1^1(f_i) & \cdots & \alpha_1^{N+1}(f_i) \\
\vdots & \ddots & \vdots \\
\alpha_{N+1}^1(f_i) & \cdots & \alpha_{N+1}^{N+1}(f_i)
\end{array} \right)^T,
$$

where A^T denotes the transposed matrix of a matrix A. Now consider the sequence $(g_i(z))$ of meromorphic mappings from Δ_n into $P^N(C)$ where $g_i(z)$ has the given reduced representation $\tilde{g}_i(z)$ on Δ_n. Let

$$
H_i^0 := \rho\{(z_1, \ldots, z_{N+1}) \in C^{N+1} - \{0\}; z_i = 0\} \quad (i = 1, 2, \ldots, N+1).
$$

Then

$$
g_i^{-1}(H_k^0) = f_i^{-1}(H_k(f_i)) \quad (k = 1, \ldots, N+1; i = 1, 2, \ldots).
$$

By the assumption of Lemma 5 $(f_i(z))$ meromorphically converges on $\Delta_n - S$ to a meromorphic mapping $f(z)$ of $\Delta_n - S$ into $P^N(C)$ and thus $(g_i(z))$ meromorphically converges on $\Delta_n - S$ to a meromorphic mapping $g(z)$ of $\Delta_n - S$ into $P^N(C)$. Then by the conclusion of Lemma 5 in Case 1 there exists a subsequence $(g_i(z))_{i=1}^n$ such that the meromorphically converges on Δ_n to a meromorphic mapping $g_0(z)$ of Δ_n into $P^N(C)$ and hence $(f_i(z))_{i=1}^n$ meromorphically converges on Δ_n to a meromorphic mapping $f_0(z)$ of Δ_n into $P^N(C)$ which has a representation

$$
(f_0^1(z), \ldots, f_0^{N+1}(z)) := (g_0^1(z), \ldots, g_0^{N+1}(z)) \times \left(\begin{array}{ccc}
\alpha_1^1 & \cdots & \alpha_1^{N+1} \\
\vdots & \ddots & \vdots \\
\alpha_{N+1}^1 & \cdots & \alpha_{N+1}^{N+1}
\end{array} \right)^{-1}
$$

on Δ_n, where $(g_0^1(z), \ldots, g_0^{N+1}(z))$ is a representation of $g_0(z)$ on Δ_n and A^{-1} denotes the inverse matrix of a square matrix A. Hence $(f_i(z))_{i=1}^n$ has a meromorphically convergent subsequence on Δ_n. The proof of Lemma 5 is completed.

Lemma 6. Let (f_i) be a meromorphically convergent sequence of holomorphic mappings of a polydisc Δ_n in C^n into $P^N(C)$. If for each f_i, there exist $N + 1$ hyperplanes $H_i^1(f_i), \ldots, H_{N+1}(f_i)$ in $P^N(C)$ with

$$
\inf\{D(H_i(f_i), \ldots, H_{N+1}(f_i)); i = 1, 2, \ldots\} > 0
$$
and

\[f_i(\Delta_n) \cap H_0(f_i) = \emptyset \quad (k = 1, \ldots, N + 1; i = 1, 2, \ldots), \]

then \(\{f_i\} \) converges uniformly on compact subsets of \(\Delta_n \) to a holomorphic mapping of \(\Delta_n \) into \(P^N(C) \).

Proof of Lemma 6. Let \(z_0 \in \Delta_n \). By the assumption of Lemma 6, every \(f_i(z) \) has a reduced representation

\[\tilde{f}_i(z) = (f_i^1(z), \ldots, f_i^{N+1}(z)) \quad (i = 1, 2, \ldots) \]

on a fixed neighborhood \(U(z_0) \) such that \(\{\tilde{f}_i(z)\}_{i=1}^{\infty} \) converges uniformly on compact subsets of \(U(z_0) \) to \(\tilde{f}_0(z) := (f_0^1(z), \ldots, f_0^{N+1}(z)) \) \((\neq 0) \) on \(U(z_0) \). Now we shall prove \(\tilde{f}_0(z) \neq 0 \) everywhere on \(U(z_0) \) and hence \(\{f_i\} \) converges uniformly on compact subsets of \(\Delta_n \) to a holomorphic mapping of \(\Delta_n \) into \(P^N(C) \).

Let \(\alpha_k f_i = (\alpha^1_k(f_i), \ldots, \alpha^{N+1}_k(f_i)) \in B^* \), the set of Euclidean unit vectors of \((C^{N+1})^* \), with \(H_k(f_i) = \{\alpha_k f_i = 0\} \). Without loss of generality we assume that \(\alpha^1_k(f_i) \to \alpha^1_k \) \((k = 1, \ldots, N + 1) \) as \(i \to \infty \) (otherwise we can find a required subsequence). Define

\[
\tilde{g}_i(z) := \begin{pmatrix}
\alpha^1_1(f_i) & \cdots & \alpha^{N+1}_1(f_i) \\
\vdots & \ddots & \vdots \\
\alpha^1_{N+1}(f_i) & \cdots & \alpha^{N+1}_{N+1}(f_i)
\end{pmatrix}
\]

on \(U(z_0) \). Then \(\{\tilde{g}_i(z)\} \) converges uniformly on compact subsets of \(U(z_0) \) to a holomorphic mapping \(\tilde{g}_0(z) \) of \(U(z_0) \) into \(\mathbb{C}^{N+1} \), where

\[
\tilde{g}_0(z) := \begin{pmatrix}
g_0^1(z) & \cdots & g_0^{N+1}(z)
\end{pmatrix}
\]

\[
:= \begin{pmatrix}
f_0^1(z) & \cdots & f_0^{N+1}(z)
\end{pmatrix}
\]

Since \((f_0^1(z), \ldots, f_0^{N+1}(z)) \neq 0 \) on \(U(z_0) \) and \(\det(\alpha^1_k)^{(N+1)\times(N+1)} \neq 0 \), we have at least one \(g_0^{k_0}(z) \neq 0 \) on \(U(z_0) \) for some \(1 \leq k_0 \leq N + 1 \). Since \(\Sigma_{k=1}^{N+1} \alpha^k(f_i) f_i^k(z) \) \((\neq 0) \) everywhere on \(U(z_0) \) by the assumption of Lemma 6 converges uniformly on compact subsets of \(U(z_0) \) to \(g_0^{k_0}(z) \) \((\neq 0) \) on \(U(z_0) \) as \(i \to \infty \), by the Hurwitz theorem in several complex variables [15, Lemma 1.5.16] we have \(g_0^{k_0}(z) \neq 0 \) everywhere on \(U(z_0) \). Hence \(\tilde{f}_0(z) \neq 0 \) everywhere on \(U(z_0) \). We complete the proof of Lemma 6.
5. PROOF OF THEOREM 1

Without loss of generality we assume $D = \Delta_n$ (a polydisc).

Take any sequence $\{f_i\} \subset F$. By the assumption and Lemma 2 we can find a subsequence (again denoted by $\{f_i\}$) such that

$$\lim_{i \to \infty} f_i^{-1}(H_k(f_i)) = S_k \quad (k = 1, \ldots, N + 1)$$

as a sequence of closed subsets of Δ_n, where S_k are either empty or pure $(n - 1)$-dimensional analytic sets of Δ_n by Lemma 1 and

$$\lim_{i \to \infty} \left(\{z \in \supp \nu(f, H_k(f_i)); \nu(f, H_k(f_i))(z) < m_k\} - S \right) = S_k$$

$(k = N + 2, \ldots, q)$ as a sequence of closed subsets of $\Delta_n - S$, where S_k are either empty or pure $(n - 1)$-dimensional analytic sets of $\Delta_n - S$ by Lemma 1. Let $E := \bigcup_{k = 1}^{q} S_k - S$. Then E is either empty or a pure $(n - 1)$-dimensional analytic set of $\Delta_n - S$.

For any fixed point z_0 in $(\Delta_n - S) - E$, there exist an integer i_0 and a neighborhood $U(z_0)$ in $(\Delta_n - S) - E$ such that

$$f_i^{-1}(H_k(f_i)) \cap U(z_0) = \emptyset \quad (k = 1, 2, \ldots, N + 1)$$

and each $f_i(z)$ intersects $H_k(f_i)$ with multiplicities at least m_k $(k = N + 2, \ldots, q)$ on $U(z_0)$ for $i \geq i_0$. Hence $\{f_i(z)\}_{i = i_0}^{\infty}$ is a sequence of holomorphic mappings of $U(z_0)$ into $P^N(C)$ and by Theorem A $\{f_i(z)\}$ is a normal family on $U(z_0)$. Therefore, by the usual diagonal argument, we can find a subsequence (again denoted by $\{f_i\}$) which converges uniformly on compact subsets of $(\Delta_n - S) - E$ to a holomorphic mapping f of $(\Delta_n - S) - E$ into $P^N(C)$. By Lemma 5 $\{f_i\}$ has a meromorphically convergent subsequence (again denoted by $\{f_i\}$) on $\Delta_n - S$ and again by Lemma 5 $\{f_i\}$ has a meromorphically convergent subsequence on Δ_n. Then F is a meromorphically normal family on Δ_n. The proof of Theorem 1 is completed.

6. PROOF OF COROLLARY 2

By Theorem 1 F is a meromorphically normal family on D and hence by Lemma 6 F is a normal family on D. This proves Corollary 2.
7. PROOF OF THEOREM 3

DEFINITION 9. Let $\Omega \subset \mathbb{C}^n$ be a hyperbolic domain and let M be a complete complex Hermitian manifold with metric ds^2_M. A holomorphic mapping $f(z)$ from Ω into M is said to be a normal holomorphic mapping from Ω into M if and only if there exists a positive constant c such that for all $z \in \Omega$ and all $\xi \in T_z(\Omega)$,

$$\left| ds^2_M(f(z), df(z)(\xi)) \right| \leq c K_\Omega(z, \xi),$$

where $df(z)$ is the mapping from $T_z(\Omega)$ into $T_{f(z)}(M)$ induced by f and K_Ω denotes the infinitesimal Kobayashi metric on Ω.

For a detailed discussion of normal holomorphic mapping, see [1] and for the basic notation of hyperbolic space, see [10, 12, 15].

LEMMA 7. Let $\Omega \subset \mathbb{C}^n$ be a hyperbolic domain and let M be a compact complex Hermitian manifold. Let $f: \Omega \rightarrow M$ be a holomorphic mapping such that for every sequence of holomorphic mappings $\varphi_j(z)$ from the unit disc D in \mathbb{C} into Ω, the sequence $(f \circ \varphi_j(z))_{j=1}^\infty$ from D into M is a normal family on D. Then f is a normal holomorphic mapping from Ω into M (See [1, Proposition 1.14, 2, Proposition 2.9]).

LEMMA 8. Let M be a complex manifold and let S be a complex analytic subset of M with $\text{codim} S \geq 2$. Then $K_{M-S} = K_M$ on $M - S$ (i.e., the infinitesimal Kobayashi metric K_{M-S} is the restriction of K_M to $M - S$) (See [15, Proposition 1.2.22]).

LEMMA 9. Let f be a holomorphic mapping from a hyperbolic domain Ω in \mathbb{C}^n into $P^N(\mathbb{C})$. If there exist $q \geq 2N + 1$ hyperplanes H_1, \ldots, H_q in $P^N(\mathbb{C})$ in general position such that f intersects H_j with multiplicity at least m_j ($j = 1, \ldots, q$) on Ω, where m_j ($j = 1, \ldots, q$) are positive integers and may be ∞, with $\sum_{j=1}^q (1/m_j) < \frac{4 - (N + 1)}{N}$, then f is a normal holomorphic mapping from Ω into $P^N(\mathbb{C})$.

Proof of Lemma 9. For any sequence of holomorphic mappings $\varphi_k(z)$ from the unit disc D in \mathbb{C} into Ω, every $f \circ \varphi_k(z)$ intersects H_j with multiplicity at least m_j ($j = 1, \ldots, q$) on D by the definition of multiplicities. By Theorem A $(f \circ \varphi_k(z))_{k=1}^\infty$ is a normal family on D and hence f is a normal mapping by Lemma 7. This proves Lemma 8.

Proof of Theorem 3. Without loss of generality we assume that D is a bounded domain of \mathbb{C}^n (i.e., D is hyperbolic). By Lemma 9 f is a normal holomorphic mapping from $D - S$ into $P^N(\mathbb{C})$. Thus by Definition 9 and the definition of the integrated distance there exists a positive constant c
such that
\[d_{\rho^N}(f(z), f(w)) \leq c d_{D-S}^K(z, w) \]
for all \(z, w \in D - S \), where \(d_{D-S}^K \) and \(d_{\rho^N} \) denote the Kobayashi distance on \(D - S \) and the Fubini–Study distance on \(P^N(C) \), respectively. For any \(z_0 \in S \), let \(\{z_i\}_{i=1}^\infty \) be a sequence of points of \(D - S \) so as to converge to \(z_0 \). By Lemma 8 we have
\[
 d_{\rho^N}(f(z_i), f(z_j)) \leq c d_{D-S}^K(z_i, z_j) = c d_{D}^K(z_i, z_j).
\]
Then \(\{f(z_i)\}_{i=1}^\infty \) is a Cauchy sequence of \(P^N(C) \) and hence \(\{f(z_i)\}_{i=1}^\infty \) converges to a point \(a_0 \in P^N(C) \). It is easy to check that \(a_0 \) is independent of the choice of \(\{z_i\} \) as far as it converges to \(z_0 \). Then \(f(z) \) has an extension \(\tilde{f}(z) \) on \(D \) so as to be holomorphic on \(D - S \) and continuous on \(\tilde{D} \) and hence \(\tilde{f}(z) \) is holomorphic on \(D \) by the Riemann extension theorem. The proof of Theorem 3 is completed.

8. PROOF OF THEOREM 4

The following lemma is a special conclusion of Theorem 3.

Lemma 10. Let \(f \) be a meromorphic mapping from a domain \(D \) in \(C^n \) into \(P^N(C) \). If there exist \(q \geq 2N + 1 \) hyperplanes \(H_1, \ldots, H_q \) in \(P^N(C) \) in general position such that \(f \) intersects \(H_j \) with multiplicity at least \(m_j \) \((j = 1, \ldots, q) \) on \(D \), where \(m_j \) \((j = 1, \ldots, q) \) are positive integers and may be \(\infty \), with \(\sum_{j=1}^q (1/m_j) < \frac{q - (N + 1)}{N} \), then \(f \) is actually a holomorphic mapping from \(D \) into \(P^N(C) \).

Proof of Theorem 4. Take any sequence \(\{f_i\} \subset F \). By the assumption and Lemma 2 we can find a subsequence (again denoted by \(\{f_i\} \)) such that
\[
 \lim_{i \to \infty} \{z \in \text{supp} \nu(f_i, H_k(f_i)) \mid \nu(f_i, H_k(f_i))(z) < m_k \} = S_k
\]
\((k = 1, \ldots, q)\) as a sequence of closed subsets of \(D \), where \(S_k \) are either empty or pure \((n - 1)\)-dimensional analytic sets of \(D \) by Lemma 1. Let \(E := \bigcup_{k=1}^q S_k \). Then \(E \) is either empty or a pure \((n - 1)\)-dimensional analytic set of \(D \) and hence \(E \) is a nowhere dense analytic set of \(D \).

Now we shall prove that \(\{f_i(z)\}_{i=1}^\infty \) has a compactly convergent subsequence on \(D - E \). For any fixed point \(z_0 \) in \(D - E \), there exist an integer \(i_0 \) and a neighborhood \(U(z_0) \) in \(D - E \) such that
\[
 \{z \in \text{supp} \nu(f_i, H_k(f_i)) \mid \nu(f_i, H_k(f_i))(z) < m_k \} \cap U(z_0) = \emptyset
\]
for $i \geq i_0$ and $k = 1, \ldots, q$. Hence by Lemma 10 $(f_i(z))_{i=i_0}^\infty$ is a sequence of holomorphic mappings of $U(z_0)$ into $P^N(C)$ and by Theorem A $(f_i(z))_{i=i_0}^\infty$ has a subsequence which converges uniformly on compact subsets of $U(z_0)$ to a holomorphic mapping of $U(z_0)$ into $P^N(C)$. Therefore, by the usual diagonal argument, we can find a subsequence $(f_{i_j}(z))$ so as to converge uniformly on compact subsets of $D - E$ to a holomorphic mapping of $D - E$ into $P^N(C)$ and hence $(f_{i_j}(z))$ is quasi-regular on D. The proof of Theorem 4 is completed.

ACKNOWLEDGMENT

I thank my advisor, Professor Ngaiming Mok, for his constant help and encouragement.

REFERENCES

