Characterization of distributions by conditional expectation of record values

A.H. Khan, Ziaul Haque *, Mohd. Faizan

Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh 202002, India

Received 1 February 2014; revised 24 July 2014; accepted 3 August 2014
Available online 3 March 2015

KeyWords
Characterization; Continuous distributions; Conditional expectation; Record values

Abstract
A family of continuous probability distributions has been characterized by two conditional expectations of record statistics conditioned on a non-adjacent record value. Besides various deductions, this work extends the result of Lee [8] in which Pareto distribution has been characterized.

2010 Mathematics Subject Classification: 62E10; 62G30; 60E05

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

Characterizations of distributions through conditional expectations of record values have been considered among others by Nagaraja [1], Franco and Ruiz [2], Wu and Lee [3], Raqab [4], Athar et al. [5], Gupta and Ahsanullah [6].

Let X_1, X_2, \ldots be a sequence of independent, identically distributed continuous random variables with the distribution function (df) $F(x)$ and the probability density function (pdf) $f(x)$. Let $X_{a(s)}$ be the s-th upper record value, then the conditional pdf of $X_{a(s)}$ given $X_{a(r)} = x$, $1 \leq r < s$ is Ahsanullah [7]

$$f(X_{a(s)}|X_{a(r)} = x) = \frac{1}{F(s - r)} \left[- \ln T(y) + \ln F(x) \right]^{s-r-1} \frac{f(y)}{F(x)},$$

where $T(x) = 1 - F(x)$.

Lee [8] has characterized Pareto distribution by conditional expectation of two records $X_{a(s)}$ and $X_{a(r)}$ conditioned on $X_{a(m)}$ for all $s > r \geq m$, where $s = r + 1$, $r + 2$ and $r + 3$. In this paper we have characterized a general class of distributions $T(x) = ax + b$ by the conditional expectation of $X_{a(s)}$ and $X_{a(r)}$ conditioned on $X_{a(m)}$ for all $s > r \geq m$, thus extending the results of Lee [8].

2. Characterization results

Theorem 2.1. Let X be an absolutely continuous random variable with the df $F(x)$ and the pdf $f(x)$ on the support (α, β), where α and β may be finite or infinite. Then for $m \leq r < s$

...
\[E[h(X_{(i)})|X_{(m)} = x] = a'E[h(X_{(i)})|X_{(m)} = x] + b' \]
(2.1)
if and only if
\[\mathcal{T}(x) = [ah(x) + b]^r, \]
(2.2)
where \(a' = \left(\frac{r}{r-1}\right) \alpha' \) and \(b' = -\frac{a}{r}(1 - a'). \)

Proof. In view of the Athar et al. [5], we have
\[E[h(X_{(i)})|X_{(m)} = x] = a'_ih(x) + b'_i, \]
(2.3)
where,
\[a'_i = \left(\frac{c}{c+1}\right)^{x-m} \text{ and } b'_i = -\frac{b}{a}(1 - a'_i) \]
and
\[E[h(X_{(i)})|X_{(m)} = x] = a'_2h(x) + b'_2 \]
(2.4)
where
\[a'_2 = \left(\frac{c}{c+1}\right)^{x-m} \text{ and } b'_2 = -\frac{b}{a}(1 - a'_2). \]

Using (2.3) and (2.4), it is easy to establish (2.1).

For sufficiency part, we have
\[\frac{1}{T(s-m)} \int_x^\beta h(y) \left[-\ln \mathcal{T}(y) + \ln \mathcal{T}(x) \right]^{s-m-1}f(y)dy \]
\[= a' \frac{1}{T(r-m)} \int_x^\beta h(y) \left[-\ln \mathcal{T}(y) + \ln \mathcal{T}(x) \right]^{r-m-1}f(y)dy \]
\[+ b' \mathcal{T}(x) \]
(2.5)
Differentiate both the sides of (2.5) w.r.t. \(x \), to get
\[-\frac{(s-m-1)}{T(s-m)} \int_x^\beta h(y) \left[-\ln \mathcal{T}(y) + \ln \mathcal{T}(x) \right]^{s-m-2}f(y)dy \]
\[= -a' \frac{(r-m-1)}{T(r-m)} \int_x^\beta h(y) \left[-\ln \mathcal{T}(y) + \ln \mathcal{T}(x) \right]^{r-m-2} \]
\[\times f(y)\mathcal{T}(x)dy - b'f(x). \]

after noting that if \(B = \int_a^x f(x,y)dy \) then
\[\frac{\partial B}{\partial x} = f(x,v) \frac{\partial v}{\partial x} - f(x,u) \frac{\partial u}{\partial x} + \int_a^x \frac{\partial f(x,y)}{\partial x} dy. \]
Therefore,
\[\frac{1}{T(s-m-1)} \int_x^\beta h(y) \left[-\ln \mathcal{T}(y) + \ln \mathcal{T}(x) \right]^{s-m-2}f(y)dy \]
\[= a' \frac{1}{T(r-m-1)} \int_x^\beta h(y) \left[-\ln \mathcal{T}(y) + \ln \mathcal{T}(x) \right]^{r-m-2}f(y)dy \]
\[+ b' \mathcal{T}(x). \]

Similarly, differentiating \((r - m - 1) \) times both the sides w.r.t. \(x \), we get
\[\frac{1}{T(s-r)} \int_x^\beta h(y) \left[-\ln \mathcal{T}(y) + \ln \mathcal{T}(x) \right]^{r-1}f(y)dy \]
\[= a'h(x) + b' = g_{d'}(x). \]
Using the result (Khan et al. [9]),
\[E[h(X_{(i)})|X_{(m)} = x] = g_{d'}(x) \]

we get,
\[\mathcal{T}(x) = e^{-\int_x^\beta A(t)dt} \]

where
\[A(t) = \frac{g_{d'}(t)}{g_{d'}(t) - g_{d'+1}(t)} = \frac{ach(t)}{ah(t) + b} \]

and \(\lim_{s \to \beta} \int_s^\beta A(t)dt = \infty. \)

Thus,
\[\mathcal{T}(x) = [ah(x) + b]^r \]

and hence the theorem. \(\square \)

Remark 2.1. At \(r = m, h(x) = x \), we get the result as obtained by Franco and Ruiz [2,10], Athar et al. [5], Ahsanullah and Wesolowski [11], Dembinska and Wesolowski [12], Khan and Alzaid [13].

Remark 2.2. Lee [8] has obtained characterization result for Pareto distribution
\[\mathcal{T}(x) = x^{-\theta}, \quad x > 1, \quad \theta > 0, \quad \theta \neq 1, \]

which can be obtained by putting \(a = 1, b = 0, c = -\theta, h(x) = x \) at \(s = r + 1, r + 2 \) and \(r + 3 \) in the Theorem 2.1.

Remark 2.3. At \(a = -\frac{r}{2}, b = 1, c \to \infty \)
\[a' = 1, \quad b' = \frac{(s-r)}{a}, \]
\[\mathcal{T}(x) = e^{-ab(x)}, \quad a > 0, \]

reduces to the result as obtained by Khan et al. [14].

3. **Examples based on the distribution function**
\[F(x) = 1 - [ah(x) + b]^r \]

Proper choice of \(a, b \) and \(h(x) \) characterize the distributions as given below:
Acknowledgements

Authors are thankful to anonymous Reviewer and Editor for their comments and suggestions, which resulted in an improvement in the presentation of this manuscript.

References