provided by Elsevier - Publisher Connector

Journal of King Saud University — Engineering Sciences (2015) XXX, XXX—XXX

King Saud University

King Saud University

www.ksu.edu.sa
www.sciencedirect.com

T @ Journal of King Saud University — Engineering Sciences

Journal of
King Saud University -

Engineering Sciences

ORIGINAL ARTICLE

Reduced differential transform method to solve
two and three dimensional second order hyperbolic

telegraph equations

Vineet K. Srivastava **, Mukesh K. Awasthi ”, R.K. Chaurasia ¢

4 ISRO Telemetry, Tracking and Command Network (ISTRAC), Bangalore 560058, India
> Department of Mathematics, University of Petroleum and Energy Studies, Dehradun 247008, India

¢ The ICFAI University, Jaipur 302031, India

Received 19 January 2014; accepted 30 April 2014

KEYWORDS Abstract

Two and three-dimensional
telegraph equation;
Reduced differential trans-
form method;

Exact solution

In this article, an analytical solution procedure is described for solving two and three
dimensional second order hyperbolic telegraph equation using a reliable semi-analytic method so
called the reduced differential transform method (RDTM) subject to the appropriate initial
condition. Using this method, it is possible to find an exact solution or a closed approximate
solution of a differential equation. Various numerical examples are carried out to check the
accuracy, efficiency, and convergence of the described method. The method is a powerful

mathematical tool for solving a wide range of problems arising in engineering and sciences.
© 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

In the recent development, the communication system plays a
key role in the worldwide society. The radio frequency (RF)
and microwave communication (MW) systems generate high
frequency communication which plays a significant role in
various industrial applications.

The above systems use the transmission media for transfer-
ring the information carrying signal from one point to another

* Corresponding author. Mobile: +91 8050682145.
E-mail address: vineetsriiitm(@gmail.com (V.K. Srivastava).
Peer review under responsibility of King Saud University.

&

FLSEVIER Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksues.2014.04.010

point. This transmission media can be categorized into two
groups, namely, guided and unguided. In a guided medium,
the signal is transferred through the coaxial cable or transmis-
sion line and therefore, the guided media are capable of trans-
porting the high frequency voltage and current waves. In case
of unguided media, the electromagnetic waves carry the signal
over part of or the entire communication path through RF and
MW channels. These electromagnetic waves are transmitted
and received through antenna.

In a guided transmission media, especially cable transmis-
sion medium is investigated to address the problem of efficient
telegraph transmission. A cable transmission medium classified
as a guided transmission medium represents a physical system
that directly propagates the information between two or more
locations. In order to optimize the guided communication
system it is necessary to determine or project power and signal
losses in the system, because all the systems have such losses.
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To determine these losses and eventually ensure a maximum
output, it is necessary to formulate some kind of equation to
calculate these losses.

Assume that u(x,y, ) and i(x,y, ) be the electric voltage
and the current in a double conductor, satisfying the telegraph
equations in two dimensions (2D):

(,,f’+2ocf§‘,‘+ﬁ u=34+ 24+, (x,,1),
‘)i—i-d}z—i-f?(‘C} 1),

Ox?

,(x,0,0) €Q;0>0,>0
+2O€0'

ot

+ =
(1

where Q = [a,b] X [¢,d] x [t > 0] .The initial conditions are
assumed to be

u(x7y70) :gl(x7y)7
M;(XJUO) :gz(x7y)a

,(x,0) €Q 2
i(x7y70) :hl(x7y)7 ( y) ( )

il(x7y7 0) = hz(x,y)7
while the boundary conditions are expressed as follows

(‘C y7 ) = fl(xay’ ) (\ y) € rllvt = Oa
5,1(xy7 )252(xay7 ) ( )Erqvl>07
(X7y7 ) = Wl(?ﬂ% t)?(xvy) S rpvt = 07

= l//2(xay> Z)> (x7y) S rq t = 07
where I', and I, are non-intersecting curves such that
I,url',=T, I' is the closed curve bounding the domain Q
and 7 is the unit outward vector to T'.

Similarly, the three dimensional (3D) telegraph equation is
expressed as follows:

3)

5 (x,»,0)

S+ 20504 fru =T+ B+ S+ £, (x,p,2,0),
i1 2024 g z_g\i+g}’+gz’+f2(x ¥,2,1),

(x,3,2,) €Qa>0,>0 (4)

where Q = [a, 5] x [¢,d] x [e,f] X [t > 0], with initial conditions
M(X7y,Z, 0) :gl(x,y,z),
UI(X,_V,Z, 0) = gz(X,y,Z),

b b y7 6 Q 5
i(x,,2,0) = Iy (e, 2), 27 ©)

it(x7y7270) = hZ(x7y7 Z)

and the boundary conditions consist of

u(x,y,z,t) = & (x,,z, 1), (x,y,z) € Tt 20,

o Wy y,2,0) =&, p,2,0),(x,,2) € r,,t=0, ©)
i(x,p,2,8) =y, (x, 3,2, 1), (x,y,z) € T, t = 0,

S, 2,2,0) = Yy(x, 3, 2,1), (x,3,2) € Tyt 2 0,

Fora > 0,8 =0, Egs. (1) and (4) represent damped wave equa-
tions in two and three dimensions respectively.

Through the literature survey it can be seen that telegraph
equation is much more appropriate than ordinary diffusion
equation for modeling the reaction diffusion. The hyperbolic
partial differential equations model the vibrations of structures
(e.g. machines, buildings and beams) and they are the basis for
fundamental equations of atomic physics. The telegraph equa-
tion is described as an important equation for modeling various
problems arising in engineering and science fields to name a few,
wave propagation (Weston and He, 1993), random walk theory
(Banasiak and Mika, 1998), signal analysis (Jordan and Puri,

1999) etc. Recently, it can be observed that there has been given
much concentration to the development of exact and numerical
computational methods for one dimensional and two dimen-
sional telegraph equations (Mohanty and Jain, 2001; Mohanty
et al., 2002; Mohanty, 2004; 2005; 2009; Dehghan and Shokri,
2008; Saadatmandi and Dehghan, 2010; Dehghan and
Ghesmati, 2010; Dehghan et al., 2011; Lakestani and Saray,
2010; Jiwari et al. 2012; Momani, 2005; Chen et al. 2008;
Raftari and Yildirim, 2012; Das et al., 2011; Srivastava et al.,
2013a,b; Ahmad and Hassan, 2013; Keskin and Oturanc, 2009).

The present paper describes an analytical scheme, the
reduced differential transform method to provide approximate
analytical results of the two and three dimensional telegraph
equations. The accuracy and efficiency of the proposed method
are demonstrated by several test examples. The biggest benefit of
the described method is that it finds the solution of telegraph
equation directly without using any transformation, lineariza-
tion, discretization or any other restrictive conditions. Further,
the method can be easily implemented in multidimensional prob-
lems arising in many areas of science and engineering.

2. Reduced differential transform method (RDTM)

In this section, the basic definitions of the reduced differential
transform method are described.

Let us consider a function of four variablesw(x, y, z, f), and
assume that it can be represented as a product
w(x,p,z,t) = F(x,,z)G(f). On extending the basis of the
properties of the one-dimensional differential transformation
(Abazari and Ganji, 2011), the function w(x, y, z, f) can be rep-
resented as follows

00 00 OO

w(x,y,z,1) ZZZF 1,0, I3 x"y’zz“ZG(]
=0i,=0i3=
- ZZZZ Wiy, in, i3) X" y2 258
i1=0 1,0 5=0 j=0
where W(iy, b, i) = F(i1, i, i3)G(j) is called the spectrum of
w(x,y,z,1).

Assume that R denotes the reduced differential transform
operator and Rj;' indicates the inverse reduced differential
transform operator, then the basic definition and operation
of the RDTM are described below.

Definition 2.1. If w(x,y,z,¢) is analytic and continuously
differentiable with respect to space variables x,y and time
variable ¢ in the domain of interest, then the spectrum function
(Abazari and Ganji, 2011; Abazari and Abazari, 2012)

170"
Rolw(ry. .0 % Wions) = [gwtenzn] )
=1y

is the reduced transformed function of w(x,y,z,t).

In this article, the lowercase w(x, y, z, t) stands for the orig-
inal function while the uppercase W;(x,y,z) represents the
reduced transformed function. The differential inverse reduced
transform of W (x,y,z) is defined by

ZVVk X,0,2

Now, combining the Egs. (8) and (9), we get

RBI[Wk(X>y>Z)] X Yz, Z t_ tO)k (9)
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w(x,y,z,1) Zk' L?tk w(x,y,z, l)} (1—1)" (10)

From the Eq. (10), it is obvious that the reduced differential
transform is derived from the function’s power series expansion.

Definition 2.2. Assume u(x,y,z,t) = Ry [Ur(x,»,2)], v(x,»,
z,t) = Ry [Vi(x,»,2)], and let convolution ® denotes the
reduced differential transform version of the multiplication,
then the basic operations of the reduced differential transform
are given in Table 1.

3. RDTM for two dimensional telegraph equation

Implementing the RDTM to the two dimensional telegraph
Eq. (1), we have the following expression

(k + 1)(k +2)Up2(x,3) + 20k + 1) Uy (x,)
AR UK(x, ) = 25 Ui(x,9) + 22 Ue(x,9) + Rolf; (x,2, 1),
(k+ 1) (k 4+ 2) 2 (x,p) + 20k + 1)l (x, ) '
B L%, y) = 1%, y) + 25 I(x,0) + Rolfa(x, 3, 1),
(x,y,0) € Q0> 0, > 0.
Now implementing the aforesaid method to the initial condi-
tions (2), we get
Un(x,») = g1 (x,),
Ui(x,5) = &(x, ),
Iy(x,p) = hi(x, ),
5i(x,p) = ha(x, p),

From above two equations we get the values of Ug(x,y),
Li(x,),k=2,3,4,... etc. Applying the differential inverse
reduced transform of Uy(x,y);li(x,y),k=0,1,2,3,..., one
can obtain the approximate solution for u(x,y,7) and
i(x,y,t) given by

Zkay

= Up(x,y) + Ui (x, )t + Ua(x,p)

7(x7 .}7) 6 Q'

u(x,y, 1)

£+ Us(x, ) + ...

i(x,,0) =Y L(x, )
=

0
= IO(XJ') + Il (xvy)[ + ]2(x7y)[2 + I3(X,y)l3 +

Table 1

4. RDTM for three dimensional telegraph equation

Implementing the aforesaid method to the three dimensional
telegraph Eq. (4), we get the following equation

(k+1)(k+2)Usi2(x,,2) + 20(k + 1) Ugs1(x,,2) + B Ur(x,,2)
= 2 Un(x.2,2) + 53 U (x,0,2) + 85 Un(x,3,2) + Rolfy (%.7,2, 1)),
(k+1)(k+2) L2 (x,9,2) + 20(k 4+ 1) L1 (x,,2) + f 1 (x, 1, 2)
=Z0(x,0,2) + S L (x,9,2) + L I (x,9,2) + Rolfs (x,3,2,1)],

(x,p,2,8) €Q;00>0,>0.
Now applying the method to the initial conditions (5), we have
Uo(x,»,2) = g (x, 1, 2),
Ur(x,5,2) = &(x,»,2),
Io(x,p,2) = h(x,y,2),
Li(x,p,2) = ho(x,,2),

From above two equations we get the values of Ui(x,y,z),
I (x,p,2),k = 2,3, ... etc. Using the differential inverse reduced
transform of Uy (x,y,z); li(x,,2),k=0,1,2,..., we have the
approximate solution for u(x,y,z,t) and i(x,y,z,1) as follows

(x,0,2) €Q.

00

u(x,y,2,0) = Y Uk(x,y,2)1"
k=0
= Up(x,¥,2) + Ui (x,,2)t + Us(x, ,2)* +
i(x,y,2,1) Zlk X, ,2)

=I(x,y,2) + L (x,3,2)t + L(x,y,2)F + ...

5. Computational illustrations

In this section, the method explained in Section 2 is described
by taking several examples of both linear and nonlinear 2D
and 3D telegraph equations to validate the efficiency and reli-
ability of the aforesaid technique.

Example 5.1. Consider the 2D linear Telegraph equation

(Jiwari et al., 2012)
& u ou 1 (u  Ou
W'ﬁ‘za-‘-u*z(@-i-a—yz) (11)

Basic operations of the reduced differential transform method.

Original function

Reduced differential transformed function

Rplu(x,y,z,0)v(x, »,2,1)]
Rplou(x,y,z,t) £ pv(x,p,z,1)]
RD[% u(x,y,z,1))
Rolgsigerar (%, 3,2, 1)]
Rp[x™y"zP 11]

RD[eif]
Rp|sin(ax + By + yz + ot)]
Rplcos(ax + py + yz + wi)]

Uk(X,)GZ) ® Vk(x7y7 Z) = erc:()UV(xv%z) Vk*’(xvy7z)
“Uk(-xvyv Z) iﬁVk(xJ/vZ)
(k+1)(k+2).....(k + n) Uprn(x, 3, 2)

(k+s)!  gminte
KT ox"0y" 0 Uk (%, 9, 2)

X"y k= q
0, otherwise
;'k
K
w

A', sin(Z + ox + By + 7z)
kl COS(Z, +ox + fy + yz)

Please cite this article in press as: Srivastava, V.K. et al., Reduced differential transform method to solve two and three dimensional second order hyperbolic telegraph
equations. Journal of King Saud University — Engineering Sciences (2015), http://dx.doi.org/10.1016/j.jksues.2014.04.010



http://dx.doi.org/10.1016/j.jksues.2014.04.010

4

V.K. Srivastava et al.

subject to the initial conditions (the solution is periodic in x
and y)

u(x,y,0) = sinh(x) sinh(y), }
u,(x,y,0) = —2sinh(x) sinh(y),

Implementing the RDTM to Eq. (11), we get the following
relation

(12)

(k+ 1)k + 2) U ) + 20k + 1)U (5,3)
5 (e e + 53 Usl) ) = el (13)

Using the aforesaid method to the initial conditions (12), we
have

Us(x,y) = sinh(x)sinh(y); U,(x,y) = —2sinh(x)sinh(y). (14)

Using Eq. (14) in Eq. (13), we have the following Uk (x,y)
values successively as

Us(x,y) = 2sinh(x) sinh(y) = 2 sinh(x) sinh(y);
wmw:“> (x) sinh(y); (15)
3 U(x,») = 52 sinh(x) sinh(y).

Using the differential inverse reduced transform of Ui (x,y),
we obtain the expression

u(x,y,t)= Zkal

= Un(x,}f) + Uy (x,p)1+ Us(x,

P+ Us(x,0)F +..

:sinh(x)sinh(y)<1+(—2)t+(;2!)213+( 32) £t +( AZ) . >
(16)
The solution (16), in closed form, is expressed as follows
u(x,y,t) = e *sinh(x) sinh(y). (17)

Example 5.2. Consider the 3D linear Telegraph equation
(Weston and He, 1993)

@+2au+ @+i+@ (18)
or? ot ox2  0y?  0z2
subject to initial conditions (the solution is periodic in x, y and

2)

u(x,y,z,0) = sinh(x) sinh(y) sinh(z), }

u,(x,y,2,0) = —sinh(x) sinh(y) sinh(z), (19)

Applying the aforesaid technique to Eq. (18), we obtain the
following recurrence formula

(k+ D)k +2)Uia(x,3,2) + 2(k + 1) Uypy1(x, 3, 2)
= 5)—\22 Ui(x,y,z) +%z Ui(x,,2) +% Ur(x,y,2) — Ur(x,, 2).
(20)

Using the described method to the initial conditions (19), we
get

Uo(x, y,z) = sinh(x)sinh(y)sinh(z); U;(x,y,z2)
= —sinh(x)sinh(y)sinh(z). (21)

Using Eq. (21) in Eq. (20), one can get the following Uy (x,y,z)
values successively as

Us(x,y,2) = S22 sinh(x) sinh(y) sinh(z);
Us(x,y,z) =5 1) sinh(x) sinh(y) sinh(z); (22)
vy Uk(x,p,2) = % sinh(x) sinh(y) sinh(z).

Using the differential inverse reduced transform of Uy (x,y, z),
we have

u(x,y,z,1)

ZUA x)’:

—smh( ¢)sinh(y)sinh(z)
x(1+(—1)t+%t2+%t3+ ...... FE ey )

The solution (23), in closed form, can be given by

u(x,y,z,t) = e 'sinh(x) sinh(y) sinh(z). (24)

Example 5.3. Consider the following 2D nonlinear Telegraph
equation (Dehghan and Ghesmati, 2010)

Pu  u  u ou
+ +2 e

gt T an tig i e ()

under the initial conditions (the solution grows exponentially
in x and y)

u(x,,0) = e, }

26
u/(xayv 0) = 726x+“‘3 ( )

Applying the aforesaid technique to Eq. (25), we obtain the
following iterative expression:

(k+ 1)(k +2)Usa(x,y) + 2(k + 1) Ui (x,p)

e 2
= 2 Uk, y)+a} Uk(x, )

- iU,»(xJ) Ui—r(x,y) + 00 ((_k—‘:)k) — et <(_k—2')k> )

(27)

Applying the RDTM to the initial conditions (40), we obtain

Up(x) = e Uy (x) = =2 (28)

Using Eq. (28) in Eq. (27), we get the following Uy (x,y) values
successively as

2)

Us(x,y) =2e7 =, Us(x, y)

U(x,y) =

S e Us(y) = e,

e\+l

(29)

Using the differential inverse reduced transform of Ui (x,y),
one can get

U,y 1) = 3 UL, )8 = Up (6,) + Ui (x,0)1 4 Us (5,0 + Us (x,) + .
k=0

2 3 K
=e-\‘+-“(1+(—2)z+%z2+(’%t3+ ...... +E kL )

(30)
The solution (30), in closed form, is given by

u(x,y, 1) = e, (31)
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Example 5.4. Consider the following 3D nonlinear Telegraph
equation (Weston and He, 1993)

Pu Pu Pu u ou 5,
-, 7~ - _=Z= - _ 2(xtytz) 4t (x+y+z)—21
o o Tar e Tt e te

(32)
under the initial conditions (the solution grows exponentially
in x, y and z)

u(x,y,z,0) = e+, }

ut(x7 »,Z, O) = _ex+y+z’

(33)

Implementing the aforesaid technique to Eq. (32), we obtain
the following iterative expression:

(k+ 1) (k +2)Usia(x, 3, 2) + 2(k + 1) Ui (x, 3, 2)
= g_jz Uk(x7yaz) +%22Uk(x7yaz) +§T—22Uk(x7y7z)

k -
=S Uy, 2) Ui (3,7, 2) 4 e (S (34)

r=0

_plxtrta) ((szl)k ).

Using the aforesaid scheme to the initial conditions (33), we
have

Ug(x,y,2) = " Uy (x,p,2) = —"H12, (35)

Using Eq. (35) in Eq. (34), we obtain Ui (X,y,z) values succes-
sively as

—1)? 2 —1)° oz
Us(x,y,2) = G e Us(x, p,2) = Sl ev+,

(36)

_ (=1 X+y+z. . . _ (= X+y+z
U4(x7yvz)_Te FRRTEEN :Uk(xJ’vZ)—Te .

Using the differential inverse reduced transform of Uy (X, y,z),
we have

“(X,yyz,l) :ZUk(X7Y7Z)tk
k=0

= UO(xvyvz) +Ui (X7Y7Z)t+ Uz(X,y,Z)tz“r
:e-”y“(l I P NI = R )

The solution (37), in closed form, is given as follows

u(x,y,z,t) = e (38)

6. Conclusions

In this article, the reduced differential transform method is
described to find the analytical solution of two and three
dimensional hyperbolic linear and nonlinear telegraph equa-
tions. The method is applied in a direct way without using
transformation, linearization, discretization or any other
restrictive conditions. The effectiveness of the method is shown
from the computational solutions, which shows that the
RDTM rapidly converges, highly accurate, and is an easily
implementable mathematical method for the multidimensional
problems emerging in various domains of science and
engineering.
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