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We construct a U (1) bundle over N(1,1), usually considered as an SO(3) bundle on CP2, and show that
type IIB supergravity can be consistently compactified over it. With the five form flux turned on, there is
a solution for which the metric becomes Einstein. We further turn on 3-form fluxes and show that there
is a one parameter family of solutions. In particular, there is a limiting solution of large 3-form fluxes for
which two U (1) fiber directions of the metric shrink to zero size. We also discuss compactifications over
N(1,1) to AdS3. All solutions turn out to be non-supersymmetric.
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1. Introduction

Compactifying solutions of supergravity theories provide a nat-
ural way of constructing consistent supergravity theories in lower
dimensions. Moreover, some of the solutions turn out to be the
near horizon geometry of M(D)-branes, and thus are of signifi-
cance in AdS/CFT duality. Most of such solutions, however, pre-
serve part of the supersymmetry and usually one needs to break
it to construct more realistic models. Squashed and stretched so-
lutions with fluxes in the compact direction, on the other hand,
provide examples of supergravity solutions in which supersymme-
try is spontaneously broken, and therefore, might be of interest in
building the phenomenological models in the context of AdS/CFT
duality [1].

Recently, we constructed new solutions of eleven-dimensional
supergravity compactifying it to AdS5 and AdS2 × H2. We employed
canonical forms on S7 to write consistent ansätze for the 4-form
field strength. The twistor space construction of CP3 was the key
for identifying the new solutions [2], and as we will see in this
Letter, this construction also proves useful in finding yet more so-
lutions.

In this note, we extend the construction of [2] to the case of
compact manifold N(1,1), and use the twistor space language to
describe it as U (1) bundle over a base which itself is an S2 bundle
on CP2; the flag manifold. The first supergravity solutions of this
kind were found in [3,4], and then explicit (squashed) metrics were
constructed [5]. In Section 2, first we consider N(1,1) as an SO(3)

bundle over CP2 and then rewrite the metric as a U (1) bundle
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over the flag manifold. We then show that on this 7-dimensional
manifold there exists a natural harmonic 2-form, the Kähler form
of CP2, and use it to construct an 8-dimensional twistor bundle:
a U (1) bundle over N(1,1). Interestingly, as the harmonic 2-form
is anti-self-dual, the Ricci tensor of this 8-dimensional metric in
a suitable basis is diagonal with constant components. On the
other hand, in Section 3 we show that on this 8-dimensional man-
ifold there exists a harmonic 3-form which we use to write down
an ansatz for the 5-form field strength of type IIB supergravity.
In this way, we are able to reduce the field equations to a set
of algebraic equations. Among the three solutions we obtain one
is Einstein. In Section 3.1, we generalize our solution by turning
on 3-form fluxes, and show that there is a one parameter fam-
ily of such solutions. In a limit of large 3-form fluxes two U (1)

fiber directions of the metric shrink to zero size. In Section 3.2, we
discuss the supersymmetry of the solutions and show that they
break supersymmetry. Section 4 is devoted to a discussion of com-
pactification on N(1,1) and the supersymmetry of the solution.
Conclusions and the discussion are brought in Section 5.

2. U (1) bundles over N(1,1)

N(1,1) can be considered as an SO(3) bundle over CP2 ad-
mitting two Einstein metrics, and hence providing Freund–Rubin
type solutions of eleven-dimensional supergravity [6,1]. The bun-
dle structure is very similar to that of S7 where it is viewed as
an SU(2) bundle over S4. However, N(1,1) admits a 2-form, the
Kähler form of CP2, which, as we will see, is anti-self-dual and
harmonic. This allows us to construct a U (1) bundle over N(1,1)

so that the Ricci tensor is diagonal and has constant coefficients.
Therefore, with a suitable ansatz for the form fields we are able to
reduce the field equations to some algebraic equations.
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2.1. N(1,1) as an SO(3) bundle over CP2

Let us start by taking the following 7-dimensional metric of
N(1,1) written as an SO(3) bundle over CP2 [5,1]:

ds2
N(1,1) = dμ2 + 1

4
sin2 μ

(
Σ2

1 + Σ2
2 + cos2 μΣ2

3

)

+ λ2
(

(σ1 − cosμΣ1)
2 + (σ2 − cosμΣ2)

2

+
(
σ3 − 1

2

(
1 + cos2 μ

)
Σ3

)2)
, (1)

where λ is the squashing parameter. Here 0 � μ � π/2, and Σi ’s
are a set of left-invariant one-forms on SU(2):

Σ1 = cosγ dα + sinγ sinα dβ,

Σ2 = − sinγ dα + cosγ sinα dβ,

Σ3 = dγ + cosα dβ,

with 0 � γ � 4π , 0 � α � π , 0 � β � 2π . There is a similar ex-
pression for σi ’s:

σ1 = sinφ dθ + sin θ cosφ dτ ,

σ2 = − cosφ dθ + sin θ sinφ dτ ,

σ3 = −dφ + cos θ dτ ,

where they now take value on SO(3), i.e., 0 � τ � 2π , 0 � θ � π ,
0 � φ � 2π . They satisfy the SU(2) algebra; dΣi = − 1

2 εi jkΣ j ∧ Σk ,
dσi = − 1

2 εi jkσ j ∧ σk , with i, j,k, . . . = 1,2,3.
As in the case of S7, we can see that metric (1) can be rewritten

as a U (1) bundle over a base which itself is an S2 bundle on CP2,
the flag manifold, [7,8,2]:

ds2
N(1,1) = dμ2 + 1

4
sin2 μ

(
Σ2

1 + Σ2
2 + cos2 μΣ2

3

)
+ λ2(dθ − sinφ A1 + cosφ A2)

2

+ λ2 sin2 θ
(
dφ − cot θ(cosφ A1 + sinφ A2) + A3

)2

+ λ2(dτ − A)2, (2)

where

A1 = cosμΣ1, A2 = cosμΣ2,

A3 = 1

2

(
1 + cos2 μ

)
Σ3, (3)

and

A = cos θ dφ + sin θ(cos φ A1 + sinφ A2) + cos θ A3. (4)

In the new form of the metric, (2), we can further rescale the
U (1) fibers to λ̃ so that the Ricci tensor, in a basis we introduce
shortly, is still diagonal. So, let us take the metric to be

ds2
N(1,1) = dμ2 + 1

4
sin2 μ

(
Σ2

1 + Σ2
2 + cos2 μΣ2

3

)
+ λ2(dθ − sinφ A1 + cosφ A2)

2

+ λ2 sin2 θ
(
dφ − cot θ(cosφ A1 + sinφ A2) + A3

)2

+ λ̃2(dτ − A)2, (5)

and choose the following basis
e0 = dμ, e1 = 1

2
sinμΣ1, e2 = 1

2
sinμΣ2,

e3 = 1

2
sinμ cosμΣ3, e5 = λ(dθ − sinφ A1 + cosφ A2),

e6 = λ sin θ
(
dφ − cot θ(cosφ A1 + sinφ A2) + A3

)
,

e7 = λ̃(dτ − A). (6)

In this basis the Ricci tensor is diagonal and reads

R00 = R11 = R22 = R33 = 6 − 4λ2 − 2λ̃2,

R55 = R66 = 4λ2 + 1/λ2 − λ̃2/2λ4,

R77 = 4λ̃2 + λ̃2/2λ4. (7)

For λ2 = λ̃2 = 1/2, and λ2 = λ̃2 = 1/10 the metric becomes Ein-
stein, and thus one can get a solution of the Freund–Rubin type [6].
One can also turn on the 4-form flux in the compact direction to
get the Englert type solutions [3,5].

2.2. U (1) bundles over N(1,1)

To start our discussion of constructing U (1) bundles we need
to borrow some preliminary results, adapted to the N(1,1) case,
from [2]. Let us first introduce the following three 2-forms

R1 = sinφ
(
e01 + e23) − cosφ

(
e02 + e31),

R2 = cos θ cosφ
(
e01 + e23) + cos θ sinφ

(
e02 + e31)

− sin θ
(
e03 + e12),

K = sin θ cosφ
(
e01 + e23) + sin θ sinφ

(
e02 + e31)

+ cos θ
(
e03 + e12), (8)

with the angles and basis given in the previous subsection. These
three 2-forms are orthogonal to each other, i.e.,

R1 ∧ R2 = K ∧ R1 = K ∧ R2 = 0. (9)

With A in (4) rewritten as

A = cot θ
e6

λ
+ 2 cotμ

sin θ

(
cosφe1 + sinφe2), (10)

it is easy to prove that

de5 = −e6 ∧ A + 2λR1, de6 = e5 ∧ A + 2λR2. (11)

Further, if we define

Re Ω = R1 ∧ e5 + R2 ∧ e6, Im Ω = R1 ∧ e6 − R2 ∧ e5, (12)

using (11), we can see that

d ReΩ = 8λω4 − 2

λ
e56 ∧ K , d Im Ω = 0, (13)

with ω4 = e0 ∧ e1 ∧ e2 ∧ e3, the volume element of the base, which
is closed; dω4 = 0.

We can now look at an interesting feature of N(1,1) as a bun-
dle over CP2. The base manifold admits a closed 2-form, i.e., the
Kähler form:

J = 1

4
da = 1

4
d
(
sin2 μΣ3

) = e03 − e12, (14)

so that d J = 0. Moreover, we observe that on N(1,1) with met-
ric (5) J is also co-closed:
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d ∗7 J = −d
(

J ∧ e567)
= −2λ J ∧ Im Ω ∧ e7 − λ̃ J ∧ e56 ∧ (

2K + e56/λ2)
= 0, (15)

where we used

de56 = 2λ Im Ω,

de7 = −λ̃F = −λ̃dA = λ̃
(
2K + e56/λ2), (16)

and

J ∧ K = J ∧ Im Ω = 0, (17)

as K and Im Ω are self-dual, whereas J is anti-self-dual on CP2. All
this indicates that we can use the corresponding U (1) connection
of J to construct a U (1) bundle over N(1,1) so that its Ricci tensor
is diagonal with constant coefficients. Therefore, for the metric of
this 8-dimensional manifold, M , we take

ds2
8 = ds2

N(1,1) + λ̂2(dz − a)2, (18)

with λ̂ measuring the scale of the new U (1) fiber. Adding

e8 = λ̂(dz − a), (19)

to the vielbein basis (6), the 8d Ricci tensor reads

R00 = R11 = R22 = R33 = 6 − 4λ2 − 2λ̃2 − 8λ̂2,

R55 = R66 = 4λ2 + 1/λ2 − λ̃2/2λ4,

R77 = 4λ̃2 + λ̃2/2λ4, R88 = 16λ̂2. (20)

We see that as J is harmonic and anti-self-dual, we do not get
mixed components and the Ricci tensor remains diagonal.

3. Type IIB compactifications to AdS2

We now show that the eight dimensional metric constructed
above admits a harmonic 3-form, and then use this 3-form to
provide an ansatz for the five form field strength of type IIB su-
pergravity. To begin with, we note that on this manifold there are
generally three 4-forms which are closed and self-dual on CP2 [2].
On the other hand, since de8 = −4λ̂ J is anti-self-dual we can write
down a 5-form which is also closed:

∗8 ω3 = (
αω4 + βK ∧ e56 + γ e7 ∧ ImΩ

) ∧ e8 + ξ J ∧ e567, (21)

with α, β , γ , and ξ being constant parameters. In fact, using (13),
(16), and (17) we can see that d ∗8 ω3 = 0. Taking the Hodge dual
(with ε01235678 = 1), we have

ω3 = −αe567 − βK ∧ e7 + γ Re Ω − ξ J ∧ e8, (22)

which we also require to be closed. Using (13) together with

dK = − Im Ω/λ, (23)

we see that ω3 is closed if

β = 2αλ2, γ = −2αλλ̃, ξ = −3αλ2λ̃/λ̂. (24)

Hence, on M there exists a harmonic 3-form; dω3 = d ∗8 ω3 = 0.
To discuss type IIB supergravity, we take a direct product ansatz

for the metric:

ds2
10 = ds2

2 + ds2
8, (25)

together with the following ansatz for the self-dual 5-form:
F5 = ω3 ∧ ε2 + ∗8 ω3, (26)

which then satisfies the equation of motion, d ∗ F5 = 0, as ω3 is
harmonic.

Next, let us consider the Einstein equations. Taking the dilaton
and axion to be constant, in the Einstein frame, they read

R MN = 1

4 · 4!
(

F M P Q R S F N
P Q R S − 1

10
F P Q R S L F P Q R S L gMN

)

+ e−φ

4

(
H M P Q H N

P Q − 1

12
H P Q R H P Q R gMN

)

+ eφ

4

(
F M P Q F N

P Q − 1

12
F P Q R F P Q R gMN

)
. (27)

Using (20) and ansatz (26), the Einstein equations reduce to the
following algebraic equations:

6 − 4λ2 − 2λ̃2 − 8λ̂2 = α2/4,

4λ2 + 1

λ2
− λ̃2

2λ4
= (

2β2 − α2 + 2ξ2)/4,

4λ̃2 + λ̃2

2λ4
= (

4γ 2 − 2β2 − α2 + 2ξ2)/4,

16λ̂2 = (
4γ 2 + α2 + 2β2 − 2ξ2)/4. (28)

First we note that there is a solution for which the metric is Ein-
stein. Plugging (24) into the above equations, we get the following
solution:

λ2 = λ̃2 = 1/4, λ̂2 = 3/16, α2 = 12, (29)

with the Ricci tensor along AdS2:

Rμν = −12gμν. (30)

With the help of Mathematica, we have also found two more
solutions of Eqs. (28) for which the metric is not Einstein:

λ = λ̃ ≈ 0.4267, λ̂ ≈ 0.2661, α ≈ 4.1667, (31)

with Rμν ≈ −14.4583gμν , and

λ ≈ 0.5609, λ̃ ≈ 0.4095, λ̂ ≈ 0.4480,

α ≈ 3.3464, (32)

with Rμν ≈ −11.5538gμν .

3.1. A one parameter family of solutions

Having found a solution for which the metric is Einstein, we are
interested to see whether we can have solutions with H and F3
fluxes turned on. For this we note that indeed there are two
3-forms which are closed:

H = ζ de78 = ζ λ̃
(
2K + e56/λ2) ∧ e8 + 4ζ λ̂e7 ∧ J , (33)

and

F3 = η Im Ω = ηde56/2λ, (34)

with ζ and η two constants. With the above ansätze for the 3-form
fields, let us now turn to the type IIB equations of motion which,
in the Einstein frame, read:
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d ∗dφ = e2φ dc ∧ ∗dc − 1

2
e−φ H ∧ ∗ H + 1

2
eφ F̃3 ∧ ∗ F̃3,

d
(
e2φ ∗dc

) = −eφ H ∧ ∗ F̃3,

d ∗(
e−φ H − ceφ F̃3

) = F3 ∧ F5,

d ∗(
eφ F̃3

) = −H ∧ F5,

d ∗ F̃5 = H ∧ F3, (35)

where,

F3 = dC2, F5 = dC4, H3 = dB,

F̃3 = F3 − cH3, F̃5 = F5 − C2 ∧ H3, ∗ F̃5 = F̃5. (36)

First note that because of (9), (12), and (17) we have H ∧ F3 = 0,
and hence we can use the same F5 as in the previous section,
namely let

F̃5 = ω3 ∧ ε2 + ∗8 ω3, (37)

so that the last equation of (35) is satisfied. Taking φ to be con-
stant, c = 0, and the form fields as in (33), (34), and (37) we can
see that the rest of equations in (35) are also satisfied if

eφη = γ ζ, γ 2 = 8λ̂2 + 2λ̃2 + λ̃2/4λ4. (38)

This leaves us with four unknown coefficients to be fixed. How-
ever, when we plug these into Einstein equations (27) they collapse
into 3 equations:

6 − 4λ2 − 2λ̃2 − 8λ̂2 = γ 2

16λ2λ̃2
+ 2b2(λ̃2 + 4λ̂2),

4λ2 + 1

λ2
− λ̃2

2λ4
= γ 2

2

(
λ2

λ̃2
− 1

8λ2λ̃2
+ 9λ2

4λ̂2

)
+ b2λ̃2

2λ4
,

4λ̃2 + λ̃2

2λ4
= γ 2

(
1 − 1

16λ2λ̃2
− λ2

2λ̃2
+ 9λ2

8λ̂2

)

+ b2
(

8λ̂2 − 2λ̃2 − λ̃2

4λ4

)
, (39)

with b2 = e−φζ 2. So, we get a free parameter, b, that is not de-
termined by the equations of motion. Although we have not been
able to find the most general solution of (39), by examining the
pattern of numerical solutions generated by Mathematica we did
derive a particular solution:

λ2 = 1

4
, λ̃2 = 1

4(1 + b2)
, λ̂2 = 3

16(1 + b2)
, (40)

which can be checked by direct substitution in Eqs. (39). Note that
for b = 0, we get the solution in the previous section where we
had only F5 turned on. In the extreme limit b → ∞, λ̃ and λ̂ go
to zero and thus two U (1) directions of metric (18) and (5) shrink
to zero size. Surprisingly, the Ricci tensor of AdS2 turns out to be
independent of b,

Rμν = −12gμν. (41)

3.2. Supersymmetry

In this section we show that the solution we found in Section 3,
where we had turned on only the five-form flux with constant
dilaton, breaks all supersymmetries. When the dilaton and axion
are constant and there are no 3-form fluxes, the variation of the
dilatino vanishes. However, we need to check whether the super-
symmetry variation of the gravitino vanishes too, i.e.,

δψM = ∇Mε + i
Γ N P Q R SΓM F N P Q R Sε = 0. (42)
16 · 5!
To study the Killing equation, (42), on the direct product space
AdS2 × M of Section 3, let ε = ε ⊗ η, with ε and η the supersym-
metry parameters along AdS2 and M , respectively. We decompose
the 10d Dirac matrices as

Γμ = γ̂μ ⊗ γ9, μ = 0,1,

Γm+1 = 1 ⊗ γm, m = 1, . . . ,8,

where γ̂μ and γm are the 2 and 8 dimensional Dirac matrices re-
spectively, with γ̂0 = iσ2, and γ̂1 = σ1.

We can see that the supersymmetry is broken by looking at the
Killing equation along AdS2. First, note that

F N P Q R SΓ
N P Q R S = 10FmnpμνΓ mnpμν(1 − Γ11), (43)

so if we choose Γ11ε = (σ3 ⊗ γ9)(ε ⊗ η) = ε, with

Γ11 = −Γ0123456789,

then we have

F N P Q R SΓ
N P Q R SΓμε

= 20Fmnpρσ Γ mnpρσ Γμε

= 40Fmnp01
(
1 ⊗ γ mnp)

(σ3 ⊗ 1)(γ̂μ ⊗ γ9)(ε ⊗ η)

= 40Fmnp01
(
γ̂μ ⊗ γ mnp)

(ε ⊗ η). (44)

Therefore, to split Killing equation (42) along the AdS2 and the
compact direction, we need to require

Fmnp01γ
mnpη = kη, (45)

for k a constant, so that along AdS2 we have

∇με + 40kγ̂με = 0. (46)

But, since γmnp anticommutes with γ9 and since η has a defi-
nite chirality, γ9η = η, Eq. (45) can only have a zero eigenvalue,
i.e., we must have k = 0. On the other hand, if k = 0, then the
integrability of Killing spinor equation ∇με = 0 implies that the
2-dimensional Ricci tensor is vanishing which is not consistent
with the AdS2 factor that we obtained from solving the equations
of motion. Therefore we conclude that the solution breaks super-
symmetry. The above argument also applies to the solutions of
Section 3.1.

4. Type IIB on N(1,1)

Now that we have discussed the compactification of type IIB on
U (1) bundles over N(1,1), let us look at the related compactifica-
tion of type IIB on N(1,1) itself. We study solutions with only F5
flux turned on. So, let us take a direct product ansatz for the met-
ric:

ds2
10 = ds2

3 + ds2
N(1,1), (47)

together with F5 as

F5 = α
(

J ∧ ε3 + J ∧ e567), (48)

which is self-dual and closed because of (15). Using this ansatz
and the Ricci components of N(1,1) in (7), Einstein equations (27)
reduce to

6 − 4λ2 − 2λ̃2 = 0,

4λ2 + 1

λ2
− λ̃2

2λ4
= α2/2,

4λ̃2 + λ̃2

4
= α2/2,
2λ
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which have just one solution;

λ2 = λ̃2 = 1, α2 = 9. (49)

Note that in this solution the Ricci tensor along the base manifold,
i.e., CP2, vanishes. The non-compact space is an AdS3 with

Rμν = −9/2gμν. (50)

Finally, let us discuss the supersymmetry of this solution. For
AdS3 × N(1,1) compactification, we take the 10d Dirac matrices as

Γμ = γ̂μ ⊗ 1 ⊗ σ1, μ = 0,1,2,

Γm+2 = 1 ⊗ γm ⊗ σ2, m = 1, . . . ,7,

where γ̂μ and γm are 2 and 8 dimensional Dirac matrices respec-
tively, with γ̂0 = iσ2, γ̂1 = σ1, and γ̂2 = σ3. The supersymmetry
parameter then decomposes

ε = ε ⊗ η ⊗
(

1

0

)
, (51)

with Γ11 = 1 ⊗ 1 ⊗ σ3. As in the previous section, let us first look
at the Killing equation along the AdS3 factor. Note that

F N P Q R SΓ
N P Q R SΓμε

= 10Fmnνρσ Γ mnνρσ Γμ(1 + Γ11)ε

= 5!Fmn012
(
γ̂μ ⊗ γ mn ⊗ 1

)(
ε ⊗ η ⊗

(
1

0

))
, (52)

so, to split the Killing equation along AdS3 and N(1,1) we must
have

(
γ 03 − γ 12)η = 2iη. (53)

The integrability of the Killing equation along the base manifold
CP2, on the other hand, requires

(−2γ 01 + γ 23 − γ 2̂3̂ + c̃γ 1̂(γ 03 − γ 12))η = 0,(−2γ 23 + γ 01 − γ 2̂3̂ + c̃γ 1̂(γ 03 − γ 12))η = 0,

with c̃ a constant. The above equations imply

(
γ 03 − γ 12)η = 0, (54)

which is in conflict with Eq. (53). Therefore, we conclude that the
solution breaks supersymmetry.
5. Conclusions

We constructed a U (1) bundle over N(1,1), and showed that
type IIB supergravity can be consistently compactified over it. The
twistor space formalism was crucial in deriving the solutions, spe-
cially when there were 3-form fluxes turned on. This approach has
earlier been used in deriving new eleven-dimensional supergravity
solutions [2], and also in [9] to study new solutions of massive IIA
supergravity.

We noticed that N(1,1) admits a harmonic 2-form and used it
to write the twistor bundle eight dimensional metric. With this
choice of the connection, the Ricci tensor turned out to be di-
agonal with constant components. Furthermore, we saw that this
eight dimensional manifold allows a harmonic 3-form, which was
then employed to write a consistent ansatz for the 5-form field
strength of type IIB supergravity. In this way, we showed that the
field equations could be reduced to a set of algebraic equations.
Among the three solutions we found one was Einstein. The discus-
sion became more interesting when we turned on 3-form fluxes
and obtained a one parameter family of solutions. Amusingly, we
observed that there was a limiting solution for which two fiber
directions of the metric were shrinking to zero size, whereas the
2-dimensional cosmological constant turned out to be independent
of the free parameter. At the end, we further studied the related
compactification over N(1,1) to AdS3.

Since all the solutions we found in this Letter break supersym-
metry it is interesting to see whether they are associated with
some brane configurations. This would then allow us to study
AdS/CFT in a non-supersymmetric setup.
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