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Significant evidence now supports the assertion that cytosolic calcium oscillations during fertiliza-
tion in mammalian eggs are mediated by a testis-specific phospholipase C (PLC), termed PLC-zeta
(PLCf) that is released into the egg following gamete fusion. Herein, we describe the current para-
digm of PLCf in this fundamental biological process, summarizing recent important advances in
our knowledge of the biochemical and physiological properties of this enzyme. We describe the data
suggesting that PLCf has distinct features amongst PLCs enabling the hydrolysis of its substrate,
phosphatidylinositol 4,5-bisphosphate (PIP2) at low Ca2+ levels. PLCf appears to be unique in its abil-
ity to target PIP2 that is present on intracellular vesicles. We also discuss evidence that PLCf may be a
significant factor in human fertility with potential therapeutic capacity.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction other species such as mammals and ascidians where the Ca2+ sig-
Before fertilization, mature oocytes (henceforth referred to as
eggs) of many vertebrates remain arrested at the metaphase stage
of the second meiotic division (MII). Release of this arrest is vital
for embryogenesis to proceed and occurs through a series of
events, collectively termed ‘egg activation’, acting in concert to per-
mit formation of a totipotent zygote [1,2]. Characterized by the for-
mation of the second polar body (2PB) and the male and female
pronuclei, egg activation in vertebrates additionally involves corti-
cal granule exocytosis, progression of the cell cycle, and maternal
mRNA recruitment [1,3–5]. A number of recent reviews have sum-
marized this fundamental biological process. Herein, we summa-
rize recent important advances in our understanding of the
current biochemical paradigms of egg activation and the sperm
factor, and how these may relate to clinical application.

It is now well established in all mammalian species that oocyte/
egg activation involves marked increases in the concentration of
egg cytosolic calcium (Ca2+), which are both necessary and suffi-
cient for activation [1,6,7]. The importance of this Ca2+ signaling
phenomenon extends beyond mammals since egg activation is
accompanied by an increase in the level of intracellular [Ca2+] in
many non-mammalian species such as sea urchins and frogs. In
these species the Ca2+ increase is a single rise, in contrast with
nal is delivered as a train of long-lasting repetitive Ca2+ transients,
known as Ca2+ oscillations, which occur after sperm–egg fusion
[1,6,8,9]. The frequency and duration of Ca2+ oscillations varies be-
tween species and can last from a Ca2+ increase every 2 min, to a
Ca2+ increase every 1 h [1,9].

Four predominant hypotheses have been proposed to explain
the nature of the Ca2+ transients in mammalian eggs: (1) the
‘Ca2+ bomb’ hypothesis [10], (2) the ‘conduit’ hypothesis [11], (3)
the ‘contact’ hypothesis [12,13], and (4) the ‘sperm factor’ hypoth-
esis [8] (for more details on the proposed hypotheses explaining
Ca2+ oscillations at fertilization, see review [1]). Numerous experi-
mental studies now provide convincing evidence that the ‘sperm
factor’ hypothesis of egg activation is the most appropriate model
for mammals and a number of invertebrate species [8,14–17]. The
‘sperm factor’ hypothesis proposes that upon sperm–egg fusion, a
soluble factor is delivered from sperm cytosol into the ooplasm,
capable of activating the 1,4,5-trisphosphate (IP3) signaling path-
way and the subsequent Ca2+ oscillations in fertilized eggs [8].
Ca2+ oscillations in mammalian eggs are generally acknowledged
to occur as a result of IP3-mediated Ca2+ release from internal
stores such as the endoplasmic reticulum (ER). Blocking, down-
regulating, or reducing levels of IP3 receptors (IP3Rs) in mouse
and hamster eggs inhibited Ca2+ oscillations, preventing egg activa-
tion [18–21]. Furthermore, microinjection of IP3 or adenophostin
(an IP3 analogue) can also lead to Ca2+ oscillations in mouse eggs
[22–24], demonstrating the importance of this signaling pathway.
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2. From the sperm factor hypothesis to a novel sperm PLC

The above cited evidence suggest that Ca2+ oscillations at mam-
malian fertilization arise as a result of the stimulation of the phos-
phoinositide signalling pathway, where intracellular IP3 is
generated along with diacylglycerol (DAG) by the hydrolysis of
phosphatidylinositol 4,5-bisphosphate (PIP2). DAG can stimulate
the activation of protein kinase C (PKC) and IP3 binds to the IP3Rs
on the ER, resulting in a conformational change and opening of
the intrinsic IP3R channel to allow Ca2+ release [25].

A number of candidates have been proposed as the mammalian
sperm factor, with early candidates suggested to be small mole-
cules such as nitric oxide (NO) [26], or nicotinic acid adenine dinu-
cleotide phosphate (NAADP) [27]. While such molecules generate
Ca2+ release from intracellular stores in non-mammalian species,
they do not cause Ca2+ release in mammalian eggs [1]. Another
suggestion was that IP3 itself was the sperm factor [28], but injec-
tion of IP3 into mouse eggs leads to a damped series of Ca2+ oscil-
lations that do not resemble those seen at fertilization [4].
Additionally, fractionation studies suggested that the sperm factor
was a protein [14,29,30] �30–100 kDa in size [1,31,32]. Various
proteins have also been proposed to be the sperm factor, including
a 33 kDa protein [33], a truncated form of the kit receptor, tr-kit
[34] and a post-acrosomal sheath WW domain-binding protein,
termed PAWP [35]. However, like many of the small molecules
proposed, none of these candidate proteins have been demon-
strated to elicit repetitive Ca2+ release in mammalian eggs [1,36].
Furthermore, the underlying mechanisms of action of such pro-
teins remain unclear, resulting in significant doubt over the iden-
tity of such proteins as the mammalian sperm factor [2,5].

In the end, clues that led to the identification of the sperm fac-
tor came from studies using sea urchin egg homogenates that can
take up Ca2+ and then release Ca2+ in response to a range of agents
including IP3, cADPR and NAADP [37]. It was shown that the same
sperm extracts that caused Ca2+ oscillations in mouse eggs could
also generate Ca2+ release in the sea urchin egg homogenate [38].
The mechanism of Ca2+ release was shown to involve IP3 produc-
tion, and not cADPR or NAADP [24]. Further, the sperm extracts
themselves were shown to contain a highly active phosphoinosi-
tide-specific phospholipase C (PLC) activity. This suggested that
the sperm factor might itself be a PLC enzyme. However, the spe-
cific PLC isoform key to eliciting the repeated Ca2+ release at egg
activation eluded investigators for some time.

An extremely promising PLC candidate was revealed following
the investigation of mouse expressed sequence tag (EST) dat-
abases, which identified a set of novel PLC sequences, all derived
specifically from the testis. This led to the identification of a novel,
and testis-specific PLC in mouse sperm, termed PLC-zeta (PLCf), a
�74 kDa protein which was subsequently proven to play a funda-
mental role in egg activation [39]. Our laboratory also first reported
the identification of human PLCf, a 70 kDa protein [40].

Numerous studies now support the view that PLCf is the mam-
malian sperm factor. The most significant evidence is that microin-
jection of in vitro-transcribed PLCf RNA and PLCf protein into
mouse eggs resulted in the initiation of Ca2+ oscillations with the
characteristic pattern of those specifically observed at fertilization.
Remarkably, these injections of PLCf in vitro transcripts also sup-
ported mouse early embryonic development up to the blastocyst
stage [39,41]. Immunodepleting PLCf from sperm extracts sup-
pressed their ability to release Ca2+ [39], while protein fraction-
ation studies correlated the presence of PLCf in sperm extracts to
their ability to induce Ca2+ oscillations [42,43]. Notably, sperm
extracts and PLCf transcripts from one vertebrate species (e.g. hu-
man) are able to elicit Ca2+ release upon microinjection into eggs
from another vertebrate species (e.g. mouse) [40,44]. Furthermore,
transgenic mice exhibiting disrupted PLCf expression in the testis
through RNA interference (RNAi) experiments, yielded sperm
which induced prematurely ending Ca2+ oscillations, and while
not infertile, exhibited a dramatically reduced litter size [45].

The most significant data, however, is the mounting clinical evi-
dence that indicates the involvement of abnormal forms or aber-
rant function of PLCf in cases of male factor infertility and egg
activation failure in humans. In many fertility clinics, sperm is
now injected directly into the eggs in a procedure known as in-
tra-cytoplasmic sperm injection (ICSI). Sperm of infertile men that
fail to activate eggs after ICSI produced either no Ca2+ oscillations
upon injection into mouse eggs, or else produced significantly
diminished Ca2+ oscillation profiles. [46,47]. Moreover, immuno-
fluorescence and immunoblot analysis revealed that infertile pa-
tients whose sperm had failed in ICSI, exhibited reduced or
absent levels of PLCf within the sperm head [46,47]. The data sug-
gest that a relative lack of PLCf may explain some cases of male
factor infertility, and they also support the strong connection be-
tween PLCf and the ability of a sperm to generate Ca2+ oscillations.

Importantly, two recent studies have provided the first genetic
links between PLCf defects and infertility by identifying two het-
erozygous substitution mutations in the protein coding sequence
of PLCf in an infertile male [47,48]. The first mutation occurring
at position 398 within the Y domain results in histidine being
changed to proline (H398P) [47]. The second in the X domain at po-
sition 233 changes a histidine to leucine (H233L) [48]. Character-
ization studies of these mutations in mouse and human PLCf
revealed that both mutations disrupt local folding in the PLCf ac-
tive site. This results in a dramatic reduction of PLCf in vitro enzy-
matic and in vivo Ca2+oscillation-inducing activity suggesting that
these mutations may underlie the patient’s infertility [47,49,50].
Further analysis of these mutants suggested that similar loss-of-
activity mutations in PLCf may contribute not only towards male
infertility, but also male sub-fertility [47,48,51].

Further biochemical studies have now also identified mamma-
lian PLCf orthologues in hamster, porcine, monkey, and horse
sperm [40,52–54]), while non-mammalian testis-specific PLCf
homologues have been identified in the chicken [55] and fish (tes-
tis-specific in Medaka, but ovarian and brain expression in puffer-
fish) [56,57]. A further interesting point is that mutations in the
PLCf promoters have also been linked to semen quality (and thus
fertility) in Chinese Holstein Bulls, with specific haplotypes of PLCf
promoter sequences linked to varying degrees of semen quality
[58]. This suggests that the sperm PLCf may constitute a universal
biochemical mechanism of egg activation at fertilization within
vertebrates, and that dysfunction may contribute to varying de-
grees of infertility [2,5]. All this mounting evidence highlights the
central importance of sperm-specific PLCf in mammalian fertiliza-
tion and suggests that it is a critical factor in reproductive biology.

A recent outlier study has suggested that PLCf may not be the
egg-activating sperm factor due to apparent discrepancies in the
immunocytochemical localisation pattern observed in mouse, bull,
and human sperm [59]. This report by Aarabi et al. was primarily
based upon using one antibody of limited specificity (see Fig. 1A
of reference [59]). Their experiments suggested that PLCf is se-
creted by epididymal cells and is not detectable in sperm after
the acrosome reaction [59]. However, there are several other stud-
ies, using a variety of different antibodies, that show corroborative
evidence for PLCf localization in the perinuclear or postacrosomal
regions inside the head of mouse [42,60] human [50], or bull sperm
[60]. Moreover, analysis of protein extracts derived from the peri-
nuclear theca of mouse or pig sperm were shown to contain PLCf
[42,43]. The perinuclear theca is the first region of sperm to



Fig. 1. Schematic linear representation of the domain structure of PLCf. PLCf exhibits a typical mammalian PLC domain structure consisting of four tandem EF hand domains,
the characteristic X and Y catalytic domains which are separated by an unstructured linker region, and a single C-terminal C2 domain, all of which are common to the other
PLC isoforms (b, c, d, e and g).
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disperse into the egg cytoplasm after gamete fusion. Hence this
collective immunolocalization evidence from disparate laborato-
ries strongly suggests that PLCf is indeed present in a region of
sperm head which is consistent with its proposed role in egg acti-
vation during fertilization and after ICSI.
3. Structure and function of PLCf

Currently, there are 13 known mammalian PLC isozymes, cate-
gorized according to structure and regulatory activation mecha-
nisms: PLC-beta (PLCb 1–4), PLC-gamma (PLCc 1 and 2), PLC-
delta (PLCd 1, 3, and 4), PLC-epsilon (PLCe), PLC-zeta (PLCf), and
PLC-eta (PLCg 1 and 2) [25,61,62]. These isozymes contain the cat-
alytic X and Y domains as well as various regulatory domains,
including a pleckstrin homology (PH) domain, EF hand motifs,
and C2 domain in various conformations, depending on the iso-
zyme, with each domain performing specific functions. Some iso-
zymes also consist of subtype-specific domains, thought to
contribute to towards specific regulatory mechanisms, including
the Src homology (SH) domain in PLCc [61] and the Ras-associating
and Ras-GTPase exchange factor-like domains in PLCe [63,64].

PLCf demonstrates a typical PLC domain structure [39] with
characteristic X and Y catalytic domains which form the active site
in all PLC isoforms [25,61,62] a single C2 domain and four tandem
EF hand domains (Fig. 1). While PLCf exhibits 33% homology with
PLCd [39], a major difference to other PLCs is the absence of pleck-
strin homology (PH) and Src homology (SH) domains, making PLCf
the smallest known mammalian PLC with a molecular mass of
�70 kDa in humans and �74 kDa in mice [39,40].

Importantly, PLCf has been demonstrated to be extremely effec-
tive at triggering Ca2+ release within eggs, despite its small size and
lack of a PH domain. Indeed, microinjection of PLCf results in an
extremely rapid down-regulation of IP3Rs in mouse eggs [65]. In
fact, microinjection of either c-myc-tagged or luciferase-tagged
PLCf fusion proteins indicated that PLCf is effective at around
40 fg per egg [39,66]. In contrast, PLCd1, the closest homologue
to PLCf, induces Ca2+ oscillations only at concentrations exceeding
1 pg per egg [41]. Furthermore, injection of 1–5 pg of PLCb1 or
PLCc failed to elicit Ca2+ oscillations in mouse eggs [67]. Collec-
tively, such data suggest that PLCf is far more potent than other
PLCs in activating IP3 production and eliciting Ca2+ oscillations in
mouse eggs.

PLCf identified from all species to date are similar in size, rang-
ing between 70–75 kDa. However, all PLCf isoforms seem to dis-
play a significant degree of variance in their calculated isoelectric
points (pI), ranging from 5.29 in rat PLCf, to 9.14 in human PLCf
[1,9], perhaps indicating a wide solubility range of the enzyme
across species. Furthermore, the biochemical factors underlying
the high levels of PLCf activity comparative to other PLC isoforms
currently remains unanswered [36]. However, each individual do-
main of PLCf exhibits an essential role.

3.1. EF hand domains contribute to the high Ca2+-sensitivity of PLCf

PLCf contains two pairs of EF hand domains at the N-terminal
end of the protein, each of which consists of four helix–loop–helix
motifs divided in two pair-wise lobes. In PLCd1, the EF hands form
a flexible link between the catalytic and PH domains, and possess
residues capable of binding Ca2+ [68]. Compared to PLCd1, PLCf
exhibits a 100-fold higher Ca2+-sensitivity. At the resting cytosolic
Ca2+ levels in oocytes, PLCf is predicted to be at least half-maxi-
mally active and any increase in basal Ca2+ will lead to a significant
rise in activity. This suggests there may be a positive feedback loop
of Ca2+ and IP3 increases that could underlie the oscillation mech-
anism. Deletion of one or both EF hand domains of PLCf led to a
complete loss of its oscillatory ability in mouse eggs [69,70].
Intriguingly, these PLCf deletion constructs retained their ability
to hydrolyze PIP2 in vitro. However, even the deletion of the first
EF hand domain raised the EC50 of PLCf for Ca2+ by �ninefold
[70]. Deletion of both EF hands dramatically altered the EC50 of
PLCf for Ca2+ from �80 nM to �30 lM [70]. This suggests that
truncation of EF hands ablates the enzyme’s ability to generate
IP3 in an intact egg cell since it has a probable basal Ca2+ concentra-
tion of �100 nM [1,70].

Notably, an additional role for the EF hand domains of PLCf has
been proposed based on the findings that point mutations within
the EF hands disrupt the nuclear translocation of mouse PLCf
[71]. However, this contrasts with studies reporting that the XY-
linker region in mouse PLCf comprises a nuclear localization signal
(discussed in ‘XY-linker region’ section below). Regardless, the sig-
nificantly increased Ca2+ sensitivity conferred by the EF hands
makes PLCf one of the most Ca2+-sensitive PLC isoforms in mam-
mals, enabling PLCf to elicit Ca2+ release at relatively low Ca2+ lev-
els within eggs.

3.2. XY-linker region: critical role in the regulation of enzymatic
activity and substrate targeting of PLCf

PLCf possesses characteristic X and Y catalytic domains which
form the active site common to all PLCs [1,9]. Indeed, all PLCf ac-
tive site residues are conserved, or conservatively replaced, muta-
genesis of which leads to the loss of Ca2+ induction ability,
confirming that as with PLCd1, the active site of PLCf is responsible
for hydrolyzing PIP2 to cause IP3-mediated Ca2+ release [9]. The
other region of PLCf that plays an important role in regulating its
enzymatic activity and its substrate targeting is the segment that
joins the X and Y catalytic domains, termed the XY-linker [1,72–
74]. Found in all PLCs, the XY-linker region remains the only part
of PLC whose structure as of yet remains unresolved, with its spe-
cific role in PLC enzymatic activity unclear. Notably the XY-linker
region of PLCf is extended in length and consisting of more basic
residues relative to its PLCd1 counterpart [39,40]. Structural and
biochemical evidence suggests that the XY-linker region of PLCb,
c, d, and g, mediates potent auto-inhibition of their enzymatic
activity [75,76]. Such data are consistent with the negatively-
charged XY-linker region of these PLC isoforms, which may confer
electrostatic repulsion alongside steric hindrance to occlude PIP2

from the active site [75,76].
In contrast with somatic PLCs, recent evidence suggests that

PLCf operates via a novel enzymatic mechanism, because deletion
of the XY-linker of PLCf significantly diminishes PIP2 hydrolysis
in vitro, and Ca2+ oscillation-inducing ability in vivo [73]. It has
been proposed that the PLCf XY-linker, a region which is notably
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different from the corresponding region of other PLCs, may be
involved in the targeting of PLCf to its membrane-bound PIP2 via
electrostatic interactions, assisting in anchoring PLCf to mem-
branes, while enhancing local PIP2 concentrations [72]. Indeed,
substitution mutation of three lysines to alanines (K374A, K375A
and K377A) within the XY-linker region of mouse PLCf provided
a successive reduction of net positive charge within the XY-linker
region, which in turn significantly reduced both in vivo Ca2+ oscil-
lation-inducing activity, and the efficacy of PIP2 interaction in vitro
[74]. Interestingly, porcine PLCf remains functionally active follow-
ing cleavage within the XY-linker region, suggesting that an intact
polypeptide is not essential for PIP2 substrate hydrolysis [77]. PLCf
contains in its XY-linker region a predicted nuclear localization sig-
nal (NLS) sequence located close to the start of the Y domain,
which may play a role in the mode of regulation of at least the
mouse PLCf [56,78–80], (discussed in detail later).

The XY-linker region of PLCf is the least conserved region be-
tween species, being longest in the monkey Macaca fascicularis,
and shortest in humans [9]. The role played by such diversity is
currently unclear, with such variance perhaps accounting for the
different rates of enzymatic activity and relative potency between
PLCf species [81]. Indeed, the proximity of this apparently unstruc-
tured cluster of residues to the active site indicates potential
involvement in regulating catalytic activity, or PIP2 binding [1,9].

3.3. C2 domain: critical for the Ca2+ oscillation-inducing activity
of PLCf

C2 domains in some proteins can bind Ca2+ to varying degrees.
However, there is no predicted Ca2+ binding site in the PLCf C2 do-
main [36]. Furthermore, deletion of the PLCf C2 domain led to
some loss of enzymatic activity, but no change in the Ca2+ sensitiv-
ity of the enzyme in vitro [66]. However, removal of the C2 domain
from PLCf led to inability of PLCf to elicit Ca2+ release in mouse
eggs, as indicated by microinjection of PLCf in vitro transcript lack-
ing the C2 domain [66]. Such data indicate that the C2 domain
plays an essential role for in vivo PLCf activity, and is essential
for egg activation. The specific role played by this domain, how-
ever, remains unclear.

A recent line of enquiry suggests that the C2 domain may play a
role in the localization of PLCf within the egg, possibly aiding PLCf
sequestration to the membrane containing its substrate PIP2. In-
deed, C2 domains are able to bind to phospholipid-containing
membranes, as is the case with PLCd1 binding to phosphatidylser-
ine (PS) or PLA2 binding to phosphatidylcholine (PC) [82]. Further-
more, most C2 domains can bind to Ca2+, which in turn exerts a
significant effect upon enzymatic activity [83]. However, the C2
domains of some enzymes such as ApIII PKC and PI3K-C2b do not
bind Ca2+, leading to phospholipid binding with relatively low
affinity and specificity [1,84]. The data indicate that the C2 domain
of PLCf may interact, albeit with low-affinity, with membrane
phospholipids. Indeed, such interactions were observed in vitro
with phosphatidylinositol-3-phosphate (PI3P) and phosphatidylin-
ositol-5-phosphate (PI5P) [69,74]. It has been suggested that the
association of the C2 domain with PI3P may play a role in PLCf
localization, or even perhaps regulation of enzymatic activity, as
the presence of PI3P reduced PIP2 hydrolysis by PLCf in vitro [69].

4. Localization of PLCf

4.1. PLCf localization in the sperm

PLCf has been identified in numerous mammalian sperm and
generally appears localized to distinct regions within the sperm
head, with suggestions of differential functional roles for each
population [50,85–87]. Indeed, this general localization pattern is
consistent with the proposal that PLCf causes Ca2+ release in eggs,
as localization to such regions would facilitate rapid diffusion of
the enzyme into the ooplasm to initiate Ca2+ oscillations either
at, or within a few minutes following, gamete fusion [1].

In mouse, hamster, and boar sperm, two PLCf populations have
been identified, acrosomal and post-acrosomal [42,86,88]. In
equine sperm, PLCf was reported to be localized to the acrosome,
equatorial segment and head mid-piece, as well as to the principal
piece of the flagellum [53]. In porcine sperm, PLCf was identified in
the post-acrosomal region and the tail [89]. Furthermore, three dis-
tinct populations of PLCf have been identified in the human sperm
head: acrosomal, equatorial and post-acrosomal [47,50,85,87]. A
recent study reported a dynamic shift in PLCf localization within
mouse sperm following capacitation and the acrosome reaction
[86], findings that were echoed in capacitated and non-capacitated
fertile human sperm [85]. Furthermore, identification of an isoform
of PLCf, termed NYD-SP27, was reported in the acrosome of human
and mouse sperm, and suggested that this protein was necessary
for capacitation and the acrosome reaction, functioning as an
‘intrinsic decapacitation factor’ [90]. However, a particular conun-
drum was presented by a recent study that did not identify a con-
sistent motif of PLCf localization in sperm from either fertile men
or sperm from ICSI-failed men, with significant variance in pre-
dominant pattern exhibited [91].

While it is not yet clear whether a particular pattern of PLCf
localization is required, or whether a combination of different pop-
ulations is required for functional ability, the equatorial and post-
acrosomal populations would indeed permit rapid access to the oo-
plasm following sperm–oocyte fusion. However, further evidence
is urgently required to test the veracity and validity of these appar-
ent multiple locations of PLCf in sperm, and whether discrete pop-
ulations perform functions other than oocyte activation. It remains
to be determined whether different populations identified in these
studies are due to species specificity, or rather simply a reflection
of antibody specificity and laboratory protocol. Thus, more specific
tools would also be required for investigations regarding the pre-
cise location and potential role of multiple PLCf isoforms.

4.2. PLCf localization in the egg

The subcellular localization of PLCf has been extensively exam-
ined using injection of in vitro transcripts encoding Venus- or YFP-
tagged PLCf fusion proteins, or indirect immunofluorescence. Both
datasets indicate that PLCf does not localize to the plasma mem-
brane, but instead appears to be distributed uniformly within the
egg cytoplasm [79,92]. In mouse eggs, this even distribution of
PLCf has been identified as localization to small intracellular vesi-
cles distributed throughout the egg cytoplasm, with similar small
vesicles also identified as containing PIP2 [36,92]. This suggests
that the PIP2 hydrolysed by PLCf to produce IP3 may be widely dis-
tributed within the egg. Indeed, such assertions gain support from
modeling studies showing that in fertilizing ascidian eggs, a fertil-
ization-like profile of Ca2+ release is only possible if one assumes
the presence of a uniformly-distributed cytoplasmic source of
PIP2, alongside widely-dispersed cytoplasmic PLC activity [36].
However, the precise subcellular targeting mechanisms underlying
such postulated vesicular/organelle localization of PLCf is currently
unknown (Fig. 2).

5. Mechanism of PLCf regulation in mammalian eggs

The exact molecular mechanism of PLCf regulation in mamma-
lian eggs is still unclear. As previously mentioned, PLCf contains in
its XY-linker region a predicted nuclear localization signal (NLS)



Fig. 2. Hypothetical mechanism of PLCf domain regulation of function based on studies on sperm PLCf. After sperm–egg fusion, PLCf diffuses from the sperm head into the
egg cytosol and targets a distinct intracellular vesicular PIP2-containing membrane. The EF hand domains of PLCf confer its high Ca2+ sensitivity, enabling the enzyme to be
active at resting cytosolic Ca2+ levels (nM) in the egg, and results in further increases in activity as Ca2+ levels rise. Association of PLCf with its specific membrane target may
be mediated by interaction of the C2 domain with either PI(3)P and/or an unidentified egg membrane-targeting protein (P). The positively-charged amino acids in the XY-
linker region (XY link) further assists the anchoring of PLCf to the membrane, thus enhancing the local PIP2 concentration adjacent to the catalytic domain via electrostatic
interactions with the negatively-charged PIP2. Once PLCf is associated with the membrane PIP2 the catalytic X/Y barrel binds and hydrolyzes its substrate to produce IP3 that
in turn induces Ca2+ release from the endoplasmic reticulum (ER).
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sequence [9,78,79], the same region that is also thought to be nec-
essary for PIP2 binding [72,74]. Substitution of basic for acidic res-
idues in the mouse PLCf NLS causes loss of PLCf nuclear
translocation ability without affecting its in vivo ability to elicit
Ca2+ release, which concurrently enables Ca2+ oscillations to pro-
ceed beyond pronuclei formation [78,79]. However, a notable
conundrum with such a theory is that this mechanism only ap-
pears to apply to Ca2+ oscillations within mouse zygotes. It cur-
rently remains unresolved how Ca2+ oscillations terminate in
eggs of other species, particularly since bovine, rat and human PLCf
do not appear to undergo nuclear localization [56], even though a
range of PLCf species possess a putative NLS, including mouse, rat,
human, monkey, cow, pig, dog and medaka fish [9,56]. Further-
more, rat PLCf does not translocate to the pronuclei of rat zygotes,
while mouse PLCf does. This divergence in nuclear localization is
all the more striking considering that the rat and mouse PLCf
NLS sequence share a sequence identity of 87% [1,56]. Thus, whilst
PLCf nuclear sequestration may play a role in the termination of
Ca2+ oscillations at interphase in mouse embryos, disparate mech-
anisms may be involved in other organisms.

An alternative explanation is that PLCf may require association
or interaction with a specific egg factor(s) to achieve an active
state. Indeed, a current key unanswered question regarding PLCf
activity is how the enzyme is kept inactive within sperm, where
it is present at significantly higher concentrations than within eggs
[36]. Studies in CHO cells, in which PLCf was expressed to levels
�1000 times higher than that which is active in eggs, did not exhi-
bit any significant Ca2+ changes following ATP-induced Ca2+ re-
lease, despite the fact that PLCf-transfected CHO cell extracts
exhibited high intrinsic PLC enzyme activity. Surprisingly, when
such transfected cells, or extracts made from these cells, were
injected into mouse eggs, Ca2+ oscillations were successfully trig-
gered [93]. This suggests that PLCf may be held in an inactive state
in sperm or that PLCf is active in the egg due to specific interac-
tion(s) with a protein(s) that is only expressed in the egg cyto-
plasm [93].

An alternative suggested mechanism of PLCf regulation in-
volves its three-dimensional folding. Analysis of the structure of
PLCd1 (PLCf’s closest homologue) indicates folding at the XY-linker
region such that the C2 domain has extensive contact with the EF
hands domain and the catalytic domain. Considering the signifi-
cant level of sequence identity between PLCf and PLCd1, the EF
hands and C2 domain association may be essential in forming
the active conformation of the enzyme [71]. Furthermore, hydro-
phobic residues in the EF hands domain of PLCf may play an
important role in EF hand-C2 domain interactions. Truncations or
mutations in the EF hands resulted in a decrease in Ca2+ oscilla-
tion-inducing ability of PLCf, which may be due to dissociation of
the EF hands from the C2 domain [71]. A similar conformational
change may disrupt the close interactions between the X and Y cat-
alytic domains, perturbing substrate binding [71]. However, more
specific studies are required, including determination of the crystal
structure of PLCf before such questions can be addressed. Indeed,
such crystallization studies would elucidate the three-dimensional
properties of PLCf and its domains, shedding further insight into
how local interactions, and their perturbations, may affect protein
stability and activity.

6. Clinical applications of PLCf

Human infertility affects �1 in 7 couples [2,94–96]. While
in vitro fertilization (IVF) methods represent �7% of total birth



Fig. 3. Microinjection of recombinant human PLCf protein induces Ca2+ oscillations in human oocyte and mouse eggs and triggers development. Representative fluorescence
(a.u.; arbitrary units) recordings of the cytosolic Ca2+ concentration changes occurring in an unfertilized human oocyte (upper trace) and mouse egg (lower trace) following
the microinjection of human PLCf recombinant protein. Micrograph on right illustrates the mouse embryo development to the blastocyst stage after microinjection of an
unfertilized mouse egg with human PLCf recombinant protein. Modified from [53].
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rates in some developing countries [2,97], several conditions such
as severe male infertility (19–57% of cases of infertility) remain
untreatable [5]. Even with intra-cytoplasmic sperm injection (ICSI),
a modified IVF technique where the sperm is directly injected into
the eggs, up to 5% of ICSI treatment cycles still fail, affecting at least
1000 couples per year in the UK alone [96]. Deficiencies in the egg
activation process are currently regarded as the principal source of
this failure [2,98,99].

A number of clinical reports have linked defects in human PLCf
with cases of egg activation deficiency. Sperm of some infertile
men which fail IVF and ICSI are unable to induce Ca2+ oscillations
upon microinjection into mouse oocytes [46,47]. Such ICSI-failure
patients exhibited reduced/absent levels of PLCf within the sperm
head [46,47,87]. It appears likely that PLCf may be contributing not
only towards male infertility, but also perhaps to cases of male
sub-fertility [5,47]. Egg activation failure can currently be treated
by using artificial egg activation methods, such as applying Ca2+

ionophores [100–102]. Indeed, high fertilization rates and a suc-
cessful pregnancy were achieved with patients whose sperm were
deficient in PLCf when a Ca2+ ionophore was used to artificially
activate eggs following ICSI [102].

However, such chemicals may be detrimental to embryo viabil-
ity, posing concerns regarding their future health due to potential
cytotoxic, mutagenic and teratogenic effects on eggs and embryos
[97]. Moreover, there is only a single large Ca2+ increase following
ionophore treatment and this does not mimic the repetitive pat-
tern of Ca2+ changes that is observed at fertilization [47]. While a
recent computational approach suggested that two sequential
applications of ionophore should improve successful activation
rates, supporting experimental data, the same study also indicates
that the temporal pattern of Ca2+ may exert an effect upon rates of
cell cycle progression, and thus, subsequent embryogenesis [103].
Thus, a more endogenous therapeutic agent is urgently required as
a replacement for current synthetic methodology and hence the
use of sperm PLCf seems the obvious physiological candidate.

It has been demonstrated that abnormalities in sperm PLCf
could be counteracted by co-injection with mouse PLCf mRNA
[46], while the parthenogenetic generation of blastocysts was
achieved by injection of in vitro transcripts encoding PLCf into hu-
man oocytes [104]. However, the clinical use of in vitro-transcribed
PLCf mRNA is not likely to be viable, since it is hard to control the
precise level of PLCf translation and any protein over-expression
subsequently leads to developmental arrest defects in embryos
[104,105]. Consequently, a pure, active recombinant protein form
of PLCf is likely to be more effective as a potential therapeutic in
cases of male infertility and sub-fertility due to aberrant or absent
PLCf [50]. Significantly, it has recently been demonstrated that the
prokaryotic production of purified recombinant human PLCf
protein in a stable state was able to induce Ca2+ oscillations in
mammalian eggs within a physiological range (Fig. 3). In this study,
the deleterious effect of mutant versions of PLCf on Ca2+ oscilla-
tions and egg activation was shown to be efficiently overcome
(‘rescued’) by microinjection of purified recombinant PLCf protein
[50].
7. Closing remarks

In 2002 the discovery of PLCf instigated a shift in thinking about
how fertilization works in mammals and other animals. The previ-
ously preferred model of fertilization, whereby a sperm acts on an
egg plasma membrane receptor to trigger Ca2+ release is now being
replaced, for many vertebrates, by the idea that a soluble sperm
factor i.e. PLCf is introduced into the egg following gamete fusion,
thus triggering egg activation. Although the sperm PLCf discovery
represents an important breakthrough in the field, we currently
still do not fully understand how PLCf works. For example,
although PLCf participates in a standard biochemical pathway
(hydrolysis of PIP2) that is known to be present in all types of cells
in the body, PLCf appears to be unique amongst PLCs; it appears to
be effective only in eggs. PLCf also seems to interact with small
membranous vesicles inside eggs, which is very different from
the way other types of PLC proteins work, since they interact with
their substrate located on the plasma membrane. There are also
significant variations in the activity of PLCf in sperm from different
species, which function with varying efficacy in eggs from different
animal species, observations that remain to be explained. While we
know that all parts of the PLCf protein are important for it to work,
we do not fully understand how all these parts work together. Fur-
ther investigation is required to fully elucidate the fundamental
mechanism of egg activation by a sperm, the earliest signaling
event required for a new life to begin.
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