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Abstract

We associate to every divisorial (e.g., smooth) varietyX with only constant invertible globa
functions and finitely generated Picard group a Pic(X)-graded homogeneous coordinate ring. T
generalizes the usual homogeneous coordinate ring of the projective space and construction
and Kajiwara for smooth and divisorial toric varieties. We show that the homogeneous coor
ring defines in fact a fully faithful functor. For normal complex varietiesX with only constant globa
functions, we even obtain an equivalence of categories. Finally, the homogeneous coordinate
a locally factorial complete irreducible variety with free finitely generated Picard group turns
be a Krull ring admitting unique factorization.
 2003 Elsevier Inc. All rights reserved.

Introduction

The principal use of homogeneous coordinates is that they relate the geome
algebraic varieties to the theory of graded rings. The classical example is the pro
n-space: its homogeneous coordinate ring is the polynomial ring inn+1 variables, grade
by the usual degree. Cox [6] and Kajiwara [13] introduced homogeneous coor
rings for toric varieties. Cox’s construction is meanwhile a standard instrument in
geometry; for example, it is used in [5] to prove an equivariant Riemann–Roch The
and in [20] for a description ofD-modules on toric varieties.

In this article, we construct homogeneous coordinates for a fairly general class o
braic varieties: LetX be a divisorial variety—e.g.,X is Q-factorial or quasiprojective [3]—
such thatX has only constant globally invertible functions and the Picard group Pic(X) is
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finitely generated. If the (algebraically closed) ground fieldK is of characteristicp > 0,
then we require that the multiplicative groupK∗ is of infinite rank overZ, and that Pic(X)

has nop-torsion. Examples of such varieties are complete smooth rational complex
eties. Moreover, all Calabi–Yau varieties fit into this framework.

To define the homogeneous coordinate ring ofX, consider a family of line bundlesL
on X such that the classes[L] generate Pic(X). Choosing a common trivializing coverU

for the bundlesL, one can achieve that they form a finitely generated free abelian groΛ,
which is isomorphic to a subgroup of the group of cocyclesH 1(O∗,U). The sheaves o
sectionsRL, whereL ∈Λ, then fit together to a sheafR of Λ-gradedOX-algebras. Such
sheavesR and their global sectionsR(X) are often studied. For example, in [12] they ha
been used to characterize when Mori’s program can be carried out, and in [11] they
starting point for quotient constructions in the spirit of Mumford’s Geometric Invar
Theory.

A first important observation is that we can pass from the aboveΛ-gradedOX-algebras
R to a universalOX-algebraA, which is graded by the Picard group Pic(X). This solves
in particular the ambiguity problem mentioned in [12, Remark, p. 341]. More precisel
introduce in Section 3 the concept of ashifting familyfor theOX-algebraR. This enables
us to identify in a systematic manner two homogeneous partsRL andRL′ if L andL′
define the same class in Pic(X). The result is a projectionR→A onto a Pic(X)-graded
OX-algebraA.

The homogeneous coordinate ringof X then is a pair(A,A). The first partA is the
Pic(X)-gradedK-algebra of global sectionsA(X). The meaning of the second partA

is roughly speaking the following: It turns out thatA is the algebra of functions of
quasiaffine varietŷX. Such algebras need not be of finite type overK, andA is a datum
describing all the possible affine closures ofX̂. From the algebraic point of view, th
homogeneous coordinate ring is afreely graded quasiaffine algebra; the category of such
algebras is introduced and discussed in Sections 1 and 2.

The first main result of this article is that the homogeneous coordinate ring is in
functorial, that means that given a morphismX→ Y of varieties, we obtain a morphis
of the associated freely graded quasiaffine algebras, see Section 5. In fact, we prov
more, see Theorem 5.7:

Theorem. The assignmentX �→ (A,A) is a fully faithful functor from the categor
of divisorial varietiesX with finitely generated Picard group andO∗(X) = K∗ to the
category of freely graded quasiaffine algebras.

Note that this statement generalizes in particular the description of the set Hom(X,Y )

of morphisms of two divisorial toric varietiesX, Y obtained by Kajiwara in [13
Corollary 4.9]. In the toric situation,O∗(X)=K∗ is a usual nondegeneracy assumption
just means thatX has no torus factors.

Having proved Theorem 5.7, the task is to translate geometric properties of a
varietyX to algebraic properties of its homogeneous coordinate ring(A,A). In Section 6,
we do this for basic properties ofX, like smoothness and normality. In the latter case,
K-algebraA is a normal Krull ring. Moreover, we discuss quasicoherent sheaves, an
give descriptions of affine morphisms and closed embeddings.
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In our second main result, we restrict to normal divisorial varietiesX with finitely
generated Picard group andO(X) = K. We call such varietiestame. The homogeneou
coordinate ring(A,A) of a tame varietyX is pointedin the sense thatA is normal with
A0 = K andA∗ = K∗. Moreover,(A,A) is simple in the sense that the correspond
quasiaffine varietŷX admits only trivial “linearizable” bundles, see Section 7 for
precise definition. In Theorem 7.3, we show

Theorem. The assignmentX �→ (A,A) defines an equivalence of the category of ta
varieties with the category of simple pointed algebras.

Specializing further to the case of a free Picard group gives the class ofvery tame
varieties, see Section 8. Examples are the Grassmannians and all smooth comple
varieties. For this class, we obtain a nice description of products in terms of homoge
coordinate rings, see Proposition 8.5. The possibly most remarkable observation
very tame varieties open a geometric approach to unique factorization conditio
multigraded Krull rings, see Proposition 8.4:

Proposition. A very tame variety is locally factorial if and only if its homogene
coordinate ring is a unique factorization domain.

We conclude the article with an example underlining this principle: LetX be the
projective line with the points 0,1 and∞ doubled, that means thatX is nonseparated
Nevertheless,X is very tame and its Picard group is isomorphic toZ4. As mentioned
before,A = A(X) is a unique factorization domain. It turns even out to be a clas
example of a factorial singularity, namely

A=K[T1, . . . , T6]/
〈
T 2

1 + · · · + T 2
6

〉
.

The quasiaffine varietŷX corresponding to the homogeneous coordinate ring ofX is an
open subset of Spec(A). The prevarietyX is a geometric quotient of̂X by a free action of a
four-dimensional algebraic torus. In particular,X̂ is locally isomorphic to the toric variet
K× (K∗)4. That means that̂X is toroidal, even with respect to the Zariski Topology,
not toric.

1. Quasiaffine algebras and quasiaffine varieties

Throughout the whole article we work in the category of algebraic varieties follo
the setup of [14]. In particular, we work over an algebraically closed fieldK, and the word
point always refers to a closed point. Note that in our setting a variety is reduced but i
neither be separated nor irreducible.

The purpose of this section is to provide an algebraic description of the categ
quasiaffine varieties. The idea is very simple: Every quasiaffine varietyX is an open subse
of an affine varietyX′ and hence is described by the inclusionO(X′) ⊂ O(X) and the
vanishing ideal of the complementX′ \X in O(X′).
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However, in general the algebra of functionsO(X) of a quasiaffine varietyX is not of
finite type, see, for example, [21]. Thus there is no canonical choice of an affine closX′
for a givenX. To overcome this ambiguity, we have to treat all possible affine closur
once.

We introduce the necessary algebraic notions. By aK-algebra we always mean
reduced commutative algebraA overK having a unit element. We write〈I 〉 for the ideal
generated by a subsetI ⊂ A. The set of nonzero divisors of aK-algebraA is denoted
by nzd(A). Recall that we have a canonical inclusionA⊂ nzd(A)−1A into the algebra o
fractions.

Definition 1.1. Let A be aK-algebra.

(i) A closing subalgebraof A is a pair(A′, I ′) whereA′ ⊂ A is a subalgebra of finite typ
overK andI ′ ⊂A′ is an ideal inA′ with

I ′ =√〈I ′ ∩ nzd(A)〉, A=
⋂

f∈I ′∩nzd(A)

Af , A′f =Af for all f ∈ I ′.

(ii) Two closing subalgebras(A′, I ′) and(A′′, I ′′) of A are calledequivalentif there is a
closing subalgebra(A′′′, I ′′′) of A such that

A′ ∪A′′ ⊂A′′′, I ′′′ =√〈I ′〉 =√〈I ′′〉.
Note that Definition 1.1(ii) does indeed define an equivalence relation. In terms of

notions, the algebraic data to describe quasiaffine varieties are the following

Definition 1.2.

(i) A quasiaffine algebrais a pair(A,A), whereA is aK-algebra andA is the equivalence
class of a closing subalgebra(A′, I ′) of A.

(ii) A homomorphismof quasiaffine algebras(B,B) and (A,A) is a homomorphism
µ :B→A such that there exist(B ′, J ′) ∈B and(A′, I ′) ∈A with

µ
(
B ′

)⊂A′, I ′ ⊂√〈µ(J ′)〉.

We show now that the category of quasiaffine varieties is equivalent to the cat
of quasiaffine algebras by associating to every varietyX an equivalence classO(X) of
closing subalgebras ofO(X). We use the following notation: Given a varietyX and a
regular functionf ∈O(X), let

Xf :=
{
x ∈X; f (x) �= 0

}
.

Definition 1.3. LetX be a quasiaffine variety. LetA′ ⊂O(X) be a subalgebra of finite typ
andI ′ ⊂A′ a radical ideal. We call(A′, I ′) a natural pair onX, if for everyf ∈ I ′ the set
Xf is affine withO(Xf )= A′f and the setsXf , f ∈ I ′, coverX. We defineO(X) to be
the collection of all natural pairs onX.
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So, our first task is to verify that the collectionO(X) is in fact an equivalence class
closing subalgebras ofO(X). This is done in two steps.

Lemma 1.4. Let X be a quasiaffine variety. Let(A′, I ′) be a natural pair onX, and set
X′ := Spec(A′).

(i) The morphismX → X′ defined byA′ ⊂ O(X) is an open embedding,I ′ is the
vanishing ideal ofX′ \X, and(A′, I ′) is a closing subalgebra ofO(X).

(ii) For a subalgebraA′′ ⊂ O(X) of finite type withA′ ⊂ A′′, consider the idealI ′′ :=√〈I ′〉 of A′′. Then(A′′, I ′′) is a natural pair onX.

Proof. Recall that for anyf ∈O(X) we haveO(Xf )=O(X)f . In particular,X→X′ is
locally given by isomorphismsXf → X′f , f ∈ I ′. This implies thatX→ X′ is an open
embedding and thatI ′ ⊂ A′ is the vanishing ideal ofX′ \X. Finally, (A′, I ′) is a closing
subalgebra, because up to passing to the radical,I ′ is generated by thef ∈ I ′ that are
nontrivial on each irreducible component ofX.

We turn to assertion (ii). LetX′′ := Spec(A′′). It suffices to verify that the morphism
X→X′′ defined byA′′ ⊂O(X) is an open embedding and thatI ′′ ⊂ A′′ is the vanishing
ideal of the complementX′′ \ X. Again this holds, because for everyf ∈ I ′ the map
X→X′′ restricts to an isomorphismXf →X′′f . ✷
Lemma 1.5. The collectionO(X) of all natural pairs on a quasiaffine varietyX is an
equivalence class of closing subalgebras ofO(X).

Proof. First note that there exist natural pairs(A′, I ′) on X, because for every affin
closureX ⊂ X′ we obtain such a pair by settingA′ := O(X′) and definingI ′ ⊂ A′ to
be the vanishing ideal of the complementX′ \X. Moreover, by Lemma 1.4(i), we know
that every natural pair is a closing subalgebra ofO(X).

We show that any two natural pairs(A′, I ′) and(A′′, I ′′) on X are equivalent closing
subalgebras ofO(X). LetA′′′ ⊂O(X) be any subalgebra of finite type containingA′ ∪A′′.
Define an ideal inA′′′ by I ′′′ := √〈I ′〉. Then Lemma 1.4 tells us that the pair(A′′′, I ′′′) is
a closing subalgebra.

We have to show thatI ′′′ equals
√〈I ′′〉. By Lemma 1.4, the morphismX→X′′′ defined

by the inclusionA′′′ ⊂ O(X) is an open embedding andI ′′′ ⊂ A′′′ is the vanishing idea
of X′′′ \X. For everyf ∈ I ′′, the mapX→ X′′′ restricts to an isomorphismXf →X′′′f .
Hence the desired identity of ideals follows from

X =
⋃
f∈I ′′

Xf .

Finally, we show that if a closing subalgebra(A′′, I ′′) is equivalent to a natural pa
(A′, I ′), then also(A′′, I ′′) is natural. Choose(A′′′, I ′′′) as in Definition 1.1(ii). By
Lemma 1.4(ii), the pair(A′′′, I ′′′) is natural. In particular,Xf is affine for everyf ∈ I ′′.
Moreover,X is covered by theseXf , becauseI ′′′ equals

√〈I ′′〉. ✷
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We are ready for the main result of this section. Given a quasiaffine varietyX, we denote
as before byO(X) the collection of all natural pairs onX. For a morphismϕ :X→ Y of
varieties, we denote byϕ∗ :O(Y )→O(X) the pullback of functions.

Proposition 1.6. The assignmentsX �→ (O(X),O(X)) andϕ �→ ϕ∗ define a contravarian
equivalence of the category of quasiaffine varieties with the category of quas
algebras.

Proof. First of all, we check that the above assignment is in fact well defined
morphisms. Letϕ :X → Y be any morphism of quasiaffine varieties. Choose a clo
subalgebra(B ′, J ′) in O(Y ). By Lemma 1.4(ii), we can construct a closing subalge
(A′, I ′) in O(X) such thatϕ∗(B ′)⊂A′.

Now, consider the affine closuresX′ := Spec(A′) andY ′ := Spec(B ′) of X andY . The
morphismϕ′ :X′ → Y ′ defined by the restrictionϕ∗ :B ′ →A′ mapsX to Y . SinceI ′ and
J ′ are precisely the vanishing ideals of the complementsX′ \X andY ′ \ Y , we obtain the
condition required in Definition 1.2(ii):

I ′ ⊂√〈ϕ∗(J ′)〉.
Thus ϕ �→ ϕ∗ is in fact well defined. Moreover,X �→ (O(X),O(X)) and ϕ �→ ϕ∗

clearly define a contravariant functor, and this functor is injective on morphisms.
For surjectivity, letµ :O(Y )→O(X) be a homomorphism of quasiaffine algebras.

(A′, I ′) ∈O(X) and(B ′, J ′) ∈O(Y ) as in Definition 1.2(ii). Thenµ defines a morphism
ϕ′ from Spec(A′) to Spec(B ′). The condition on the ideals and Lemma 1.4(i) ensure
ϕ′ restricts to a morphismϕ :X→ Y . Clearly, we haveϕ∗ = µ.

It remains to show that up to isomorphism, every quasiaffine algebra(A,A) arises from
a quasiaffine variety. Let(A′, I ′) ∈ A, setX′ := Spec(A′), and letX ⊂ X′ be the open
subvariety obtained by removing the zero set ofI ′. ThenO(X) = A, and (A′, I ′) is a
natural pair onX. Lemma 1.5 givesO(X)=A. ✷

We conclude this section with the observation, that restricted on the catego
quasiaffine varietiesX with O(X) of finite type, our algebraic description collapses
a very convenient way:

Remark 1.7. For any quasiaffine algebra(A,A) we have

(i) The algebraA is of finite type overK if and only if (A, I) ∈A holds with some radica
idealI ⊂A.

(ii) The quasiaffine algebra(A,A) arises from an affine variety if and only if(A,A) ∈ A

holds.

2. Freely graded quasiaffine algebras

In this section, we introduce the formal framework of homogeneous coord
rings, namely freely graded quasiaffine algebras and their morphisms. The geo
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interpretation of these notions amounts to an equivariant version of the equivale
categories presented in the preceding section.

Definition 2.1. Let (A,A) be a quasiaffine algebra, and letΛ be a finitely generated abelia
group. We say that(A,A) is freely gradedby Λ (or freelyΛ-graded) if there is a grading

A=
⊕
L∈Λ

AL,

and there exists a closing subalgebra(A′, I ′) ∈ A admitting homogeneous elemen
f1, . . . , fr ∈ I ′ such thatI ′ equals

√〈f1, . . . , fr 〉 and every localizationAfi has in each
degreeL ∈Λ a homogeneous invertible element.

Example 2.2. For n � 2, the polynomial ringK[T1, . . . , Tn] together with the usua
Z-grading can be made into a freely graded quasiaffine algebra: LetA be the class o
(A, I), whereI := 〈T1, . . . , Tn〉.

Theweight monoidof an integral domainA graded by a finitely generated abelian gro
Λ is the submonoidΛ∗ ⊂Λ consisting of all weightsL ∈Λ with AL �= {0}. For the weight
monoid of a freely graded quasiaffine algebra, we have

Remark 2.3. Let (A,A) be a freelyΛ-graded quasiaffine algebra. Then the weight mon
Λ∗ ⊂Λ of A generatesΛ as a group.

We turn to homomorphisms. The final notion of a morphism of freely graded quasi
algebras will be given below. First we have to consider homomorphisms that are com
with the structure:

Definition 2.4. Let the quasiaffine algebras(A,A) and(B,B) be freely graded byΛ and
Γ , respectively. A homomorphismµ : (B,B)→ (A,A) of quasiaffine algebras is calle
graded, if there is a homomorphism̃µ :Γ →Λ with

µ(BE)⊂Aµ̃(E) for all E ∈ Γ. (2.4.1)

By Remark 2.3, a graded homomorphismµ : (B,B) → (A,A) of freely graded
quasiaffine algebras uniquely determines its accompanying homomorphismµ̃ :Γ → Λ.
Moreover, the composition of two graded homomorphisms is again graded.

For the subsequent treatment of our homogeneous coordinate rings we need a
concept of a morphism of freely graded quasiaffine algebras than the notion of a g
homomorphism would yield. This is the following

Definition 2.5. Let the quasiaffine algebras(A,A) and(B,B) be freely graded by finitely
generated abelian groupsΛ andΓ , respectively.
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(i) Two graded homomorphismsµ,ν : (B,B)→ (A,A) are calledequivalentif there is
a homomorphismc :Γ →A∗0 such that for everyE ∈ Γ and everyg ∈BE we have

ν(g)= c(E)µ(g).

(ii) A morphism(B,B)→ (A,A) of the freely graded quasiaffine algebras(B,B) and
(A,A) is the equivalence class[µ] of a graded homomorphismµ : (B,B)→ (A,A).

In the setting of (i) we shall say thatµ andν differ by a characterc :Γ → A∗0. Since
equivalence of graded homomorphisms is compatible with composition, this defi
makes the freely graded quasiaffine algebras into a category.

We give now a geometric interpretation of the above notions. We assume for the
this section that ifK is of characteristicp > 0, then our finitely generated abelian grou
Λ have nop-torsion, i.e.,Λ contains no elements of orderp. Under this assumption, eac
Λ defines a diagonalizable algebraic group

H := Spec
(
K[Λ]).

Recall that the characters of this groupH are precisely the canonical generatorsχL,
L ∈Λ, of the group algebraK[Λ]. In fact, the assignmentΛ �→H defines a contravarian
equivalence of categories, see, for example, [4, Section III. 8].

Now, suppose that a diagonalizable groupH = Spec(K[Λ]) acts by means of a regul
mapH ×X→ X on a (not necessarily affine) varietyX. A functionf ∈O(X) is called
homogeneouswith respect to a characterχL :H →K∗ if for every(t, x) ∈H ×X we have

f (t · x)= χL(t)f (x).

For L ∈Λ, let O(X)L ⊂O(X) denote the subset of allχL-homogeneous functions.
is well known, use, for example, [15, p. 67, Lemma], that the action ofH on X defines a
grading

O(X)=
⊕
L∈Λ

O(X)L.

Recall that one obtains in this way a canonical correspondence between affineH -varie-
ties andΛ-graded affine algebras (the arguments presented in [7, p. 11] for the caseΛ= Z

also work in the general case).
We are interested in freeH -actions on quasiaffine varietiesX, wherefree means tha

every orbit mapH →H · x is an isomorphism. In this situation, we have

Lemma 2.6. Let the diagonalizable groupH = Spec(K[Λ]) act freely by means of
regular mapH ×X→ X on a quasiaffine varietyX. Then the associatedΛ-grading of
O(X) makes(O(X),O(X)) into a freely graded quasiaffine algebra.

Proof. Let (A′′, I ′′) be any natural pair onX, and let g1, . . . , gs be a system o
generators ofA′′. LetA′ ⊂O(X) denote the subalgebra generated by all the homogen
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components of thegj . ThenA′ is graded, and according to Lemma 1.4(ii), we obtai
natural pair(A′, I ′) onX by definingI ′ := √〈I ′′〉.

Now, theΛ-grading ofA′ comes from anH -action onX′ := Spec(A′). ThisH -action
extends the initialH -action onX. In particular, the idealI ′ ⊂ A′ is graded, because it
the vanishing ideal of the invariant setX′ \X, see Lemma 1.4(i). This fact enables us
verify the condition of Definition 2.1 forI ′:

Choose generatorsL1, . . . ,Lk of Λ. Considerx ∈X, and choose a homogeneoush ∈ I ′
with h(x) �= 0. SinceH acts freely, the orbit mapH →H · x is an isomorphism. Thus w
find for everyi a χLi -homogeneous regular functionhi on H · x with hi(x) �= 0. Since
H · x is closed inXh, thehi extend toχLi -homogeneous regular functions onXh.

For a suitabler > 0, the productf := hrh1 · · ·hk is a regular function onX′ with
f ∈ 〈h〉 and hencef ∈ I ′. By construction,f is homogeneous, and we havef (x) �= 0.
Moreover, the Laurent monomials inh1, . . . , hk provide for each degreeL ∈Λ a χL-ho-
mogeneous invertible function onXf . Since finitely many of theXf coverX, this gives
the desired property on the idealI ′ ⊂A′. ✷

In order to give the equivariant version of Proposition 1.6, we have to fix the noti
a morphism of quasiaffine varieties with an action of a diagonalizable group. This
following

Definition 2.7. Let G×X→X andH × Y → Y be algebraic group actions. A morphis
ϕ :X→ Y is calledequivariantif there is a homomorphism̃ϕ :G→H of algebraic groups
such that for all(g, x) ∈G×X we have

ϕ(g · x)= ϕ̃(g) · ϕ(x).

This notion of an equivariant morphism makes the quasiaffine varieties with a free
of a diagonalizable group into a category. We obtain the following equivariant versi
Proposition 1.6:

Proposition 2.8. The assignmentsX �→ (O(X),O(X)) andϕ �→ ϕ∗ define a contravarian
equivalence from the category of quasiaffine varieties with a free diagonalizable
action to the category of freely graded quasiaffine algebras and graded homomorph

Proof. By Lemma 2.6, the assignmentX �→ (O(X),O(X)) is well defined. From
Proposition 1.6 and the observation that equivariant morphisms of quasiaffine va
correspond to graded homomorphisms of quasiaffine algebras we infer functoriali
bijectivity on the level of morphisms.

In order to see that up to isomorphism any quasiaffine algebra(A,A) which is
freely graded by someΛ arises in the above manner from a quasiaffine variety w
free diagonalizable group action, we repeat the corresponding part of the pro
Proposition 1.6 in an equivariant manner:

Let (A′, I ′) be as in Definition 2.1. LetA′′ ⊂A be any graded subalgebra of finite ty
with A′ ⊂ A′′, and letI ′′ := √〈I ′〉. Then (A′′, I ′′) belongs toA, and the idealI ′′ still
satisfies the condition of Definition 2.1.
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The affine varietyX′′ := Spec(A′′) comes along with an action of the diagonaliza
groupH := Spec(K[Λ]) such that the corresponding grading ofO(X′′)= A′′ gives back
the originalΛ-grading of the algebraA′′. Removing theH -invariant zero set ofI ′′ from
X′′, gives a quasiaffineH -varietyX.

By construction, theΛ-graded algebrasO(X) andA coincide, and(A′′, I ′′) is a natural
pair on X. Moreover, the local existence of invertible homogeneous functions in
degree implies that for everyx ∈X the orbit mapH �→H · x is an isomorphism. In othe
words, the action ofH onX is free. ✷
Example 2.9. The standardK∗-action onKn+1 \ {0} has (A,A) of Example 2.2 as
associated freely graded quasiaffine algebra.

The remaining task is to translate the notion of equivalence of graded homomorp
For this let X and Y be quasiaffine varieties with actions of diagonalizable gro
H := Spec(K[Λ]) andG := Spec(K[Γ ]). Denote by(A,A) and(B,B) the freely graded
quasiaffine algebras associated toX andY .

Remark 2.10. Two graded homomorphismsµ,ν : (B,B)→ (A,A) are equivalent if and
only if there is anH -invariant morphismγ :X→G such that the morphismsϕ,ψ :X→ Y

corresponding toµ andν always satisfyψ(x)= γ (x) · ϕ(x).

3. Picard graded sheaves of algebras

Let X be an algebraic variety and denote by Pic(X) its Picard group. In this section w
prepare the definition of a graded ring structure on the vector space⊕

[L]∈Pic(X)

H 0(X,L).

More generally, we even need a ring structure for the corresponding sheaves of
spaces. The problem is easy, if Pic(X) is free: Then we can realize it as a groupΛ of
line bundles as in [10, Section 2], and we can work with the associatedΛ-gradedOX-al-
gebraR.

If Pic(X) has torsion, then we can at most expect a surjectionΛ → Pic(X) with
a free groupΛ of line bundles. Thus the problem is to identify in a suitable man
isomorphic homogeneous components of theΛ-gradedOX-algebraR. This is done by
means of shifting families and their associated idealsI ⊂R, see Definitions 3.1 and 3.4
The quotientA :=R/I then will realize the desired ring structure.

To begin, let us recall the necessary constructions from [10]. Consider an open
U= (Ui)i∈I of X. This cover gives rise to an additive groupΛ(U) of line bundles onX:
For eachČech cocycleξ ∈ Z1(U,O∗X), let Lξ denote the line bundle obtained by glui
the productsUi ×K along the maps

(x, z) �→ (
x, ξij (x)z

)
.
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Define the sumLξ + Lη of two such line bundles to beLξη = Lηξ . This makes the se
Λ(U) consisting of all the bundlesLξ into an abelian group, which is isomorphic to t
cocycle groupZ1(U,O∗X).

When we speak of agroup of line bundleson X, we think of a finitely generated fre
subgroup of some groupΛ(U) as above. Note that for any such groupΛ of line bundles,
we have a canonical homomorphismΛ→ Pic(X) to the Picard group.

We come to the gradedOX-algebra associated to a groupΛ of line bundles on a
varietyX. For each line bundleL ∈Λ, let RL denote its sheaf of sections. In the sequ
we shall identifyR0 with the structure sheafOX . ThegradedOX-algebraassociated toΛ
is the quasicoherent sheaf

R :=
⊕
L∈Λ

RL,

where the multiplication is defined as follows: The sections of a bundleLξ ∈ Λ over an
open setU ⊂ X are described by familiesfi ∈OX(U ∩Ui) that are compatible with th
cocycleξ . For any two sectionsf ∈RL(U) andf ′ ∈RL′(U), the product(fif

′
i ) of their

defining families(fi) and(f ′i ) gives us a sectionff ′ ∈RL+L′(U).
In the sequel, we fix an open coverU = (Ui)i∈I of X and a groupΛ ⊂ Λ(U) of line

bundles. LetR denote the associatedΛ-gradedOX-algebra. Here comes the notion o
shifting family forR:

Definition 3.1. Let Λ0 ⊂ Λ be any subgroup of the kernel ofΛ → Pic(X). By a
Λ0-shifting family for R we mean a family, = (,E) of OX-module isomorphism
,E :R→R, whereE ∈Λ0, with the following properties:

(i) for everyL ∈Λ and everyE ∈Λ0 the isomorphism,E mapsRL ontoRL+E ,
(ii) for any twoE1,E2 ∈Λ0 we have,E1+E2 = ,E2 ◦ ,E1,
(iii) for any two homogeneous sectionsf,g of R and everyE ∈Λ0 we have,E(fg) =

f ,E(g).

If Λ0 is the full kernel ofΛ→ Pic(X), then we also speak of afull shifting familyfor R
instead of aΛ0-shifting family.

The first basic observations are existence of shifting families and a certain uniqu
statement:

Lemma 3.2. Let Λ0 ⊂ Λ be a subgroup of the kernel ofΛ → Pic(X). Then there
exist Λ0-shifting families forR, and any two such families,, ,′ differ by a character
c :Λ0→O∗(X) in the sense that,′E = c(E),E holds for allE ∈Λ0.

Proof. For the existence statement, fix aZ-basis of the subgroupΛ0⊂Λ. For any membe
E of this basis choose a bundle isomorphismαE : 0→ E from the trivial bundle 0∈ Λ
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ontoE ∈Λ. With respect to the coverU , this isomorphism is fibrewise multiplication wit
certainαi ∈O∗(Ui); so, onUi ×K it is of the form

(x, z) �→ (
x,αi(x)z

)
. (3.2.1)

If αE′ : 0→ E′ denotes the isomorphism for a further member of the basis ofΛ0, then
the productsαiα

′
i of the corresponding local data define an isomorphismαE+E′ : 0→

E + E′. Similarly, by inverting local data, we obtain isomorphismsα−E : 0 → −E.
Proceeding this way, we obtain an isomorphismαE : 0→E for everyE ∈Λ0.

The local dataαi of an isomorphismαE : 0→E as constructed above define as well
isomorphismL→ L+E for anyL ∈Λ. By shifting homogeneous sections according
f �→ αE ◦ f , one obtainsOX-module isomorphisms,E :R→R mapping eachRL onto
RL+E . Properties (ii) and (iii) in Definition 3.1 are then clear by construction.

We turn to the uniqueness statement. Let,, ,′ be twoΛ0-shifting families forR. Using
property (iii) in Definition 3.1 we see that for everyE ∈Λ0 and every homogeneous secti
f of R, we have

,−1
E ◦ ,′E(f )= ,−1

E ◦ ,′E(f · 1)= f · ,−1
E ◦ ,′E(1).

Thus, settingc(E) := ,−1
E ◦ ,′E(1) we obtain a mapc :Λ0→O∗(X) such that,′E equals

c(E),E . Properties (ii) and (iii) in Definition 3.1 show thatc is a homomorphism:

c(E1+E2) = ,−1
E1+E2

◦ ,′E1+E2
(1)

= ,−E1 ◦ ,−E2 ◦ ,′E2
◦ ,′E1

(1)

= ,−E1 ◦ ,−E2 ◦ ,′E2

(
,′E1

(1) · 1)
= ,−E1

(
,′E1

(1)c(E2)
)

= c(E1)c(E2). ✷
We shall now associate to any shifting family an ideal in theOX-algebraR. First we

remark that for any subgroupΛ0 ⊂Λ the algebraR becomesΛ/Λ0-graded by defining
the homogeneous component of a class[L] ∈Λ/Λ0 as

R[L] :=
∑

L′∈[L]
RL′ .

Lemma 3.3. LetΛ0 be a subgroup of the kernel ofΛ→ Pic(X), and let, be aΛ0-shifting
family. For each given open subsetU ⊂X consider the ideal

I(U) := 〈
f − ,E(f ); f ∈R(U), E ∈Λ0

〉⊂R(U).

Let I denote the sheaf associated to the presheafU �→ I(U). ThenI is a quasicoheren
ideal ofR, and we have:
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(i) EveryI(U) is homogeneous with respect to theΛ/Λ0-grading ofR(U).
(ii) For everyL ∈Λ we haveRL(U)∩ I(U)= {0}.

Proof. First note that the ideal sheafI is indeed quasicoherent, because it is a sum
images of quasicoherent sheaves.

We check (i). Using property (iii) in Definition 3.1, we see that each idealI(U) is
generated by the elements 1− ,E(1), whereE ∈ Λ0. Consequently, each stalkIx is a
Λ/Λ0-homogeneous ideal inAx . This implies that the associated sheafI is a Λ/Λ0-
homogeneous ideal inA.

We turn to (ii). By construction, it suffices to consider local sectionsf ∈RL(U)∩I(U).
By the definition ofI(U) and property (iii) in Definition 3.1, there exist homogeneo
elementsfi ∈RLi (U) such that we can writef as

f =
r∑

i=1

fi − ,Ei (fi). (3.3.1)

SinceI(U) is Λ/Λ0-graded, all theLi belong to the class[L] in Λ/Λ0. Moreover, we
can achieve in the representation (3.3.1) off that allfi are of degreeL ∈ [L]. Namely, we
can use property (ii) in Definition 3.1 to writefi − ρEi (fi) in the form

fi − ,Ei (fi) = ,L−Li (fi)− ,Ei+Li−L

(
,L−Li (fi)

)
+ (−,L−Li (fi)

)− ,Li−L

(−,L−Li (fi)
)
.

Moreover we can choose the representation (3.3.1) minimal in the sense thar is
minimal with the property that everyfi is of degreeL. Then theEi are pairwise differen
from each other, because otherwise we could shorten the representation by gather
this implies,Ei (fi)= 0 for everyi. Hence we obtainf = 0. ✷
Definition 3.4. Let Λ0 be a subgroup of the kernel ofΛ → Pic(X), and let, be a
Λ0-shifting family for R. The ideal associated to, is theΛ/Λ0-graded ideal sheafI
of R defined in Lemma 3.3.

With the aid of the ideal associated to a shifting family, we can pass fromR to more
coarsely gradedOX-algebras:

Lemma 3.5. LetΛ0⊂Λ be a subgroup, and let, be aΛ0-shifting family with associate
idealI. SetA :=R/I, and letπ :R→A denote the projection.

(i) The OX-algebraA is quasicoherent, and it inherits aΛ/Λ0-grading fromR as
follows:

A=
⊕

[L]∈Λ/Λ0

A[L] :=
⊕

[L]∈Λ/Λ0

π(R[L]).
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(ii) For anyL ∈Λ the induced mapπL :RL→A[L] is an isomorphism ofOX-modules.
In particular, we obtain

A(X)∼=R(X)/I(X).

(iii) The OX-algebra A is locally generated by finitely many invertible homogene
elements.

Proof. The first assertion follows directly from the fact that we have a commuta
diagram where the lower arrow is an isomorphism of sheaves:

R
π

A
⊕
[L]∈Λ/Λ0

R[L]/I[L]

To prove (ii), note thatπL :RL →A[L] is injective by Lemma 3.3(ii). For bijectivity
we have to show thatπL is stalkwise surjective. Leth be a local section ofA[L] near some
x ∈ X. SinceA[L] equalsπ(R[L]), we may assume thath= π(f ) with a local sectionf
of R[L] nearx. Write f as the sum of itsΛ-homogeneous components:

f =
∑

L′∈[L]
fL′ .

For everyL′ �= L, we subtractfL′ − ,L−L′(fL′) from f . The result is a local sectio
g of RL nearx which still projects ontoh. This proves bijectivity ofπL :RL → A[L].
The isomorphism on the level of global sections then is due to left exactness of the s
functor.

To prove assertion (iii), note that the analogous statement holds forR. In fact, for small
U ⊂X, the algebraR(U) is even a Laurent monomial algebra overO(U). Together with
assertion (ii), this observation gives statement (iii).✷
Definition 3.6. Let Λ0 ⊂ Λ be a subgroup of the kernelΛ→ Pic(X), and let, be a
Λ0-shifting family for R with associated idealI. We call theΛ/Λ0-gradedOX-algebra
A :=R/I of Lemma 3.5 thePicard graded algebraassociated to,.

If every global invertible function onX is constant, then the Picard graded algeb
associated to differentΛ0-shifting families are isomorphic (a graded homomorphism
sheaves is defined by requiring (2.4.1) on the level of sections).

Lemma 3.7. SupposeO∗(X)=K∗. LetΛ0⊂Λ be a subgroup, and let,, ,′ beΛ0-shifting
families forR with associated idealsI andI ′. Then there is a graded automorphism ofR
having the identity ofΛ as accompanying homomorphism and mappingI ontoI ′.
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Proof. By Lemma 3.2, there exists a homomorphismc :E→K∗ such that,′E = c(E),E

holds. By Lemma 3.8 stated below, this homomorphism extends to a homomor
c :Λ→K∗. Thus we can define the desired automorphismR→R by mapping a section
f ∈RL(U) to c(L)f ∈RL(U). ✷

In the proof of this lemma, we made use of the following standard property of latt

Lemma 3.8. Let Λ0 ⊂Λ be an inclusion of lattices. Then any homomorphismΛ0→K∗
extends to a homomorphismΛ→K∗.

Let us give a geometric interpretation of Picard graded algebras. LetΛ be a group of
line bundles onX with associatedΛ-gradedOX-algebraR. Fix a subgroupΛ0 of the
kernel ofΛ→ Pic(X) and aΛ0-shifting family, for R.

Similar to the preceding section, we assume for the rest of this section that in th
of a ground fieldK of characteristicp > 0, the groupΛ/Λ0 has nop-torsion. Under this
hypothesis, we can show that the quotientA :=R/I by the ideal associated to the shiftin
family , is reduced:

Lemma 3.9. For every openU ⊂X, the idealI(U) is a radical ideal inR(U).

Proof. First note that we may assume thatU is a small affine open set such thatR(U) is
of finite type. Consider the affine varietyZ := Spec(R(U)). Then theΛ/Λ0-grading of
R(U)=O(Z) defines an action of the diagonalizable groupH := Spec(K[Λ/Λ0]) onZ.
Let Z0⊂Z denote the zero set of the idealI(U)⊂R(U).

Now we can enter the proof of the assertion. Letf ∈O(Z) with f n ∈ I(U). We have
to show thatf ∈ I(U) holds. Consider the decomposition off into homogeneous parts:

f =
∑

[L]∈Λ/Λ0

f[L].

Sincef vanishes along theH -invariant zero setZ0 of theΛ/Λ0-graded idealI(U), also
every homogeneous componentf[L] has to vanish alongZ0.

We show that everyf[L] belongs toI(U). Since thef[L] vanish alongZ0, Hilbert’s
Nullstellensatz tells us that for every degree[L] some powerfm[L] lies in I(U). Now
consider

g :=
∑

L′∈[L]
fL′ −

(
fL′ − ,L−L′(fL′)

)
.

Theng is Λ-homogeneous of degreeL. Moreover, by explicit multiplication, we se
gm ∈ I(U). But anyΛ-homogeneous element ofI(U) is trivial. Thusgm = 0. Hence
g = 0, which in turn impliesf[L] ∈ I(U). ✷

In our geometric interpretation, we use the global “Spec”-construction, see
example, [9]. Moreover, for any homogeneous sectionf ∈A(U), we denote its zero se
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in X by Z(f ). This is well defined, because the componentsA[L] are locally free due to
Lemma 3.5(ii).

Proposition 3.10. Let X̂ := Spec(A), and letq : X̂→X be the canonical map.

(i) X̂ is a variety,q : X̂→X is an affine morphism, and we haveA= q∗OX̂ .

(ii) For a homogeneous sectionf ∈ A[L](X) we obtainq−1(Z(f )) = V (X̂;f ), where
V (X̂;f ) is the zero set of the functionf ∈O(X̂).

(iii) If fi ∈A(X) are homogeneous sections such that the setsX \ Z(fi) are affine and
coverX, thenX̂ is a quasiaffine variety.

Proof. To check (i), note that̂X is indeed a variety, because by Lemmas 3.5(iii) and
the algebraA is reduced and locally of finite type. The rest of (i) are standard properti
the global “Spec”-construction for sheaves ofOX-algebras.

Assertion (ii) is clear in the case[L] = 0, because then we haveA0=OX . For a genera
[L], we may reduce to the previous case by multiplyingf locally with invertible sections
of degree−[L]. Note that invertible sections exist locally by Lemma 3.5(iii).✷

4. The homogeneous coordinate ring

In this section, we give the precise definition of the homogeneous coordinate
of a given variety, see Definition 4.4. Moreover, we show in Proposition 4.6 tha
homogeneous coordinate ring is unique up to isomorphism.

In order to fix the setup, recall from [3] that a (neither necessarily separate
irreducible) varietyX is said to bedivisorial if everyx ∈X admits an affine neighbourhoo
of the formX \Z(f ) whereZ(f ) is the zero set of a global sectionf of some line bundle
L onX.

Remark 4.1. Every separated irreducibleQ-factorial variety is divisorial, and ever
quasiprojective variety is divisorial.

Here is the setup of this section: We assume that the multiplicative groupK∗ is of
infinite rank overZ, e.g.,K is of characteristic zero or it is uncountable. The varietyX is
divisorial and satisfiesO∗(X)=K∗. Moreover, Pic(X) is finitely generated and, ifK is of
characteristicp > 0, then Pic(X) has nop-torsion.

Lemma 4.2. There exists a groupΛ of line bundles onX mapping ontoPic(X). For
any suchΛ the associatedΛ-gradedOX-algebraR admits homogeneous global sectio
h1, . . . , hr such that the setsX \Z(hi) are affine and coverX.

Proof. Only for the first statement there is something to show. For this, we may as
that Pic(X) is not trivial. Write Pic(X) as a direct sum of cyclic groupsΠ1, . . . ,Πm and
fix a generatorPl for eachΠl . Choose a finite open coverU of X such that eachPl is
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represented by a cocycleξ(l) ∈ Z1(U,O∗). Choose membersUi,Uj of U such thatUi �= Uj

holds and there is a pointx0 ∈ Ui ∩Uj .
We adjust theξ(l) as follows: By the assumption on the ground fieldK, we find

a1, . . . , am ∈K∗ which are linearly independent overZ. Define a locally constant cocha
η(l) by settingη(l) := al/ξ

(l)
ij (x0) on Ui andη(l) := 1 on theUk different fromUi . Let

ζ (l) ∈Z1(U,O∗) be the product ofξ(l) with the coboundary ofη(l).
LetΛ⊂Λ(U) be the subgroup generated by the line bundles arising fromζ (1), . . . , ζ (m).

By constructionΛ maps onto Pic(X). Moreover, we have

((
ζ
(1)
ij

)n1 · · ·(ζ (m)
ij

)nm
)
(x0)= a

n1
1 · · ·anm

m

for the cocycle corresponding to a general element ofΛ. By the choice of theal , this
cocycle can only be trivial if all exponentsnl vanish. It follows thatΛ is free. ✷

We fix a groupΛ of line bundles onX as provided by Lemma 4.2, and a full shiftin
family , for theΛ-gradedOX-algebraR associated toΛ. LetI denote the ideal associate
to the shifting family,. As seen in Lemma 3.5(i), theOX-algebraA :=R/I is graded by
Pic(X). In particular, we have a grading

A(X)=
⊕

[L]∈Pic(X)

A[L](X).

According to Lemmas 3.5(ii) and 4.2, there are homogeneousf1, . . . , fr ∈A(X) such
that the setsX \Z(fi) are affine and coverX. Hence Proposition 3.10(iii) tells us that th
varietyX̂ := Spec(A) is quasiaffine. Thus we have the collectionA(X) of natural pairs on
X̂ as closing subalgebras forA(X)=O(X̂), see Lemma 1.5.

Proposition 4.3. The pair(A(X),A(X)) is a freely graded quasiaffine algebra.

Proof. We have to show that there is a natural pair(A′, I ′) ∈A(X) with the properties o
Definition 2.1.

Choose homogeneousf1, . . . , fr ∈ A(X) such that the setsX \ Z(fi) form an affine
cover ofX. Let q : X̂→X be the canonical map. By Proposition 3.10(ii), eachX̂fi equals
q−1(X \Z(fi)) and thus is affine. Consequently the algebras

A(X)fi =O
(
X̂

)
fi
=O

(
X̂fi

)
are of finite type. Thus we find a subalgebraA′ ⊂ A(X) of finite type satisfyingA′fi

=
A(X)fi for everyi. ThenX := Spec(A′) is an affine closure of̂X, and the vanishing idea
I ′ ⊂A′ of X \ X̂ is the radical of the ideal generated byf1, . . . , fr . It follows that(A′, I ′)
is a natural pair on̂X.

We verify the condition on the degrees. Givenx ∈ X̂, choose anfi with q(x) ∈ U :=
X \ Z(fi). By Lemma 3.5(iii), there is a small neighbourhoodUh ⊂ U of x defined by
someh ∈O(U) such that every[L] ∈ Pic(X) admits an invertible section inA[L](Uh).
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Now, Uh equalsX \ Z(hf n
i ) for some large positive integern. Since finitely many of

suchUh coverX, we obtain the desired property of Definition 2.1 with finitely many
the homogeneous sectionshf n

i ∈ I ′. ✷
Definition 4.4. We call(A(X),A(X)) thehomogeneous coordinate ringof X.

We show now that homogeneous coordinate rings are unique up to isomorphism
amounts to comparing Picard graded algebras arising from different groups of line b
onX. As we shall need it later, we do this in a slightly more general setting:

Lemma 4.5. Let Λ and Γ be groups of line bundles onX with associated grade
OX-algebrasR and S. Suppose that the image ofΛ→ Pic(X) contains the image o
Γ → Pic(X), and let, be a full shifting family forR.

(i) There exist a graded homomorphismγ :S→R with accompanying homomorphis
γ̃ :Γ → Λ and a full shifting familyσ for Γ such that for everyK ∈ Γ we have
K ∼= γ̃ (K), and, given anF from the kernel ofΓ → Pic(X), there is a commutativ
diagram ofOX-module isomorphisms

SK

γK

σF

Rγ̃ (K)

,γ̃ (F)

SK+F
γK+F

Rγ̃ (K)+γ̃ (F )

(ii) Given data as in(i), let B andA denote the Picard graded algebras associated tσ

and,. Then one has a commutative diagram

S
γ

R

B
γ̄

A

of gradedOX-algebra homomorphisms. The lower row is an isomorphism ifΓ andΛ

have the same image inPic(X).

Proof. Let Γ ⊂ Λ(V) andΛ ⊂ Λ(U). ThenΛ andΓ embed canonically intoΛ(W),
whereW denotes any common refinement of the open coversU andV. Hence we may
assume thatΛ andΓ arise from the same trivializing cover.

Let K1, . . . ,Km be a basis ofΓ and chooseE1, . . . ,Em ∈ Λ in such a way that the
isomorphism class ofEi equals the class ofKi in Pic(X). Furthermore let̃γ :Γ →Λ be
the homomorphism sendingKi to Ei . For eachi = 1, . . . ,m, fix a bundle isomorphism
βKi :Ki →Ei .
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By multiplying the local data of the these homomorphisms, we obtain as in the pro
Lemma 3.2 a bundle isomorphismβK :K→ γ̃ (K) for everyK ∈ Γ . Shifting sections via
theseβK definesOX-module isomorphismsγK :SK →Rγ̃ (K). By construction, theγK fit
together to a graded homomorphismγ :S→R of OX-algebras.

Now it is clear how to define the full shifting familyσ : Take anF from the kernel
of Γ → Pic(X). DefineσF :S→ S by prescribing on the homogeneous components
(unique) isomorphismsSK → SK+F that make the above diagrams commutative. It is t
straightforward to verify the properties of a shifting family for the mapsσF . This settles
assertion (i).

We prove (ii). By the commutative diagram of (i), the ideal associated toσ is mapped
into the ideal associated to,. Hence, we obtain the desired homomorphismγ̄ :B→A of
Picard graded algebras.

Now, assume that the images ofΓ andΛ in Pic(X) coincide. Since everyγK :SK →
Rγ̃ (K) is an isomorphism, we can use Lemma 3.5(ii) to see thatγ̄ is an isomorphism in
every degree. By assumption the accompanying homomorphism ofγ̄ is bijective, whence
the assertion follows. ✷

The uniqueness of homogeneous coordinate rings is a direct consequence o
mas 3.7 and 4.5.

Proposition 4.6. Different choices of the group of line bundles and the full shifting fam
define isomorphic freely graded quasiaffine algebras as homogeneous coordinate
for X.

Proof. Let Λ andΓ be two groups of line bundles mapping onto Pic(X) and letA and
B denote the Picard graded algebras associated to choices of full shifting famili
the correspondingΛ- andΓ -gradedOX-algebras. From Lemmas 3.7 and 4.5 we in
the existence of a gradedOX-algebra isomorphismµ :B→ A. In particular, we have
B(X)∼=A(X).

We show thatµ defines an isomorphism of quasiaffine algebras. Let(B ′, J ′) ∈B(X) as
in Definition 2.1. Then Lemma 1.5 ensures that(B ′, J ′) is a natural pair on Spec(B). We
have to show that(µ(B ′),µ(I ′)) is a natural pair on Spec(A). Sinceµ is anOX-module
isomorphism in every degree, we haveZ(µ(g))=Z(g) for any homogeneousg ∈ J ′. Thus
Proposition 3.10(ii) tells us that(µ(B ′),µ(I ′)) is a natural pair. ✷

5. Functoriality of the homogeneous coordinate ring

In this section, we present the first main result. It says that homogeneous coord
are a fully faithful contravariant functor, see Theorem 5.7. But first we have to defin
homogeneous coordinate ring functor on morphisms. The basic tool for this definitio
Picard graded pullbacks, see Definition 5.1 and Proposition 5.3.

As in the preceding section, we assume thatK∗ is of infinite rank overZ. Moreover,
in this section we assume all varieties to be divisorial and to have only constant inv



F. Berchtold, J. Hausen / Journal of Algebra 266 (2003) 636–670 655

roup,

d

lar,
. As a

not

r on
ertain

nsion
global functions. Finally, we require that any variety has a finitely generated Picard g
and, ifK is of characteristicp > 0, this Picard group has nop-torsion.

For a varietyX fix a groupΛ of line bundles mapping onto Pic(X) and denote the
associatedΛ-gradedOX-algebra byR. Moreover, we fix a full shifting family, for R
and denote the resulting Picard graded algebra byA. For a further varietyY we denote the
corresponding data byΓ , S, σ , andB. Let ϕ :X→ Y be a morphism of the varietiesX
andY .

Definition 5.1. By a Picard graded pullback forϕ :X → Y we mean a grade
homomorphismB→ ϕ∗A of OY -algebras having the pullback mapϕ∗ : Pic(Y )→ Pic(X)

as its accompanying homomorphism.

Note that the property of being anOY -algebra homomorphism means in particu
that in degree zero any Picard graded pullback is the usual pullback of functions
consequence, we remark:

Lemma 5.2. Let µ :B → ϕ∗A be a Picard graded pullback forϕ :X → Y , and let
g ∈ B(Y ) be homogeneous. Then the zero setZ(µ(g))⊂X is the inverse imageϕ−1(Z(g))

of the zero setZ(g)⊂ Y .

Proof. It suffices to prove the statement locally, over small openV ⊂ Y . But on suchV ,
we may shiftg by multiplication with invertible elements into degree zero. This does
affect zero sets, whence the assertion follows.✷

The basic step in the definition of the homogeneous coordinate ring functo
morphisms is to show existence of Picard graded pullbacks and to provide a c
uniqueness property:

Proposition 5.3. There exist Picard graded pullbacks forϕ :X→ Y . Moreover, any two
Picard graded pullbacksµ,ν :B→ ϕ∗A for ϕ differ by a characterc : Pic(Y )→K∗ in the
sense thatνP = c(P )µP holds for allP ∈ Pic(Y ).

The proof of this statement is based on two lemmas. The first one is an exte
property for shifting families:

Lemma 5.4. Let Π be any group of line bundles onX, and let Π0 ⊂ Π1 be two
subgroups of the kernel ofΠ → Pic(X). Then everyΠ0-shifting family τ0 for the
Π -gradedOX-algebraT associated toΠ extends to aΠ1-shifting familyτ1 for T in
the sense thatτ1

E = τ0
E holds for allE ∈Π0.

Proof. Let ϑ be anyΠ1-shifting family for T . Thenϑ restricts to aΠ0-shifting family.
By Lemma 3.2, there is a characterc :Π0→ O∗(X) with τ0

E = c(E)ϑE for all E ∈ Π0.
As we assumedO∗(X) = K∗, Lemma 3.8 tells us thatc extends toΠ1. Thus, setting
τ1 := c(E)ϑE for E ∈Π1 gives the desired extension.✷
E
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The second lemma provides a pullback construction for shifting families. By pu
back cocycles, we obtain the (again free) pullback groupϕ∗Γ . We denote the associate
ϕ∗Γ -gradedOX-algebra byϕ∗S. Indeedϕ∗S is canonically isomorphic to the ringe
inverse image ofS. Observe that we have a canonical sheaf homomorphismS→ ϕ∗ϕ∗S.

Lemma 5.5. LetΓ0⊂ Γ a subgroup, and letσ be aΓ0-shifting family forS.

(i) TheOX-module homomorphismsϕ∗σF define aϕ∗Γ0-shifting familyϕ∗σ for ϕ∗S.
(ii) The idealJ ∗ associated toϕ∗σ equals the pullbackϕ∗J of the idealJ associated

to σ .

Proof. For (i), note that the isomorphismsσF :SK → SK+F can be written asg �→
βK,F (g) with unique line bundle isomorphismsβK,F :K → K + F . The family ϕ∗σF

corresponds to the collectionϕ∗βK,F :ϕ∗K → ϕ∗K + ϕ∗F . The properties of a shiftin
family become clear by writing theϕ∗βK,F in terms of local data as in (3.2.1).

To prove (ii), we just compare the stalks of the two sheaves in question
Property 3.2(iii), we obtain for anyx ∈X

J ∗x =
〈
1x − ϕ∗σF (1x);F ∈ Γ0

〉
= 〈

ϕ∗(1ϕ(x))− ϕ∗
(
σF (1ϕ(x))

);F ∈ Γ0
〉

= (
ϕ∗J

)
x
. ✷

Proof of Proposition 5.3. We establish the existence of Picard graded pullbacks: As u
let I andJ denote the respective ideals associated to the shifting families, for R andσ

for S. Thus the corresponding Picard graded algebras areA=R/I andB = S/J .
By Lemma 5.5, we have theϕ∗Γ0-shifting family ϕ∗σ for ϕ∗S. Lemma 5.4 enable

us to choose a full shifting familyϕ>σ extendingϕ∗σ . We denote byϕ>J the ideal
associated toϕ>σ , and writeϕ>B := ϕ∗S/ϕ>J for the quotient. In this notation, we hav
a commutative diagram of gradedOY -algebra homomorphisms such that the unlabe
arrows are isomorphisms in each degree:

ϕ∗R ϕ∗ϕ∗S S
ϕ∗

ϕ∗A ϕ∗ϕ>B ϕ∗ϕ∗B B
ϕ∗

Indeed, the right square is standard. To obtain the middle triangle, we only have to
thatϕ>J contains the kernel ofϕ∗S→ ϕ∗B. But this follows from exactness ofϕ∗ and
Lemma 5.5(ii). Existence of the left square follows from combining Lemmas 3.7 and
Now the desired Picard graded pullback ofϕ :X → Y is the composition of the lowe
horizontal arrows.
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We turn to the uniqueness statement. LetP ∈ Pic(Y ). SinceBP locally admits invertible
sections, we can coverY by openV ⊂ Y such that there exist invertible sectionsh ∈
BP (V ). We define

c(P,V ) := ν(h)/µ(h) ∈A∗0
(
ϕ−1(V )

)
.

This does not depend on the choice ofh: For a further invertibleg ∈ BP (V ), the
sectiong/h is of degree zero. But in degree zero any Picard graded pullback is the
pullback of functions. Thus we haveµ(h/g) = ν(h/g). Consequently,ν(g)/µ(g) equals
ν(h)/µ(h).

Similarly we see that for two openV,V ′ ⊂ Y as above, the corresponding sectio
c(P,V ) andc(P,V ′) coincide on the intersectionϕ−1(V ) ∩ ϕ−1(V ′). Thus, by gluing,
we obtain a global sectionc(P ) ∈ A∗0(X) = O∗(X). Then it is immediate to check, th
P �→ c(P ) has the desired properties.✷

With the help of Picard graded pullbacks we can now make the homogeneous coo
ring into a functor. We fix for any morphismϕ :X→ Y a Picard graded pullbackµϕ :B→
ϕ∗A, and denote the induced homomorphism on global sections again byµϕ :B(Y )→
A(X).

For a graded homomorphismν of freely graded quasiaffine algebras, we denote by[ν]
its equivalence class in the sense of Definition 2.5.

Proposition 5.6. The assignmentsX �→ (A(X),A(X)) andϕ �→ [µϕ] define a contravari-
ant functor into the category of freely graded quasiaffine algebras.

Proof. By Proposition 4.3, the homogeneous coordinate rings(A(X),A(X)) and(B(Y ),

B(Y )) of X andY are in fact freely graded quasiaffine algebras. The first task is to s
that the homomorphismµϕ :B(Y )→ A(X) associated to a morphismϕ :X → Y is a
graded homomorphism of freely graded quasiaffine algebras.

As a Picard graded pullback,µϕ is graded and has as accompanying homomorph
the pullback map Pic(Y )→ Pic(X). Thus we are left with checking the conditions
Definition 1.2(ii) for µϕ . This is done geometrically in terms of the constructions
Proposition 3.10:

X̂ := Spec(A), Ŷ := Spec(B), qX : X̂→X, qY : Ŷ → Y.

Let (B ′, J ′) ∈ B(Y ) be a closing subalgebra as in Definition 2.1. Then Lemma
provides a closing subalgebra(A′, I ′) ∈ A(X) such thatµϕ(B

′) ⊂ A′ holds. We have to
verify the condition on the idealsI ′ andJ ′ required in Definition 1.2(ii). For this, conside
the affine closures of̂X andŶ :

X := Spec
(
A′

)
, Y := Spec

(
B ′

)
.

Then the restricted homomorphismµϕ :B ′ →A′ defines a morphismϕ :X→ Y . Recall
from Section 1 thatI ′ andJ ′ are the vanishing ideals of the complementsX \ X̂ andY \ Ŷ .
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Thus we have to show thatϕ mapsX̂ to Ŷ . For this, letg1, . . . , gr ∈ J ′ be homogeneou
sections as in Definition 2.1. Using Lemma 5.2, we obtain

X̂ =
r⋃

j=1

q−1
X

(
ϕ−1(Y \Z(gj )

))= r⋃
j=1

q−1
X

(
X \Z

(
µϕ(gj )

))

⊂
r⋃

j=1

Xµϕ(gj ) = ϕ−1(Ŷ )
.

Finally, we check thatϕ �→ [µϕ] is functorial. Note that by Proposition 5.3, the cla
[µϕ] does not depend on the choice of the Picard graded pullbackµϕ of a given morphism

From this we conclude that the identity morphism of a variety is mapped to the ide
morphism of its homogeneous coordinate ring. Moreover, as the composition o
Picard graded pullbacks is a Picard graded pullback for the composition of the resp
morphisms, the above assignment commutes with composition.✷

In the sequel we shall speak of the homogeneous coordinate ring functor. We p
the first main result of this article. It tells us that the morphisms of two varieties a
one-to-one correspondence with the morphisms of their coordinate rings.

Theorem 5.7. The homogeneous coordinate ring functorX �→ (A(X),A(X)) and
ϕ �→ [µϕ] is fully faithful.

Proof. Let X, Y be varieties with associated Picard graded algebrasA andB. We denote
the respective homogeneous coordinate rings ofX andY for short by(A,A) and(B,B).
We construct an inverse to

Mor(X,Y )→Mor
(
(B,B), (A,A)

)
, ϕ �→ [µϕ].

So, start with any graded homomorphismµ : (B,B)→ (A,A) of quasiaffine algebras
Then Lemma 1.4 provides closing subalgebras(A′, I ′) ∈ A and (B ′, J ′) ∈ B such that
(B ′, J ′) is as in Definition 2.1 and we haveµ(B ′)⊂A′.

Consider the affine closuresX := Spec(A′) andY := Spec(B ′) of X̂ := Spec(A) and
Ŷ := Spec(B). Thenµ gives rise to a morphismϕ :X→ Y , and restricting this morphism
to X̂ yields a commutative diagram

X̂
ϕ̂

qX

Ŷ

qY

X
ϕ

Y

whereqX and qY denote the canonical maps, and the morphismϕ :X → Y has as its
pullbacks on the level of functions the maps obtained by restricting the localiza
µg :Bg →Aµ(g) to degree zero over the affine setsYg for homogeneousg ∈ J ′.
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Observe that applying the above procedure to a further graded homomor
ν : (B,B) → (A,A) yields the same induced morphismX → Y if and only if the
homomorphismsµ andν are equivalent; the “only if” part follows from the uniquene
statement of Proposition 5.3 and the fact thatµ andν define Picard graded pullbacks v
localizing. Thus[µ] �→ ϕ defines an injection

Mor
(
(B,B), (A,A)

)→Mor(X,Y ).

We check that this map is inverse to the one defined by the homogeneous coo
ring functor. Start with a morphismϕ :X → Y , and let [µϕ] :B → A be as before
Proposition 5.6. Write shortlyµ := µϕ . Consider a homogeneousg ∈ B such thatV :=
Y \ Z(g) is affine and letU := ϕ−1(V ). Using Lemma 5.2, we obtain a commutat
diagram

A(µ(g)) B(g)

µ(g)

OX(U) OY (V )
ϕ∗

where the above horizontal map is the map on degree zero induced by the localize
µg :Bg →Aµ(g). SinceY is covered by open affine sets of the formV = Y \Z(g), we see
that the morphismX→ Y associated toµ= µϕ is againϕ. ✷

So far, our homogeneous coordinate ring functor depends on the choice
homogeneous coordinate ring for a given variety. By passing to isomorphism class
whole construction can even be made canonical:

Remark 5.8. If one takes as target category the category of isomorphism classes of
graded quasiaffine algebras, then the homogeneous coordinate functorX→ (A(X),A(X))

andϕ �→ [µϕ] becomes unique.

6. A first dictionary

We present a little dictionary between geometric properties of a variety and alg
properties of its homogeneous coordinate ring. We consider separatedness, norma
smoothness. Moreover, we treat quasicoherent sheaves, and we describe affine mo
and closed embeddings.

The setup is the same as in Sections 4 and 5: The multiplicative groupK∗ of the ground
field K is supposed to be of infinite rank overZ. Moreover,X is a divisorial variety with
O∗(X) = K∗ and its Picard group is finitely generated and has nop-torsion if K is of
characteristicp > 0.

Denote by(A,A) := (A(X),A(X)) the homogeneous coordinate ring ofX. Recall
that A is the algebra of global sections of a suitable Picard gradedOX-algebraA.
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In the subsequent proofs, we shall often use the geometric interpretation provid
Propositions 3.10 and 2.8:

Lemma 6.1. ConsiderX̂ := Spec(A), the canonical mapq : X̂→ X and the diagonaliz
able groupH := Spec(K[Pic(X)]).

(i) There is a unique free action ofH on X̂ such that eachA[L](U) consists precisely o
theχ [L]-homogeneous functions ofq−1(U).

(ii) The canonical mapq : X̂→X is a geometric quotient for the aboveH -action onX.

Proof. The first statement follows from Propositions 3.10 and 2.8. The second stat
is due to the facts thatOX = (A0) is the sheaf of invariants and the action ofH is free. ✷

We begin with the dictionary. It is quite easy to characterize separatedness in te
the homogeneous coordinate ring.

Proposition 6.2. The varietyX is separated if and only if there exists a graded clos
subalgebra(A′, I ′) ∈ A and homogeneousf1, . . . , fr ∈ I ′ as in Definition2.1 such that
each of the mapsA(fi) ⊗A(fj )→A(fifj ) is surjective.

Proof. First recall that the setsXi := X \ Z(fi) form an affine cover ofX. The above
condition means just that the canonical maps fromO(Xi) ⊗ O(Xj ) to O(Xi ∩ Xj) is
surjective. This is the usual separatedness criterion [14, Proposition 3.3.5].✷

Next we show how normality of the varietyX is reflected in its homogeneous coordin
ring (for us, a normal variety is in particular irreducible).

Proposition 6.3. The varietyX is normal if and only ifA is a normal ring.

Proof. We work in terms of the geometric dataq : X̂→X andH discussed in Lemma 6.1
First suppose thatA = A(X) is a normal ring. Then the quasiaffine varietŷX is normal.
It is a basic property of geometric quotients that the varietyX inherits normality fromX̂,
see, e.g., [7, p. 39].

Suppose conversely thatX is normal. Luna’s Slice Theorem tells us thatq : X̂→X is
anH -principal bundle in the étale topology, see [17], and [2, Proposition 8.1]. Thus,
étale maps,̂X looks locally likeX×H . Since normality of local rings is stable under ét
maps [19, Proposition I.3.17], we can conclude that all local rings ofX̂ are normal.

It remains to show that̂X is connected. Assume the contrary. Then there is a conn
component̂X1⊂ X̂ with q(X̂1)=X. Let H1⊂H be the stabilizer of̂X1, that means tha
H1 is the maximal subgroup ofH with H1 · X̂1= X̂1. Note that we havet ∈H1 if t ·x ∈ X̂1

holds for at least one pointx ∈ X̂1. In particular,H1 is a proper subgroup ofH .
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We claim that restricting the canonical mapq : X̂→X to X̂1 yields a geometric quotien
for the action ofH1 on X̂1. Indeed,H1 acts freely onX̂1. Hence we have a geometr
quotientX̂1→ X̂1/H1 and a commutative diagram

X̂1
⊂

/H1

X̂

/Hq

X̂1/H1 X

The mapX̂1/H1→X is bijective, because the intersection of aq-fibre with X̂1 always
is a singleH1-orbit. SinceX is normal, we may apply Zariski’s Main Theorem to conclu
thatX̂1/H1→X is even an isomorphism. This verifies our claim.

SinceH1 is a proper subgroup ofH , we find a nontrivial class[L] ∈ Pic(X) such that
the corresponding characterχ [L] of H is trivial onH1. We construct a defining cocycle fo
the class[L]: CoverX by small open setsUi admitting invertible sectionsgi ∈A[L](Ui).
Then the cocyclegi/gj defines a bundle belonging to the class[L].

On the other hand, thegi areχ [L]-homogeneous functions onq−1(Ui). So they restric
to H1-invariant functions onq−1(Ui) ∩ X̂1. As seen before,X is the quotient of̂X1 by
the action ofH1. Thus we conclude that thegi/gj form in fact a coboundary onX.
Consequently, the class[L] must be trivial. This contradicts the choice of[L]. ✷

Thus we see that ifX is normal, thenA is the ring of global functions of a norm
variety. That means thatA belongs to a intently studied class of rings.

Corollary 6.4. LetX be normal. ThenA is a Krull ring.

As we did in Proposition 6.3 for normality, we can characterize smoothness in ter
the homogeneous coordinate ring.

Proposition 6.5. X is smooth if and only if there is a closing subalgebra(A′, I ′) ∈ A

such that all localizationsAm are regular, wherem runs through the maximal ideals wit
I ′ �⊂m.

Proof. Let X̂ := Spec(A), and consider the affine closureX := Spec(A′) defined by any
closing subalgebra(A′, I ′) of A. Recall from Lemmas 1.4 and 1.5 thatI ′ is the vanishing
ideal of the complementX \ X̂. So, the regularity of the local ringsAm, whereI ′ �⊂m, just
means smoothness of̂X.

The rest is similar to the proof of Proposition 6.3: The canonical mapq : X̂→X is an
étaleH -principal bundle for a diagonalizable groupH . Thus, up to étale maps,̂X looks
locally like X ×H . The assertion then follows from the fact that regularity of local ri
is stable under étale maps, see [19, Proposition I.3.17].✷
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We give a description of quasicoherent sheaves. Consider a gradedA-moduleM. Given
f1, . . . , fr ∈A as in Definition 2.1, setMi :=M(fi). Then these modules glue together
a quasicoherentOX-moduleM onX. As in the toric case [1, Section 4], one obtains

Proposition 6.6. The assignmentM �→M defines an essentially surjective functor fro
the category of gradedA-modules to the category of quasicoherentOX-modules.

We come to properties of morphisms. LetY be a further variety likeX, and denote
its homogeneous coordinate ring by(B,B). Let ϕ :X→ Y be any morphism. Denote b
[µ] : (B,B)→ (A,A) the corresponding morphism of freely graded quasiaffine algeb

Proposition 6.7. The morphismϕ :X→ Y is affine if and only if there are graded closin
subalgebras(A′, I ′) ∈A and(B ′, J ′) ∈B satisfying Definition1.2such that

√
I ′ =√〈µ(J ′)〉.

Moreover,ϕ :X→ Y is a closed embedding if and only if it satisfies the above cond
and, giveng1, . . . , gs ∈ B as in Definition2.1, every induced mapB(gi) → A(µ(gi)) is
surjective.

Proof. Let B be a Picard gradedOY -algebra withB = B(Y ). Consider the affine closure
X := Spec(A′) of X̂ := Spec(A) andY := Spec(B ′) of Ŷ := Spec(B). Thenµ :B → A

gives rise to a commutative diagram

X̂
ϕ̂

qX

Ŷ

qY

X
ϕ

Y

The morphismϕ is affine if and only ifϕ̂ is affine. The latter is equivalent to the conditi
of
√

I ′ = √〈µ(J ′)〉 of the assertion. The supplement on embeddings is obvious.✷

7. Tame varieties

In this section we shed some light on the question which freely graded quas
algebras occur as homogeneous coordinate rings. As before, we assume t
multiplicative groupK∗ of the ground field is of infinite rank overZ. We consider varietie
of the following type:

Definition 7.1. A tame varietyis a normal divisorial varietyX with O(X) = K and a
finitely generated Picard group Pic(X) having nop-torsion if K is of characteristicp > 0.
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The prototype of a tame variety lives in characteristic zero, and is a smooth com
variety with finitely generated Picard group. Moreover, in characteristic zero, every Ca
Yau variety is tame, and everyQ-factorial rational varietyX with O(X) = K is tame.
Finally, in characteristic zero every normal divisorial variety with finitely generated P
group admits an open embedding into a tame variety.

In order to figure out the coordinate rings of tame varieties, we need some prepa
Suppose that an algebraic groupG acts on a varietyX. Recall that aG-linearizationof a
line bundleE→X is a fibrewise linearG-action onE making the projection equivarian
By a simpleG-varietywe mean aG-variety for which anyG-linearizable line bundle is
trivial.

Definition 7.2. Let Λ be a finitely generated abelian group, and let(A,A) be a freely
Λ-graded quasiaffine algebra.

(i) We say that(A,A) is pointedif A is a normal ring,A0=K holds, and the setA∗ ⊂A

of invertible elements is justK∗.
(ii) We say that(A,A) is simpleif Λ has nop-torsion if K is of characteristicp > 0, and

the quasiaffine Spec(K[Λ])-variety corresponding to(A,A) is simple.

These two subclasses define full subcategories of the categories of divisorial va
with finitely generated Picard group and freely graded quasiaffine algebras. The s
main result of this article is the following

Theorem 7.3. The homogeneous coordinate ring functor restricts to an equivalence
the category of tame varieties to the category of simple pointed algebras.

Proof. Let X be a tame variety with Picard groupΠ := Pic(X), and denote the associat
homogeneous coordinate ring by(A,A). ThenA is the algebra of global sections of som
Picard gradedOX-algebraA on X. We shall use again the geometric data discusse
Lemma 6.1:

X̂ := Spec(A), q : X̂→X, H := Spec
(
K[Π]).

The first task is to show that(A,A) is in fact pointed. From Proposition 6.3 we infer th
A is a normal ring. Since we assumedO(X)=K, andO(X) equalsA0, we haveA0=K.
So we have to verifyA∗ =K∗. For this, consider an arbitrary elementf ∈A∗.

Choose a direct decomposition ofΠ into a free partΠ0 and the torsion partΠt . This
corresponds to a splittingH = H0 × Ht with a torusH0 and a finite groupHt . As an
invertible element ofO(X̂), the functionf is necessarilyH0-homogeneous, see, e.g., [1
Proposition 1.1]. Thus, there is a degreeP ∈Π0 such that

f =
∑

fP+G, f−1=
∑

f−1
−P+G.
G∈Πt G∈Πt
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From the identityff−1 = 1 we infer thatfP+Gf−1
−P−G �= 0 holds for at least on

componentfP+G of f . SinceO(X) = K holds, we see that the homogeneous sec
fP+G ∈A is invertible. Thus the homogeneous componentAP+G is isomorphic toOX .

On the other hand we noted in Lemma 3.5(ii) thatAP+G is isomorphic to the shea
of sections of a bundle representing the classP +G in Π0⊕Πt . ThusP +G is trivial,
and we obtainP = 0. Hence all homogeneous components off have torsion degree. B
O(X)=K this yields thatfG = 0 if G �= 0. Thus we havef ∈A0=K.

The next task is to show that̂X is a simpleH -variety. For this, let PicH (X̂) denote the
group of equivariant isomorphy classes ofH -linearized line bundles on̂X, compare [16,
Section 2]. Moreover, let Piclin(X̂) ⊂ Pic(X̂) denote the subgroup of the classes of
H -linearizable bundles. We have to show that Piclin(X̂) is trivial.

First, we consider the possible linearizations of the trivial bundleX̂ × K. Using
O∗(X̂) = K∗, as verified before, one directly checks that any linearization of the tr
bundle is given by a characterχ of H as follows:

t · (x, z) := (
t · x,χ(t)z

)
. (7.3.1)

In particular, the character group Char(H) canonically embeds into the group PicH (X).
Since we obtain in (7.3.1) indeed any linearization of the trivial bundle, the
Char(H)→ PicH(X̂) and the forget map PicH (X̂)→ Piclin(X̂) fit together to an exac
sequence, compare also [16, Lemma 2.2]:

0→Char(H)→ PicH
(
X̂

)→ Piclin
(
X̂

)→ 0. (7.3.2)

Thus, to obtain Piclin(X̂) = 0, it suffices to split the map Char(H)→ PicH(X̂) into
isomorphisms as follows:

Char(H)

∼=
χP �→P

PicH(X̂)

Π

q∗
∼= (7.3.3)

But this is not hard: The fact thatq∗ induces an isomorphism ofΠ = Pic(X) and
PicH(X̂) is due to [16, Proposition 4.2]. To obtain commutativity, considerP ∈Π . Choose
invertible sectionsgi ∈ AP (Ui) for small openUi coveringX. Then the class ofP is
represented by the bundlePξ arising from the cocycle

ξij := gj

gi

. (7.3.4)

So the pullback classq∗(P ) ∈ PicH(X̂) is represented by the trivially linearized bund
q∗(Pξ ), which in turn arises from the cocycle

q∗(ξij ) := q∗
(

gj
)
= gj

. (7.3.5)

gi gi



F. Berchtold, J. Hausen / Journal of Algebra 266 (2003) 636–670 665

rom

) for

the
tion. It
eneous

elian

up

d
2,

group

.3.2).

as

rs
ian

y

only
But on X̂, the gi are ordinary invertible functions. So we obtain an isomorphism f
the representing bundleq∗(Pξ ) onto the trivial bundle by locally multiplying withgi .
Obviously, the induced linearization on the trivial bundle is the linearization (7.3.1
χ = χP .

Thus we proved that(A,A) is in fact a simple pointed algebra. In other words,
homogeneous coordinate ring functor restricts to the subcategories in considera
remains to show that up to isomorphism, every simple pointed algebra is the homog
coordinate ring of some tame varietyX.

So, let(A,A) be a simple pointed algebra, graded by some finitely generated ab
groupΠ . According to Proposition 2.8, we may assume that(A,A) equals(O(X̂),O(X̂))

for some normal quasiaffine varietŷX with a free action of a diagonalizable gro
H = Spec(K[Π]).

The action ofH on X̂ admits a geometric quotientq : X̂→X: First divide by the finite
factorHt of H to obtain a normal quasiaffine varietŷX/Ht , and then divide by the induce
action of the unit componentH0 of H on X̂/Ht , see, for example, [7, Ex. 4.2] and [2
Corollary 3].

The candidate for our tame variety isX. Since the structure sheafOX is the sheaf
of invariantsq∗(OX̂)H andA = O(X̂) is pointed, we haveO(X) = K. Moreover, as a
geometric quotient space of a normal quasiaffine variety by a free diagonalizable
action,X is again normal and divisorial, for the latter see [11, Lemma 3.3].

To conclude the proof, we have to realize the (Π -graded) direct imageA := q∗OX̂ as
a Picard graded algebra onX. First note that we have again the exact sequence (7
Since we assumed Piclin(X̂)= 0, the character group Char(H) maps isomorphically onto
PicH(X̂).

Moreover, we have a canonical mapΠ → Pic(X): For a degreeP ∈Π choose invertible
χP -homogeneous functionsgi ∈ O(q−1(Ui)) with small openUi ⊂ X coveringX, see
Definition 2.1. As in (7.3.4), such functions define a cocycleξ and hence we may mapP
to the class of the bundlePξ . In conclusion, we arrive again at a commutative diagram
in (7.3.3). In particular,Π → Pic(X) is an isomorphism.

In fact, the construction (7.3.4) allows us to define a groupΛ of line bundles onX:
As in the proof of Lemma 4.2, we may adjust the sectionsgi for a system of generato
P of Π , such that the corresponding cocyclesξ generate a finitely generated free abel
group. LetΛ be the resulting group of line bundles, and denote the associatedΛ-graded
OX-algebra byR.

We construct a gradedOX-algebra homomorphismR → A. The accompanying
homomorphism will be the canonical mapΛ→ Π , associating toL its class under the
identificationΠ ∼= Pic(X). Now, the sections ofRL, whereL= Pξ , are given by families
(hi) satisfying

hj = ξj hi = gj

gi

hi .

This enables us to define a mapRL →AP by sending(hi) to the section obtained b
patching together thehigi . Note that this indeed yields a graded homomorphismR→A.
By construction, this homomorphism is an isomorphism in every degree. Thus we
have to show that its kernel is the ideal associated a shifting family forR.
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LetΛ0⊂Λ denote the kernel of the canonical mapΛ→Π . Then every bundleE ∈Λ0
admits a global trivialization. In terms of the defining cocyclegi/gj of E this means tha
there exist invertible local functions̃gi onX with

gj

gi

= g̃j

g̃i

.

The functionsg̃i can be used to define a shifting family: LetL ∈Λ andE ∈Λ0. Then
the sections ofRL are given by families(hi) of functions that are compatible with th
defining cocycle. Thus we obtain maps

,E :RL→RL+E, (hi) �→
(

hi

g̃i

)
.

By construction, the,E are homomorphisms, and they fit together to a shifting fami,

for R. It is straightforward to check that the idealI associated to, is precisely the kerne
of the homomorphismR→A. ✷

8. Very tame varieties

Finally, we take a closer look to the case of a free Picard group. The only assum
in this section is that the multiplicative groupK∗ is of infinite rank overZ. But even this
could be weakened, see the concluding Remark 8.8.

Definition 8.1. A very tamevariety is a normal divisorial variety with finitely generat
free Picard group and only constant functions.

Examples of very tame varieties are Grassmannians and all smooth complet
varieties. On the algebraic side we work with the following notion:

Definition 8.2. A very simplealgebra is a freelyΛ-graded quasiaffine algebra(A,A) such
that

(i) the grading groupΛ of (A,A) is free,
(ii) A is normal, and we haveA0=K andA∗ =K∗,
(iii) the quasiaffine variety associated to(A,A) has trivial Picard group.

Again, very tame varieties and very simple algebras form subcategories, and w
an equivalence theorem:

Theorem 8.3. The homogeneous coordinate ring functor restricts to an equivalence o
category of very tame varieties with the category of very simple algebras.

Proof. Let X be a very tame variety. We only have to show that the quasiaffineH -variety
X̂ corresponding to the homogeneous coordinate ring ofX has trivial Picard group
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SinceX̂ is normal andH is a torus, every line bundle on̂X is H -linearizable, see [15
Remark, p. 67]. But from Theorem 7.3, we know that everyH -linearizable bundle on̂X is
trivial. ✷

In the setting of very tame varieties, we can go further with the dictionary pres
in Section 6. The first remarkable statement is that very tame varieties produce
factorization domains.

Proposition 8.4. LetX be a very tame variety with homogeneous coordinate ring(A,A).
ThenX is locally factorial if and only ifA is a unique factorization domain.

Proof. LetA=A(X) with some Picard gradedOX-algebraA, and the geometric quotien
q : X̂→ X provided by Lemma 6.1. Since Pic(X) is free we divide by a torusH . Thus
q : X̂→X is anH -principal bundle with respect to the Zariski topology. In particularX

is locally factorial if and only ifX̂ is so. ButX̂ is locally factorial if and only ifA is a
factorial ring, because we have Pic(X̂)= 0. ✷

Next we treat products. LetX and Y be very tame varieties with homogeneo
coordinate rings(A,A) and(B,B). Fix closing subalgebras(A′, I ′) ∈A and(B ′, J ′) ∈B,
as in Definition 2.1, and consider the algebra

A � B :=
⋂
f

(
A′ ⊗K B ′

)
f
=

⋂
f

(A⊗K B)f ,

where the intersections are taken in the quotient field ofA′ ⊗K B ′ andf runs through the
elements of the formg⊗ h with homogeneousg ∈ I ′ andh ∈ J ′.

Now A andB are graded, say byΛ andΓ . These gradings give rise to a(Λ × Γ )-
grading ofA � B. Moreover, (

A′ ⊗K B ′,
√

I ′ ⊗K J ′
)

is a closing subalgebra ofA � B. Let A � B denote the equivalence class of this clos
subalgebra. Then we obtain

Proposition 8.5. LetX andY be locally factorial very tame varieties. ThenX×Y is locally
factorial and very tame with homogeneous coordinate ring(A � B,A � B). Moreover, if
A andB are of finite type overK, thenA � B equalsA⊗K B.

Proof. First note that for any two quasiaffine varietieŝX andŶ with free diagonalizable
group actions, their product̂X × Ŷ is again such a variety. Moreover, if̂X and Ŷ have
only constant invertible functions, then so doesX̂ × Ŷ . If X̂ and Ŷ are additionally
locally factorial with trivial Picard groups, then the same holds forX̂ × Ŷ , use e.g., [8
Proposition 1.1].

Now, letX̂ := Spec(A) andŶ := Spec(B). By Proposition 8.4 both are locally factoria
By construction(A � B,A � B) is the freely graded quasiaffine algebra correspondin
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the productX̂ × Ŷ . Thus the above observations and Proposition 2.8 tell us that it
coproduct in the category of simple pointed algebras. Hence the assertion follows
Theorem 7.3. The second statement is an easy consequence of Remark 1.7(i).✷
Corollary 8.6. Let X andY be locally factorial very tame varieties. ThenPic(X × Y ) is
isomorphic toPic(X)×Pic(Y ).

We give an explicit example emphasizing the role of Proposition 8.4. We assume th
ground fieldK is not of characteristic two. Consider the prevarietyX obtained by gluing
two copies of the projective lineP1 along the common open subsetK∗ \ {1}. We think of
X as the projective line with three doubled points, namely

0, 0′, 1, 1′, ∞, ∞′.

Note thatX is smooth and divisorial. Moreover, Pic(X) is isomorphic toZ4. Thus
we obtain in particular thatX is very tame. Let(A(X),A(X)) denote the homogeneo
coordinate ring ofX. We show

Proposition 8.7. A(X)∼=K[T1, . . . , T6]/〈T 2
1 + · · · + T 2

6 〉.

Before giving the proof, let us remark that the ringA(X) is a classical example of
singular factorial affine algebra. In view of our results, factoriality is a consequen
Proposition 8.4.

Proof of Proposition 8.7. First observe that we may realize Pic(X) as well as a subgrou
Λ of the group of Cartier divisors ofX. For example, Pic(X) is isomorphic to the groupΛ
generated by

D0 := {0}, D1 := {1}, D1′ := {1′}, D∞ := {∞}.

For any Cartier divisorD on X, let AD denote its sheaf of sections. Then t
homogeneous coordinate ringA(X) is the direct sum of theAD(X), whereD ∈ Λ.
Consider the following homogeneous elements ofA(X):

f1 := 1∈AD0(X), f2 := 1∈AD1(X),

f3 := 1∈AD1′ (X), f4 := 1∈AD∞(X),

f5 :=
(

1

z− 1

)
∈AD1+D1′−D∞(X), f6 :=

(
z

z− 1

)
∈AD1+D1′ −D0(X).

Let ϕ be the algebra homomorphismK[T1, . . . , T6] → A(X) sendingTi to fi . It is
elementary to check thatϕ is surjective. Since we assumedK not to be of characteristi
two, it suffices to show that the kernel ofϕ is the ideal generated by

Q := T2T3+ T5T4− T6T1.
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An explicit calculation shows that thefi fulfill the claimed relation, that means thatQ

lies in the kernel ofϕ. Conversely, consider an arbitrary elementR of the kernel ofϕ. Then
there arerj ∈K[T1, . . . , T5] such thatR is of the form

R =
s∑

j=0

rj T
j
6 .

We proceed by induction ons. For s = 0 the fact thatf1, . . . , f5 are algebraically
independent impliesR = 0. For s > 0 note first thatϕ(rj ) is nonnegative inD0 in the
sense that its component in a degree containing a multiplenD0 is trivial for negativen.

Sincef6 is negative inD0, andf1 is the only generator ofA(X) which is strictly positive
in degreeD0, we can writerj = r̃j T

j

1 . Hence we obtain a representation

R =
s∑

j=0

r̃j T
j

1 T
j

6 .

The element̃rs((T1T6)
s − (T2T3+ T4T5)

s) is a multiple ofQ. In particular, it belongs to
the kernel ofϕ. Subtracting it fromR, we obtain

R′ =
s−1∑
j=0

r ′j T
j

1 T
j

6 ,

with r ′j = r̃j for j > 0 andr ′0= r̃0+ r̃s (T2T3+ T4T5)
j . Applying the induction hypothesi

to R′ yields thatR is a multiple ofQ. ✷
Finally, let us note that all our statements on very tame varieties hold under more g

assumptions. This is due to the fact that free Picard groups always can be realized b
groups of line bundles. Hence in this case we don’t need shifting families to defin
homogeneous coordinate ring. This means

Remark 8.8. For very tame varietiesX, the results of this article hold over an
algebraically closed ground fieldK, and one might weaken the assumptionO(X) = K

to O∗(X)=K∗.
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