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Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-
related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early
years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including
gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of
tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered
gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of
cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery
in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs,
and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of
tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hall-
mark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer
in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies
of application in gastric cancer. This review focuses on the most common and important phenomenon of epi-
genetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
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1. Introduction

Gastric cancer is highly prevalent in Asia, particularly China, and is
one of the leading causes of cancer-related death worldwide [1]. There
are two main types of gastric adenocarcinoma: intestinal and diffuse.
The accepted paradigm for the pathogenesis of the intestinal-type is a
multistep progression from chronic gastritis to gastric atrophy to intesti-
nal metaplasia to dysplasia. The pathogenesis of diffuse-type gastric
cancer is not fully understood. AlthoughHelicobacter pylori (H. pylori) in-
fection is probably a predisposing factor [2], there are no known histo-
logic precursor lesions of this type of gastric cancer. Gastric cancer is
largely resistant to radio/chemo-therapy, and the main treatment con-
sists of performing a gastrectomy. Although the recent diagnostic and
therapeutic advances have provided excellent survival for patients with
early gastric cancer, gastric cancer is usually diagnosed at an advanced
stage and the prognosis is still poor [3]. Thus, a better understanding of
the pathogenesis and molecular events of gastric cancer may lead to
new diagnostic, therapeutic and preventive strategies to this disease.

Gastric carcinogenesis involves gradual accumulation of various ge-
netic and epigenetic alterations, leading to gain-of-function in oncogenes
and loss-of-function in tumor suppressor genes. Genetic alterations, such
as p53,KRAS, PIK3CA,ARID1A,MLL3 andMLLmutations, aswell as PIK3CA,
C-MET, ERBB4, and CD44 amplifications, are frequently found in gastric
cancer, suggesting that they may be key tumorigenic events and may
play a critical role in gastric tumorigenesis [4–9]. A growing body of evi-
dence now suggests that, in addition to genetic alterations, epigenetic al-
terations, including DNA methylation of CpG islands, post-translational
modifications of histones, microRNAs, noncoding RNAs, and nucleosome
positioning, are also involved in the initiation and progression of gastric
cancer [10–13]. Epigenetic events, most prominently manifested by
stable and heritable changes in gene expression that are not due to any
alteration in the primary DNA sequence, signify the fundamental molec-
ular principles in which genetic information is organized and read [14].

In the past decades, it has become increasingly evident that
altered epigenetic control of gene expression plays a substantial
role in many different diseases, including malignancies [13]. Gene
transcription depends strongly on chromatin structure: the open or
loosely coiled conformation has a permissive effect on transcription,
whereas the closed conformation represented by tightly packed
protein–DNA complexes is transcriptionally inactive. DNAmethylation
is the first epigenetic mark shown to be critically involved in the
tumorigenesis [15], which provides a stable gene silencing mechanism
that plays an important role in regulating gene expression and
chromatin architecture, in association with histone modifications and
other chromatin associated protein. Unlike DNA methylation, histone
modifications lead to either transcriptional activation or repression
depending upon which residues are modified and the type of modifica-
tions present. For example, lysine acetylation correlates with transcrip-
tional activation, whereas lysine methylation leads to transcriptional
activation or repression [16–18]. In this review, we take a comprehen-
sive look at the current understanding of aberrant DNA methylation
as it is the most extensively studied deregulated epigenetic mechanism
in gastric cancer.

2. Mechanism of gene silencing mediated by promoter methylation

DNA methylation is the most extensively studied epigenetic mod-
ification in which a methyl group is added to the fifth carbon position
of cytosine residue in a CpG dinucleotide. Clusters of CpG dinucleo-
tides in GC rich regions of the genome called “CpG islands (CGI)” fre-
quently occur in the 5′-flanking promoter areas of genes. The process
of cytosine methylation is catalyzed by DNA methylatransferases
(DNMTs) [19]. Currently, there are three established DNMTs: DNMT1,
DNMT3a and DNMT3b. DNMT1 is involved in maintaining methylation
by methylating newly synthesized strands of DNA during DNA replica-
tion, whereas DNMT3a and DNMT3b are mainly involved in de novo
methylation [20]. In general, increased methylation in the promoter re-
gion of a gene leads to reduced gene expression, whereasmethylation in
the transcribed region has a variable effect on gene expression [21,22].
Several directmechanisms have been proposed to account for transcrip-
tional repression by promoter methylation. The first mechanism in-
volves direct interference with binding of specific transcription factors
to their recognition sites in their promoters [23,24]. The secondpossibil-
ity is that one family of proteins that recognize methyl-CpG, known as
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methyl-CpG binding proteins (MBPs), can elicit the repressive potential
of methylated DNA [25].

3. Factors affecting gene methylation in gastric epithelia

Considering the deep and wide involvement of aberrant DNA
methylation of CGI in human cancers, therefore, any insightful under-
standing of aberrant methylation and subsequent gene silencing, such
as methylation inducing factors, is essential for cancer prediction,
prevention, treatment and prognosis evaluation. Increasing evidences
have revealed the potential of some environmental factors, such as
chemical pollutants, dietary components and other exogenous fac-
tors, to modulate the establishment and maintenance of epigenetic
modifications, thereby leading to long-lasting effects [26]. Similarly,
environmental factors are critical to the development of gastric can-
cer. It is clear that the major etiologic risk factor for gastric cancer is
H. pylori infection. Marshall and Warren are awarded the 2005
Nobel Prize in Medicine and Physiology in part for their discovery of
its causative role in gastric cancer. Currently, some contributing fac-
tors have been identified in the aberrant methylation process in gas-
tric epithelia, such as aging, diet, chronic inflammation and microbial
infection [27].

3.1. Aging

Age is an important risk factor in the development of gastric can-
cer. Tumor-related genes are rarely methylated in nonneoplastic gas-
tric epithelia from young people, which, in contrast, are frequently
found in older people. The association between decreasing global
DNA methylation and aging has been reported in corroborating
studies involving both human and animal models [28–30]. Moreover,
aberrant methylation of several tumor-related genes is significantly
associated with the age in gastric cancer, such as CDH1 and DAPK
[31]. However, it is noteworthy that age-related methylation of
tumor-suppressor genes applies mostly to exonic or far upstream
regions within a promoter CGI, and that, even within the same
promoter CGI, a small region covering the transcription start site is
kept unmethylated [32,33]. Rapidly expanding knowledge related to
life-long cellular–environmental interactions has been observed dur-
ing the last decades. However, the molecular mechanisms by which
the environment sensitizes cells and its effects on human health
and aging are not totally understood. The functional relationship be-
tween epigenetic modifications and aging still remains largely un-
known, although the relationship between specific epigenotypes
and disease phenotypes has been thoroughly studied [34].

3.2. Diet and physical activity

Dietary factors, such as folate deficiency and choline deficiency,
are known to induce genomic hypomethylation, through induction
of deficiency of methyl donors, such as S-adenosylmethionine (SAM)
[35]. Methionine is an essential amino acid found in poultry, fish, and
dairy products while folate is an essential nutrient found in fruits and
vegetables [36,37]. Moreover, it has been reported that the prevalence
of promoter methylation of CDX2 and BMP-2 is significantly higher in
gastric cancer derived from patients with a low green tea intake
than those with a high intake. One possibility is that green tea contains
several polyphenolic compounds inhibiting DNMT activity, such as
2-epigallocatechin-3-gallate (EGCG) [38]. It is well known from epide-
miological studies that physical activity protects against malignancies,
including gastric cancer [39,40], which is supported by a previous
study that shows CACNA2D3 methylation to be more frequently found
in gastric cancer patients with no physical activity than in those with
physical activity [38]. In fact, a large number of tumor-related genes
are methylated in gastric epithelia, and it is therefore essential to pin
down whether and which diet factors are relevant. Equally important
is the thorough understanding of the underlying mechanisms in these
cases so as to deter potential gastric carcinogenesis.

3.3. Chronic inflammation

Epidemiological studies have identified chronic infections and in-
flammation as major risk factors for various types of cancer. Several
inflammatory mediators, such as TNF-α, IL-1β and reactive nitrogen
species, are thought to be involved in the aberrant DNA methylation
during tumorigenesis, including gastric cancer [27,41]. Although the
link between cancer and inflammation is firstly proposed in the nine-
teenth century, the molecular mechanism has not yet been clearly
understood [42].

3.4. H. pylori

The connection between H. pylori and gastric cancer is based on
the epidemiologic data and animal models [43–45]. H. pylori infection
may cause chronic inflammation, accumulation of reactive oxygen
species (ROS), and oxidative DNA damage in the gastric mucosa
[46]. In addition, it has been reported that H. pylori infection enhances
aberrant DNA methylation in gastric mucosa, and that further con-
tributes to gastric carcinogenesis through silencing tumor suppressor
genes [47–50]. H. pylori eradication leads to a dramatic decrease of
gene methylation, which also suggests that this process may delay
or reverse H. pylori-mediated gastric tumorigenesis [51,52]. However,
H. pylori infection cannot affect mRNA and protein expression of
DNMTs [48,53]. To date, the mechanism of H. pylori-induced aberrant
gene methylation in gastric carcinogenesis remains poorly understood.

3.5. Epstein–Barr Virus (EBV)

EBV is a ubiquitous human herpes virus that was first identified in
Burkitt's lymphoma cells. EBV is the etiologic agent of infectious
mononucleosis, and more than 90% of adults become EBV carriers.
EBV may cause many malignancies, such as Burkitt lymphoma, naso-
pharyngeal carcinoma, Hodgkin lymphoma, peripheral natural killer/
T-cell lymphoma, smooth muscle tumor, and gastric cancers [54]. Ab-
errant methylation of tumor suppressor genes, such as CDH1, p15,
p16INK4a and p73, is frequently observed in EBV-associated gastric
cancer, which is one of the most characteristic abnormalities in
EBV-associated gastric cancer., whereas methylation is less frequently
detected in surrounding non-neoplastic mucosa [55–58], suggesting
that aberrant methylation may be a critical mechanism of EBV-related
gastric tumorigenesis. However, the molecular mechanism underlying
EBV-induced gene methylation is still not clear. One possible mecha-
nism is that EBV upregulates LMP2A expression through the phosphor-
ylation of STAT3, further inducing DNMT1 expression [59]. Therefore,
LMP2A may play an essential role in the epigenetic abnormalities in
host cells and in the development and maintenance of EBV-associated
cancer.

4. Tumor-related gene methylation and their clinical significance
in gastric tumorigenesis

Promoter methylation is now regarded as one of the major mech-
anisms to inactivate tumor-related genes, particularly tumor suppres-
sor genes, along with genetic alterations, ultimately leading to gastric
carcinogenesis. Until now, a large number of genes with different
biological functions have been found to be methylated in gastric can-
cer (Table 1). Promoter methylation is an important hallmark of can-
cer cells, which plays a key role in the initiation and progression of
tumor, including gastric cancer. Additionally, aberrant methylation
of a number of genes is significantly associated with clinicopatholog-
ical characteristics and clinical outcomes in gastric cancer (Table 2).



Table 1
Genes commonly methylated in gastric cancer.

Functions Gene Assay Methylation prevalence (%) References

Normal Para-cancer Cancer

DNA repair hMLH1 MSP 20.0 N/A 8.8–72.9 [61,66,67,229,230]
MGMT MSP 5.7–8.0 N/A 26.7–36.8 [67–69,229,230]

Cell cycle CDKN1C Q-MSP 66.7 96.0 36.0 [182]
IGFBP3 Q-MSP N/A N/A 58.3 [231]
P16 MSP 3.8–35.0 N/A 21.3–45.0 [31,67,75,79–82,229,230]
TCF4 Pyrosequencing 40.0 N/A 67.0 [232]
PRDM5 MSP, BS 0.0 N/A 50.0–88.0 [233]

Cell adherent/invasion/migration CDH1 MSP 16.0–36.1 N/A 50.6–84.0 [31,75,90,182,229]
FLNc MSP 8.0 N/A 37.0–41.3 [67,229]
GRIK2 Q-MSP 7.41–30.0 N/A 50.0–66.6 [97,98]
HOXA10 Q-MSP 7.4 0.0 24.0 [182]
LOX MSP 12.0 N/A 27.0–41.3 [229,234]
TIMP3 MSP 3.8 N/A 13.2 [230]
TSP1 MSP 3.1 N/A 35.4 [235]

Cell growth/differentiation HAI-2/SPINT2 MSP 0.0 N/A 75.0 [100]
HOXA1 Q-MSP 18.5 72.0 48.0 [182]
HoxD10 MSP 0.0 N/A 85.7 [104]
NDRG2 MSP 20.0 N/A 54.0 [236]
RARRES1 Q-MSP 3.0–51.9 84.0 10.0–36.0 [171,182]
SHP1 MSP 20.8 25.0 [230]

Apoptosis BNIP3 Q-MSP 15.0 N/A 39.0–65.0 [97,112]
CACNA1G Q-MSP 11.1 4.0 48.0 [182]
CMTM3 MSP 14.0 N/A 44.0 [237]
DAPK MSP 24.5–42.2 N/A 30.9–83.2 [75,112,116,230]
GPX3 Pyrosequencing 39.0 N/A 30.1–60.0 [127,128]
GSTP1 MSP 1.9 N/A 20.6 [230]
PCDH10 MSP, BS 37.0 N/A 82.0 [238]
PCDH17 MSP N/A N/A 95.0 [239]
RBP1 Q-MSP 44.4 80.0 64.0 [182]
SFRP2 Q-MSP 10.0–20.0 N/A 55.0–73.3 [97,240]

Transcriptional regulation ZNF545 MSP 0.0 27.0 51.9 [241]
CHD5 Q-MSP 20.0 N/A 40.0 [97,134]
HLTF MSP 8.3–12.0 N/A 45.8–53.3 [229,242]
ZIC1 MSP N/A N/A 94.6 [144]
RUNX3 Q-MSP 7.4 8.0 56.0–75. 2 [141,182,243]

Ras pathway hDAB2IP MSP 6.0 N/A 46.0 [244]
HRASLS MSP N/A N/A 40.0–46.0 [67,229,234]
RASSF1A MSP 5.7 N/A 45.6–61.8 [116,149,230]
RASSF2 Q-MSP 35.0 N/A 14.0–70.0 [67,75,97,245]
RKIP MSP 4.1 N/A 62.1 [246]

STAT pathway SOCS-1 MSP 12.0 N/A 44.0 [156–158]
Wnt pathway APC MSP 37.7 N/A 52.9 [230,247]

Dkk-3 MSP 34.6 N/A 67.6 [163,166]
SFRP5 Q-MSP 66.7 76.0 56.0 [182]

Retinoic acid pathway RARß MSP 16.0–20.0 N/A 36.0–50.7 [75,116,229]
CRBP1 MSP 0.0 N/A 33.0 [171]

Others KL MSP 0.0 47.5 [181,182]
ITGA4 Q-MSP 29.6 24.0 96.0 [182]
CDKN2A MSP, Q-MSP 29.6 20.0 30.4–36 [182]
TP73 Q-MSP 3.7 0.0 24.0 [182]
BTG4 MSP 0.0 N/A 73.7 [248]
DACT1 MSP, BS 0.0 N/A 29.3 [249]
NPR1 MSP N/A N/A 42.5 [231]
ECRG4 MSP 6.7 53.3 69.4 [250]
EDNRB Pyrosequencing 6.5 N/A 50.4 [250]
CHFR Q-MSP 5.0 N/A 48–65 [97,182]
HACE1 Q-MSP N/A N/A 26.0 [31]
LRP1B Q-MSP 23.0 N/A 61.0 [251]
NR3C1 Q-MSP 15.0 N/A 24.0–30.0 [97,182]
TFPI2 Q-MSP 0.0 N/A 18.0–80.9.0 [127,175,176]
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4.1. DNA repair

During replication, the primary function of the eukaryotic DNA
mismatch repair (MMR) system is to recognize and correctmismatched
base pairs within the DNA helix [60,61]. Microsatellite instability (MSI),
mainly caused bymismatch repair defect, is a common phenomenon in
gastric cancer [62–64]. hMLH1, which encodes a mismatch repair en-
zyme, is activated in response toDNA damage, further inducing apopto-
sis of tumor cells. Epigenetic changes involving promoter methylation
of hMLH1 have been implicated in the development of various types
of gastric cancer [65–67]. In addition, our previous study suggests that
hMLH1methylation is closely associated with poor prognosis of gastric
cancer patients [67].

O6-methylguanine-DNAmethyl-transferase (MGMT) is a DNA-repair
enzyme that protects cells from the carcinogenic effects of alkylating
agents by removing adducts from the O6 position of guanine. MGMT is
inactivated by promotermethylation in human cancers, including gastric
cancer [67–69]. Significantly, promoter methylation-mediated MGMT



Table 2
Correlation of gene methylation with clinical outcomes in gastric cancer.

Functions Gene Correlation with clinical outcomes References

DNA repair hMLH1 Association with poor prognosis [67]
MGMT Association with lymph node metastasis, TNM stage and poor survival [67,68,73,75]

Cell cycle p16 Correlation with poor tumor differentiation, lymph node metastasis, and
poor survival

[38,67,91–93]

TCF4 Correlation with tumor size, Lauren classification, depth of invasion, and
lymph node metastasis

[232]

Cell adherent/invasion/migration CDH1 Association with worse prognosis, tumor size, lymph vascular invasion,
infiltration depth, lymph node and distant metastasis

[93,182]

FLNc Association with a poor prognosis [67]
LOX Association with depth of tumor invasion, lymph node metastasis, TNM

stage and poor survival
[234]

TIMP3 Associated with tumor localization [116]
TSP1 Correlation with TNM stage [235]

Cell growth/differentiation HoxD10 Association with poor prognosis [104]
HAI-2/SPINT2 Association with poor differentiation and lymph node metastasis [107]
NDRG2 Association with lymph node metastasis, tumor invasion,

Borrmann classification and TNM stage
[236]

Apoptosis BNIP3 Association with poor survival [112,122]
CACNA2D3 Correlation with lymph node metastasis [38]
DAPK Correlation with poorly differentiated tumors and lymph node metastasis [75,112,114,116]
GPX3 Correlation with lymph node metastasis [127,128]
PCDH10 Association with poor survival [238]
PCDH17 Correlation with low tumor stage and lymph node metastasis [239]

Transcriptional regulation HLTF Association with TNM stage [242]
PAX6 Association with tumor stage, lymph node metastasis and poor prognosis [116]
ZNF545 Association with poor prognosis [241]
RUNX3 Correlation with depth of tumor invasion, lymph node and distant metastasis [141]

Ras pathway RASSF1A Association with TNM stage and poor prognosis [75,116,252]
RASSF2 Association with poor prognosis, histological differentiation, depth of tumor

invasion, regional lymph node and distant metastasis, and TNM stage
[67,245]

RKIP Association with TNM stage, histological differentiation, depth of invasion,
lymph node and distant metastasis.

[246]

STAT pathway SOCS-1 Association with poor prognosis and metastasis [157]
Wnt pathway Dkk-3 Association with cancer-related death [163]
Retinoic acid pathway RAR-ß Correlation with lymph node metastasis [116]
Others KL Association with the poor prognosis [181]

DACT1 Association with tumor size, lymph node and distant metastasis [249]
BTG4 Correlation with cell differentiation, lymph node metastasis [248]
ECRG4 Correlation with tumor stage [250]
EDNRB Correlation with lymph node and distant metastasis [250]
LRP1B Correlation with tumorigenicity in nude mice [251]
TFPI2 Correlation with poor prognosis [127]
CALCA Correlation with lymph node metastasis [116]
QKI Correlation with poor differentiation status, depth of invasion, lymph node

and distant metastasis, advanced TNM stage, and poor survival
[253]
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inactivation has been shown to be associated with increased frequency
of G:C → A:T transition mutations in the p53 tumor suppressor gene in
brain, colorectal and lung cancer [70–72], and in the KRAS gene in gastric
and colorectal cancer [73,74]. These observations suggest thatMGMT in-
activation may cause the ensuring mutation in genes. Moreover, MGMT
methylation is also associatedwith poor clinical outcomes of gastric can-
cer patients [67,73,75].
4.2. Cell cycle

In normal cells, cell cycle is controlled by a complex series of sig-
naling pathways by which a cell grows, replicates its DNA and divides.
Dysregulation of cell cycle components may lead to tumor formation
[76]. Tumor suppressor gene p16 is an inhibitor of cyclin-dependent
kinase 4 (CDK4) and 6 (CDK6), which bind cyclin D1 and phosphory-
late the retinoblastoma protein (Rb) tumor suppressor genes [77,78].
Thus, p16 contributes to the maintenance of Rb in unphosphorylated
state, which inhibits cell cycle progression. Aberrant methylation of
CGI is the main mechanism for p16 inactivation, not deletions or
mutations, in primary gastric cancer [79–81]. Furthermore, p16meth-
ylation is an early event in carcinogenesis and has been shown to sig-
nificantly increase the risk of malignant transformation of epithelial
dysplasia in the stomach organs in a follow up cohort study [82].
Thus, p16 methylation may served as a prognosis predictor for pre-
cancerous lesions. It is noteworthy that p16 methylation is closely as-
sociated with poor clinical outcomes of gastric cancer patients
[67,73,75]. Particularly, p16 methylation affected the overall progno-
sis in gastric cancer regardless if the patients have early-stage or
late-stage tumors, suggesting that this gene plays an important role
in the multistep process of gastric carcinogenesis [67].

PR (PRDI-BF1 and RIZ) domain proteins (PRDM) are a subfamily of
the kruppel-like zinc finger gene products and play key roles during
cell differentiation and malignant transformation [83]. PRDM5 meth-
ylation is frequently found in colorectal and gastric cancer, and close-
ly associated with its transcriptional silencing. Introducing PRDM5
into gastric cancer cells using an adenoviral vector increases the
fractions of G2-M and sub-G1 cells, suggesting that PRDM5 acts as a
tumor suppressor in gastric cancer [84].
4.3. Cell adherent/invasion/migration

The progression of a tumor in situ to an invasive tumor is a major
prerequisite to cancer metastasis which requires the movement and
invasion of cancer cells from the primary tumor into the surrounding
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tissue. With cancer progression, cancer cells lose intercellular contact,
becoming motile, and invading surrounding tissues. Cell–cell and
cell–matrix interactions are crucially involved in neoplastic transfor-
mation and metastasis. Defective cell adhesion contributes to loss of
contact inhibition of growth, an important early step in the neoplastic
process [85].

CDH1 gene (also known as E-cadherin gene) is located on chromo-
some 16q22.1. Themature CDH1 protein is a transmembrane glycopro-
tein that is localized mainly to the adherens junctions of epithelial cells
[86]. CDH1 inactivation is thought to contribute to tumor progression
through increased proliferation, invasion, and metastasis [86–88]. It is
well known that CDH1 is one of the most important tumor suppressor
genes in human cancers, particularly in gastric cancer [87,88]. Several
possible genetic and epigenetic mechanisms have been proposed to
inactivate CDH1 gene in gastric cancer, including gene mutations,
chromosomal deletions, as well as epigenetic alterations, such as pro-
moter methylation, histone deacetylation, and chromatin condensation
[87–89]. Increasing evidences show that CDH1 is frequentlymethylated
in primary gastric cancer, particularly in the poorly differentiated gas-
tric cancer and diffuse histotype [90]. It is thus considered as a common
inactivating second hit for CDH1 gene [91,92]. Moreover, CDH1methyl-
ation is associated with poor prognosis of gastric cancer patients [93],
emphasizing its potential clinical significance.

Glutamate receptor, ionotropic, kainite 2 (GRIK2) is the second
ionotropic glutamate receptor family member, which is responsible
for mediating most excitatory neurotransmissions in the mammalian
central nervous system (CNS) [94,95]. It has been reported that GRIK2
plays a tumor-suppressor function in gastric cancer [96]. Moreover,
GRIK2 is highly frequently methylated in gastric cancer cell lines
and primary tumors, but not in adjacent normal tissues [97,98], and,
at least in part, leads to gene silencing. Importantly, restoring GRIK2
expression in gastric cancer cells decreased tumor cell migration, fur-
ther demonstrating its oncosuppressor role in gastric cancer.

4.4. Cell growth/differentiation

Cell proliferation is achieved through the transition of cells from
G0/G1 arrest into the active cell cycle. The growth signal transduction
is disrupted in almost all tumor types [76]. Promoter methylation is
closely associated with the transcriptional silencing of tumor-related
genes and affects cell growth and differentiation in human cancers, in-
cluding gastric cancer [99,100].

The homeobox (Hox) superfamily genes encode transcription fac-
tors that control cell differentiation and morphogenesis during devel-
opment [101]. Emerging evidence suggests that the expression of Hox
genes is controlled by epigenetic mechanisms, such as HoxD10 [102].
The dysregulation of Hox genes may affect various pathways, which
play critical roles in tumorigenesis and cancermetastasis [103]. A recent
study shows that HoxD10 is frequently methylated in primary gastric
cancer tissues, but not in normal gastric tissues [104]. In addition,
HoxD10 methylation is significantly associated with poor survival of
gastric cancer patients. Ectopic expression of HoxD10 dramatically in-
hibits gastric cancer cell proliferation, migration and invasion, and in-
duces cell apoptosis [104].

HAI-2/SPINT2, a novel member of the Kunitz family of serine pro-
tease inhibitors, is an endogenous inhibitor of hepatocyte growth fac-
tor (HGF) activator (HGFA) [105]. HGFA is an enzyme that transforms
the inactivate, single-chain preform of HGF to its active heterodimeric
form, initiating MET signaling via binding to MET receptor [106].
HAI-2/SPINT2 can inhibit HGF/MET pathway by suppressing HGFA
to play its tumor suppressor function in cancer cell growth, invasion,
metastasis and angiogenesis [107]. Promoter methylation and tran-
scriptional silencing of HAI-2/SPINT2 have been reported in several
human cancers, including gastric cancer [99,107–110]. Moreover,
HAI-2/SPINT2 methylation is significantly associated with poor differ-
entiation and metastasis in gastric cancer [107].
4.5. Apoptosis

Every cell in a multicellular organism has the potential to die by
apoptosis. However, cancer is one of the scenarios where too little ap-
optosis occurs, resulting in malignant cells that will not die. The
mechanism of apoptosis is complex and involves many pathways. De-
fects can occur at any point along these pathways, leading to malig-
nant transformation, tumor metastasis and resistance to anticancer
drugs [111]. Aberrant methylation of many apoptosis-related genes,
such as death-associated protein kinase (DAPK) and Bcl-2/adenovirus
E1B 19 kDa-interacting protein 3 (BNIP3), has been reported in various
cancers [112].

DAPK is known to encode a structurally unique calcium/calmodulin-
dependent serine/threonine kinase, which exerts as a positive regulator
of cell apoptosis [113]. It is frequentlymethylated in human cancers as a
tumor suppressor gene, including gastric cancer [75,114–116]. Addi-
tionally,DAPKmethylation is significantly correlatedwith poorly differ-
entiated tumor and lymph nodemetastasis, and poor survival in gastric
cancer [112,114].

BNIP3 is a proapoptotic member of the Bcl-2 family and can be in-
duced by hypoxia, which is an important cellular stress involved in
various human diseases, including malignancies [117]. It usually oc-
curs during cardiac ischemia and in the hypoxic regions of tumors,
and it acts against prosurvival proteins, including Bcl-2 and Bcl-xl
[118–120]. Promoter methylation-mediated BNIP3 inactivation has
been reported in gastric cancer [112,121,122]. Similar to DAPK meth-
ylation, BNIP3 methylation is also associated with poor prognosis in
gastric cancer [112].

The glutathione peroxidase family (GPX) is amajor antioxidative en-
zyme family that catalyzes the reduction of hydrogen peroxide, organic
hydroperoxide, and lipid peroxides by reduced glutathione [123,124].
Excessive ROS production in the stomach promotes DNA damage in gas-
tric epithelial cells. Normal cells have intact anti-oxidative properties
that protect cells from ROS-induced DNA damage and cell injury. Gluta-
thione peroxidase 3 (GPX3), also named plasma glutathione peroxidase,
is the only known selenocysteine containing an extracellular antioxidant
isoform. GPX3 is selectively expressed in normal human tissues, includ-
ing the gastrointestinal tract [125,126]. GPX3 methylation has been
found in gastric cancer, and is significantly correlated with lymph
node metastasis [127,128]. Moreover, GPX3 plays a key role in cell mi-
gration and metastasis in gastric tumorigenesis [128].

4.6. Transcriptional regulation

Chromodomain helicase DNA binding protein 5 (CHD5) belongs to
a superfamily of SWI2/SNF2-related ATPases, which is one major
group of chromatin remodeling proteins [129]. By regulating chroma-
tin structure, CHD5 promotes the expression of p19ARF that functions
to stabilize p53, which is inactivated in more than half of human can-
cers [130]. Suppression of CHD5 expression by promoter methylation
has been found in many cancers, including gastric cancer [131–134].
The ectopic expression of CHD5 in gastric cancer cells leads to a sig-
nificant growth inhibition [134], further validating and extending
the idea that chromatin remodeling proteins function in carcinogenesis.

Runt-related transcription factor 3 (RUNX3), belongs to the RUNX
family of transcription factor, and acts as a tumor suppressor by reg-
ulating a series of cancer-related genes, such as p53, p21, ATBF1, Notch
1, p27, and Caspace3 [135–139]. It has been reported that loss of
RUNX3 contributes to hyperplasia and intestinal metaplasia of gastric
mucosa epithelial cells in an animal model [140], whereas the resto-
ration of RUNX3 expression activates apoptotic pathway in gastric
cancer [137]. It has been observed that RUNX3 activity is reduced by
promoter methylation in gastric cancer [141]. Moreover, RUNX3
methylation is correlated with the depth of tumor invasion, lymph
node and distant metastasis, as well as lymphatic vessel invasion in
gastric cancer [141].
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ZIC1, a vital transcription factor with zinc finger domains, has
been implicated in a variety of developmental processes, including
neurogenesis and myogenesis [142,143]. Recently, ZIC1 has been docu-
mented to participate in the progression of human cancers, including
gastric cancer [144,145]. ZIC1 expression is significantly decreased in
gastric cancer tissues compared with normal gastric tissues, and, ac-
cordingly, ZIC1 is frequently methylated in gastric cancer, but not in
normal gastric tissues, suggesting that it may play a tumor suppressor
function in gastric cancer [144]. Indeed, ectopic expression of ZIC1
leads to the growth inhibition of gastric cancer cells by regulation of
sonic hedgehog, PI3K/Akt and MAPK signaling pathways in gastric can-
cer [145].

4.7. Ras pathway

The Ras superfamily of GTP-binding proteins regulates a diverse
spectrum of intracellular processes, including cellular proliferation
and differentiation, intracellular vesicular trafficking, cytoskeletal
control, and cell death [146,147]. RASSF1A, a number of the Ras asso-
ciation domain family, is identified as a tumor suppressor gene, which
plays a critical role in cell cycle regulation, apoptosis and microtubule
stability by regulating Ras signaling pathway [148]. RASSF1A expression
is silenced by promotermethylation in awide variety of human tumors,
including gastric cancer [75,116,149], suggesting that it may play a
pivotal role in human carcinogenesis. Moreover, RASSF1A methylation
is closely associated with TNM stage and poor prognosis of gastric can-
cer patients [116]. Thus, RASSF1A represents a potential diagnostic and
therapeutic target in gastric cancer.

4.8. STAT pathway

Cytokines are secreted proteins that regulate cellular proliferation
and differentiation. The stimuli of these mediators mainly lead to the
transcriptional activation of Janus kinase/signal transducers and acti-
vators of transcription (JAK/STAT) pathway [150], which is involved
in initiation and progression of several cancers [151–153]. The suppres-
sor of cytokine signaling (SOCS)-1 is identified as a protein involved in a
negative feedback loop for cytokine signaling, particularly the JAK/STAT
pathway [154]. Interaction of SOCS-1 with Jak1, Jak2 or Jak3 markedly
reduces their tyrosine-kinase activity and suppresses the tyrosine-
phosphorylation and activation of STATs [155]. It has been reported
that SOCS-1 is downregulated by promoter methylation in gastric can-
cer [156–158]. Moreover, SOCS-1methylation is significantly associated
with lymphnodemetastasis and advanced tumor stage in gastric cancer
[157]. Taken together, these observations suggest that SOCS-1methyla-
tionmay be a useful marker for detection and evaluation of progression
and metastatic potential of gastric cancer.

4.9. Wnt pathway

The Wnt/β-catenin signaling pathway has a well-established role
in the regulation of cell growth and proliferation, as well as in stem
cell differentiation, and its constitutive activation is commonly
found in human cancers, including gastric cancer [159,160]. Interest-
ingly, several antagonists of Wnt signaling have been identified with
two functional classes: the secreted frizzled-related protein (sFRP)
class and the dickkopf (Dkk) class [161].

The Wnt antagonist Dkk-3 is downregulated by promoter methyla-
tion in various types of human cancers, including gastric cancer,
which makes it a candidate tumor-suppressor gene [162–167]. The
function loss ofDkk-3may contribute to overactivation ofWnt signaling
pathway and it has a tumor-promoting effect through the dysregulation
of cell proliferation and differentiation. Ectopic expression of Dkk-3 in
gastric cancer cells dramatically inhibits cell growth, further implicating
its tumor suppressor function [163]. Notably, Dkk-3 methylation is
significantly associated with poor prognosis of gastric cancer patients
[163].

4.10. Retinoic acid pathway

Retinoids regulate the growth, differentiation, and apoptosis of
normal cells during embryonic development and of premalignant
and malignant cells during carcinogenesis. Most of these effects are
mediated by nuclear retinoic receptors, including retinoid acid recep-
tors (RARs)α, β, and γ [168,169]. RARβ encodes retinoic acid receptor
beta, a member of thyroid–steroid hormone receptor superfamily of
nuclear transcriptional regulator, which functions as a tumor sup-
pressor gene in various contexts where its absence is associated
with tumorigenicity and its presence causes cell cycle arrest [170].
Methylation-associated inactivation of this gene is frequently found
in human cancers, including gastric cancer [75,116,167]. In addition,
RARβ methylation is closely associated with poor prognosis of gastric
cancer patients [116].

Cellular retinol-binding proteins (CRBPs), which belong to the
family of fatty acid-binding proteins, are present in the circulation,
and most tissues rely on the uptake and cytosolic metabolism of
retinoic acid to activate RARs and RXRs. CRBPs possess high-affinity
binding for retinoic acid and possibly function as chaperone-like pro-
teins to regulate the prenuclear phase of retinoic acid signaling
[171,172]. CRBP1methylation is found in gastric cancer, and is closely
associated with low levels of mRNA expression [173], suggests that
loss-of-function of CRBP1 may contribute to gastric carcinogenesis.

4.11. Others

Many other genes are also found to be aberrantlymethylated in gas-
tric cancer. For example, TFPI2 (also knownas PP5 orMSPI) is amember
of the Kunitz-type serine protease inhibitors, which negatively regulate
the enzymatic activities of trypsin, plasmin and VIIa–tissue factor com-
plex [174]. Recently, TFPI2methylation and under-expression are com-
monly found in human cancer, including gastric cancer [127,175,176],
thus, it has been proposed that TFPI2may be a tumor suppressor in car-
cinogenesis. Notably, TFPI2 methylation may be a significant and inde-
pendent prognostic factor in gastric cancer [127].

As a hormone similar in molecular structure to insulin, IGF-1 func-
tions in a paracrine/autocrine fashion. Binding of IGF-1 to IGF-1R, a
receptor tyrosine kinase, can initiate multiple intracellular signaling
critical for cell growth and survival, such as PI3K/Akt signaling path-
ways [177]. KL (klotho) is found as an inhibitor of IGF-1 pathways,
indicating that KL may be relevant to cancer development by remod-
eling the interaction of tumor-initiating cells with microenvironment
[178–180]. KLmethylation is frequently found in gastric cancer and is
significantly associated with poor clinical outcomes of gastric cancer
patients [181,182]. Restoration of KL expression in gastric cancer
cells indeed can inhibit cell growth and Erk phosphorylation, induce
cell apoptosis and increase the expression of p21 [181], further
supporting its oncosuppressor role in gastric cancer.

5. Clinical utility of methylation marker in gastric cancer

The prognosis of gastric cancer is dependent on clinical stage at di-
agnosis and treatment [183]. Diagnostic tools such as gastrointestinal
(GI) endoscopy followed by pathological analysis or fluoroscopy have
proven useful. However, its diagnostic power depends on the techni-
cal skill of the endoscopist. Moreover, GI endoscopy is neither com-
fortable nor risk free for patients, and it is associated with frequent
morbidity. Thus, there is an urgent need to develop less-invasive
and more efficient diagnostic strategies for early detection of gastric
cancer.

DNA methylation is a major mechanism of inactivation of tumor-
related genes, particularly tumor suppressor genes, in neoplastic
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cells [19]. The advantages of gene methylation as a marker for the de-
tection and diagnosis cancer in biopsy specimens and non-invasive
body fluids, such as serum or gastric washes, have led to many studies
of application in gastric cancer (Table 3). For example, high preva-
lence of gene methylation, such as DAPK, CDH1, GSTP1, p15, and p16,
is found in the serum of gastric cancer patients [184]. These methyla-
tion markers detected in serum, possibly caused by circulating nucleic
acid released by gastric cancer cells, is significantly correlated with
gene methylation in gastric cancer tissues [185]. The quantification
of serum RUNX3 methylation has great potential value for detecting
and diagnosing gastric cancer and even in the postoperative evalua-
tion of gastric cancer patients [141]. Serum RASSF1A methylation in
gastric cancer patients (34.0%) is significantly higher than those in
benign gastric disease patients (3.3%). Importantly, although the
sensitivity of serum RASSF1A methylation in detecting gastric and
colorectal cancer is relatively low, its specificity is very high (approx-
imate 98.3%) [186]. Promoter methylation of p16 is frequently
detected in tumor samples, but not in matched normal tissues. More-
over, p16 methylation is an early molecular event in gastric carcino-
genesis. Thus, detection of p16 methylation in serum may be a
useful biomarker for early detection of gastric cancer [187]. Similar
to tissue samples, multiple genes are also concurrently methylated
in the serum of gastric cancer patients [188]. Thus, serum gene meth-
ylation is common in gastric cancer and aberrant methylation in the
promoter region of these genes may be a promising biomarker.

The use of stomach juice as a molecular diagnostic or prediction
tool has been previously shown to be unfeasible because DNA is easily
denatured by gastric acidity. Many mucosal cells can be found in
stomach juice, the detection of molecular markers in stomach juice
is thus a possible noninvasive approach to detect gastric cancer. It
has been reported that gene methylation is successfully detected in
gastric washes, including MINT25, RORA, GDNF, ADAM23, PRDM5,
and MLF1 [189]. In addition, these genes show frequent differential
methylation between gastric cancer and normal mucosa in the train-
ing, test and validation sets. Among them, MINT25 methylation has
the best sensitivity (90%) and specificity (96%). These findings sug-
gest that DNA from gastric washes can be an appropriate alternative
to DNA from biopsied tissues for determining methylation status in
gastric cancer and screening this deadly disease.

6. Current methods for DNA methylation analysis

In the past decade, there has been an explosion of interest in DNA
methylation, and with it, many new and powerful techniques have
been developed to facilitate DNA methylation analysis, including
blotting, genomic sequencing, methylated DNA immunoprecipitation,
microarray analysis, bisulfite sequencing (BS), methylation-specific
Table 3
Key studies in methylation-based detection of gastric cancer.

Genes Specimen Assay Coverage (

TFPI2 Serum Q-MSP 10.0
RUNX3 Serum Q-MSP 70.0
p16 Serum MSP 19.0–51.9
RARβ Serum MSP 25.0
CDH1 Serum MSP 25.0–57.4
RASSF1A Serum MSP 34.0
DAPK Serum MSP 48.1
GSTP1 Serum MSP 14.8
p15 Serum MSP 55.6
MINT25 Gastric washes Pyrosequencing 90.0
RORA Gastric washes Pyrosequencing 57.9
GDNF Gastric washes Pyrosequencing 65.0
ADAM23 Gastric washes Pyrosequencing 68.4
PRDM5 Gastric washes Pyrosequencing 65.0
MLF1 Gastric washes Pyrosequencing 60.0
PCR (MSP), quantitative methylation-specific PCR (Q-MSP), bisulfite
pyrosequencing, quantum dot-based nanoassay, single-molecule real-
time detection, fluorimetric assay, and electrochemical detection
[190–193]. Among them, BS, MSP, Q-MSP and bisulfite pyrosequencing
are the most common and important methods.

BS is the most straightforward means of detecting the methylation
status of every cytosine residue within the target sequence [194]. In
general, after the denaturation and bisulfite modification, the frag-
ment of interest is amplified by PCR. The PCR products may be se-
quenced directly to provide an average across all molecules in the
sample [195,196]. This procedure is simple and less prone to artifacts
but cannot provide information about the methylation patterns of in-
dividual alleles. MSP is a simple, sensitive, and specific method for de-
termining the methylation status of small samples of DNA, including
those from paraffin-embedded or microdissected tissues. The differ-
ences between methylated and unmethylated alleles that arise from
bisulfite treatment are the basic principle of MSP. MSP is a technique
that has facilitated the detection of DNAmethylation at CpG islands in
cell lines and clinical samples including fresh/frozen tissues [197–199].
Although MSP is a simple technique that can easily be incorporated in
mostmolecular biology laboratories, the ability to accurately determine
the promotermethylation status of genes largely depends on the careful
design of MSP primers as well as other steps [200]. Q-MSP is a highly
sensitive assay, capable for detectingmethylated alleles in the presence
of a 10,000-fold excess of unmethylated alleles [201,202]. The most
advantage of this technique, as compared to existing techniques, is its
potential to allow the rapid screening of hundreds to thousands of sam-
ples. Unlike other techniques, Q-MSP assay is completed at the PCR step,
without the need for further gel-electrophoretic separation or hybridi-
zation. However, this technique requires expensive hybridization
probes, that serial dilution of fully methylated and fully unmethylated
control samples must be included in each experiment to generate
standard curves, and that heterogeneous DNA methylation may not
be reliably detected [203]. Bisulfite pyrosequencing is a quantitative
methodology for the investigation of DNA methylation of sequences
up to 100-bp in length [204,205]. Biotin-labeled, single-stranded PCR
products generated from bisulfite-treated DNA are used as a template
with an internal primer to perform the pyrosequencing reaction. Al-
though bisulfite pyrosequencing allows the identification of heteroge-
neous DNA methylation patterns, it cannot provide the information of
a single allele resolution [204,206].

DNA methylation promises to be an interesting field over the next
time. There has been a marked proliferation in the number of tech-
niques available for studying DNA methylation. These methods may
become important techniques to discover some aberrant methylation
markers for early diagnosis and prognostic evaluation of human can-
cers, including gastric cancer.
%) Sensitivity (%) Specificity (%) References

N/A N/A [254]
94.1 100 [141]
N/A N/A [187,255,256]
N/A N/A [255]
N/A N/A [255,256]
N/A 98.3 [186]
N/A N/A [256]
N/A N/A [256]
N/A N/A [256]
90.0 95.8 [189]
60.0 85.4 [189]
65.0 89.6 [189]
70.0 83.3 [189]
65.0 93.7 [189]
60.0 85.4 [189]
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7. Demethylation and re-expression of epigenetically silenced
tumor-related genes

As mentioned above, promoter methylation of multiple tumor-
related genes, particularly tumor suppressor genes, is a common mo-
lecular event, which may play a significant role in the development of
gastric cancer and correlation with clinical outcomes. Despite the de-
velopments in diagnosis and treatment technologies, the prognosis of
gastric cancer patients is still poor, even for those who undergo com-
plete resection of their carcinomas. Given that DNA methylation is a
potentially reversible epigenetic alteration, demethylation inhibitors
are thus proposed to be potential new anticancer agents [207,208].
Currently, tumor suppressor genes are promising targets for epige-
netic drug therapies because many cell cycle inhibitors and tumor
suppressor genes are methylated or silenced in cancer cells. Demeth-
ylation of these genes causes re-expression of tumor suppressor
genes, leading to cell cycle inhibition and apoptosis.

It is known that aberrant expression of DNMTs plays a key role in
carcinogenesis, including gastric cancer [209]. Therefore, the emerg-
ing interest in the use of DNMT inhibitors as a potential strategy for
cancer treatment is constantly increasing. Most of the DNMT inhibi-
tors have been described and are divided into two families: the nucle-
oside analogs that have been known and studied for many years, and
the non-nucleoside inhibitors which structure varies according to
their inhibitory mechanism [210]. The first molecules that have
been characterized as DNMT inhibitors are initially used as anti-
metabolites and cytotoxic agents in leukemia chemotherapies, such
as 5-azacytidine (azacitidine) and 5-aza-2-deoxycytidine (decitabine).
At higher doses, these compounds are cytotoxic, they are thus used at
low doses in order to achieve only the demethylation effect with little
cytotoxicity. Among all the nucleoside inhibitors described, azacitidine
and decitabine have been approved by the FDA in 2004 and 2006, re-
spectively, for the treatment of MDS and AML [211]. The success of
azacitidine and decitabine as DNMT inhibitors in human chemotherapy
prompted researchers to identify new compounds with a better phar-
macokinetic profile [212,213].

A particular interest has recently emerged from non-nucleoside
molecules, whose mechanism does not rely on DNA incorporation.
Flavonoids (or bio flavonoids) are organic compounds mainly
extracted from plants. For example, EGCG is the main polyphenol of
the green tea and its preventive anti-cancerous properties have
been regularly reported in the literature for many years. Another
well-known molecule of this family is genistein. Recently, both
EGCG and genistein have been characterized as enzymatic and cellu-
lar DNMT inhibitors, leading to demethylation and re-expression of
tumor suppressor genes, such as RARβ, p16INK4a andMGMT [214,215].
As none of the described non-nucleoside inhibitors have entered clinical
development yet, there is still a long way to go before the identification
of novel, selective, non-nucleoside DNMT inhibitors [216].

In addition to drug-induced demethylation, increasing evidences
indicate an interesting possibility of a demethylating enzyme func-
tioning in the regulation of methylation. The recent discovery of
the ten-eleven translocation (TET) family of 5-mC hydroxylases, in-
cluding TET1, 2, and 3, which can specifically oxidize 5-hmC to
5-hydroxymethylcytosine (5-hmC), has added another dimension of
complexity to our understanding of DNA methylation [217]. 5-hmC
has thus been proposed as a potential intermediate for active DNA
demethylation [218–220], which plays an important role in carcino-
genesis. Additionally, TET proteins are not only involved in the active
DNA demethylation process, they have also been shown to prevent
DNA methylation by physically binding to DNA [221]. Recently,
interesting clues on the role of TET proteins in tumorigenesis are
quickly emerging. A very recent study reveals that TET1 suppresses
breast cancer invasion through activating the tissue inhibitors of
metalloproteinases [222], implicating its tumor suppressor role. Nota-
bly, the loss of TET and 5-hmC in a broad spectrum of solid tumors
[223–227] is closely associated with poor prognosis of patients with
melanoma [223], and gastric cancer (unpublished data). Thus, key
genes affecting the generation of 5-hmC, such as TET genes, can be
therapeutically targeted to restore 5-hmC in human cancers, includ-
ing gastric cancer, thus revealing new strategies for cancer treatment.
8. Conclusions and future perspectives

Gastric cancer is a disease driven by progressive genetic and epi-
genetic aberrations. The role of epigenetics in the pathogenesis of
cancer has come to the forefront over the last decade. It is now well
established that epigenetic events, such as DNA methylation, can be
driver events in the pathogenesis of gastric cancer, and that these epi-
genetic events cooperate with gene mutations in the progression of
normal gastric mucosa to cancer, with more genes in the gastric
cancer genome affected by altered DNA methylation than by gene
mutations. These alterations in DNA methylation contribute to the
molecular heterogeneity of gastric cancers, as illustrated by the iden-
tification of molecular subtype of gastric cancers that can be identi-
fied by their unique methylated gene signatures. Given the role of
altered DNA methylation in directing the pathogenesis of gastric can-
cer, studying DNA methylation signatures and developing them as
biomarkers for diagnosis, prognosis and direction of therapy is likely
to yield clinically useful assays that will be used to direct patient care.

There are recently developed epigenetic biomarkers for the early
detection of gastric cancer and efforts are in progress to develop
epigenetic markers for prognostic and predictive markers relevant
for therapy. However, in many important diagnostic scenarios, DNA
from the cancer represents only a small fraction of the total DNA in
the clinical sample, including the use of DNA from plasma, serum,
urine, feces, or sputum for early diagnosis or therapeutic monitoring
and the use of DNA from surgical margins or lymph nodes to monitor
the extent of disease. An exciting evolution of the development of
epigenetic biomarkers is the improvement of the technology, which
now allows us to profile epigenetic alterations at a much higher
sensitivity and genomic scale previously not possible. Digital ap-
proaches involve the counting of methylated and unmethylated frag-
ments, one-by-one, thereby dramatically increasing the signal-to-
noise ratio of the assay. Methyl-BEAMing technology, which extends
the digital BEAMing (beads, emulsion, amplification and magnetics)
technology to analysis of DNAmethylation, addresses this need [228].

It is well known that the field of active DNA demethylation has un-
dergone a significant acceleration in the past few years. However, it
has been reported that DNA remethylation and gene re-silencing usu-
ally occur after removal of demethylation treatment, and this may
significantly hamper the therapeutic value of DNA methylation inhib-
itors. Continued efforts to investigate these molecular mechanisms
will allow for a better understanding of the role of epigenetic alter-
ations in gastric cancer and will lead to the translation of these in-
sights into the clinical arena.
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