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The most prevalent internal modification of plant messenger

RNAs, N6-methyladenosine (m6A), was first discovered in the

1970s, then largely forgotten. However, the impact of

modifications to eukaryote mRNA, collectively known as the

epitranscriptome, has recently attracted renewed attention.

mRNA methylation is required for normal Arabidopsis

development and the first methylation maps reveal that

thousands of Arabidopsis mRNAs are methylated. Arabidopsis

is likely to be a model of wide utility in understanding the

biological impacts of the epitranscriptome. We review recent

progress and look ahead with questions awaiting answers to

reveal an entire layer of gene regulation that has until recently

been overlooked.
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The Arabidopsis genome: from both sides
now?
The landmark sequencing of the Arabidopsis thaliana
(Arabidopsis) genome in 2000, still leaves us asking what

the genome really encodes? Subsequent sequencing of

Arabidopsis RNAs reveals alternative transcription start

sites, alternative splicing and alternative sites of cleavage

and polyadenylation of RNAs transcribed from the same

locus. The more we sequence in different genotypes, cell-

types and situations, the more evidence of alternative

processing we detect, and the more non-protein-coding

RNAs of unknown function we find. But that’s not all.

Although we have sequenced from both sides now, DNA

and RNA, the modifications of mRNA, known as the

epitranscriptome, have been almost completely over-

looked. Yet we know mRNA methylation is essential
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for Arabidopsis embryogenesis [1], and crucial to proper

development [2]. Consequently, the control and impact

of an entire layer of gene regulation awaits discovery.

Methylating mRNA m6A
The most prevalent internal modification of eukaryotic

mRNA is methylation of adenosine at the N6 position

(m6A). Although first discovered in mammalian [3,4] and

plant [5,6] mRNAs in the 1970s, it is only recently that

m6A has been mapped transcriptome-wide and that func-

tions for m6A have been uncovered [7�,8�].

Mapping m6A modifications

Base-specific identification of m6A is technically chal-

lenging and not yet feasible transcriptome-wide. Instead,

the current state-of-the-art  involves using antibodies that

recognize m6A to immunoprecipitate and then sequence

RNAs carrying this modification in a procedure known as

MeRIP-Seq [9]. Because the specificity of anti-m6A

antibodies is variable, such experiments should ideally

be controlled for by sequencing genetic backgrounds

defective in mRNA methylation [10�], and possibly in

conjunction with cross-linking of the methylating

enzymes to reference the directness of the reactions

involved.

m6A is mostly associated with the 30 end of Arabidopsis

mRNA transcripts (within 150 nt of the poly(A) tail) [2].

Subsequent MeRIP-Seq transcriptome-wide mapping

studies with yeast, human and Arabidopsis mRNA con-

firm this phenomenon, revealing a peak of methylation in

30UTRs and over the stop codon [10�,11,12��]. A consen-

sus methylation target sequence closely related to that

derived for human data of (G/A)(G/A)ACU, is found in

different eukaryotes and is consistent with a previously

established methylation motif identified by in vitro en-

zyme activity, RNAse fragmentation and labelling stud-

ies [13], and by direct biochemical mapping of sites in

Rous sarcoma virus and bovine prolactin transcripts

[14,15].

Although enriched in 30UTRs, m6A is found throughout

mRNAs, including intronic sequences, indicating the

modification may be added co-transcriptionally [16]. It

is not yet known whether nascent transcripts are more

widely methylated and then subsequently demethylated

in specific regions. In addition to the 30 enrichment,

Arabidopsis MeRIP-Seq data indicates an increased

abundance of m6A at the 50 end of some transcripts.

However, an association of m6A with long exons that

has been found in mammalian mRNA was not reported in

the first Arabidopsis MeRIP-Seq data [12��].
Current Opinion in Plant Biology 2015, 27:17–21

https://core.ac.uk/display/82257379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2015.05.015&domain=pdf
mailto:Rupert.Fray@nottingham.ac.uk
mailto:g.g.simpson@dundee.ac.uk
http://www.sciencedirect.com/science/journal/13695266/27
http://dx.doi.org/10.1016/j.pbi.2015.09.001
http://dx.doi.org/10.1016/j.pbi.2015.05.015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/13695266


18 Cell signalling and gene regulation

Figure 1

FIP37

MTB?

AAAAAAAAAAAAAA

AlkB
?

YTH

7Gppp

AAAAAAAAAAAAAAGGACU7Gppp

?

N

N N

N

N
H H

N

N N

N

N
H

CH3

Pre-mRNA processing
Nuclear export 
mRNA stability 
mRNA Localization 
Translation efficiency

Writers

Readers

Erasers

Interpreters

Other Modifications ?

MTA

GGm6ACU

Current Opinion in Plant Biology

The Arabidopsis epitranscriptome. The most prevalent internal modification of eukaryote mRNA is methylation of adenosine at the N6 position.

Although m6A is found throughout mRNA it is enriched towards the 30 end of Arabidopsis mRNAs. This code is written by a writer complex

comprised of MTA, FIP37 and probably other proteins that likely include a protein closely related to MTA called MTB. In humans this modification

is apparently reversible through the action of AlkB family proteins. Although related AlkB family proteins exist in Arabidopsis, there is no evidence

yet that they are involved in this process. m6A is read by YTH domain proteins, but the combination of direct and indirect influences on RNP

composition and structure determine mRNA fate. Other modifications to Arabidopsis mRNA likely remain to be discovered.
It is clear that mRNA transcribed from thousands of

Arabidopsis genes is methylated, but due to the limita-

tions of MeRIP-Seq, the best peak-calling data corre-

spond to the most abundant RNA transcripts. Further

Arabidopsis MeRIP-Seq studies and alternative valida-

tion approaches will be needed to help clarify the RNA

methylome.

Writing m6A

The Arabidopsis enzyme MTA (TAIR: At4g10760) is

required for mRNA methylation [1]. Null mutant alleles

are embryo lethal, indicating that mRNA m6A is essential

for plant survival [1]. Expressing MTA under the control

of the largely embryo-specific ABI3 promoter rescues

lethality of null mta mutants and the plants go on to

complete seed-set [2]. m6A levels in these plants are

reduced to 5–15% levels of wild-type, confirming the

requirement for this enzyme to methylate mRNA m6A.

It seems likely that a conserved complex of proteins

mediates m6A mRNA methylation in different eukar-

yotes. MTA interacts with FIP37 in plants [1], and

subsequently, the interaction of the human (METTL3

and Wilm’s Tumor Associated Protein, WTAP, respec-

tively) and yeast (IME4 and Mum2 respectively) homo-

logs have been shown to be integral to the formation of
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functional methylation complexes [17–19]. MTA and

FIP37 are predominantly nuclear localized [1], indicat-

ing that m6A modification takes place in the nucleus.

However, the possibility that some methylation of

mRNA might occur in the cytoplasm cannot be ruled

out at this stage. The exact composition of the writer

complexes, their regulation and the degree of conser-

vation remains to be determined. It is clear that not

all mRNAs are methylated and not all potential con-

sensus target sites are methylated either. However, the

mechanistic or regulatory basis of m6A selectivity is

unknown.

Reading and interpreting m6A

m6A can directly influence the stability or conformation of

RNA in the absence of RNA binding proteins [20]. In

addition, m6A can be ‘read’ directly by YTH domain

containing proteins that bind this modification specifical-

ly [21�]. There are 13 Arabidopsis genes predicted to

encode YTH domain containing proteins, but their func-

tions are almost wholly uncharacterized [22,23]. Structur-

al analyses indicate that a cage of aromatic amino acids in

the YTH domain binds m6A [24,25]. Notably, the corre-

sponding aromatic residues are conserved in each pre-

dicted Arabidopsis YTH domain protein, suggesting

that they have the potential to bind m6A. Transcripts
www.sciencedirect.com
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encoding Arabidopsis YTH domain proteins show dis-

tinct developmental expression patterns and responses to

abiotic and biotic stresses [23].

One Arabidopsis YTH domain protein is relatively well

characterised: the Arabidopsis homologue of mRNA

Cleavage and Polyadenylation Specificity Factor 30

(CPSF30) [26�]. It has recently been shown in mammali-

an cells that CPSF30 plays a crucial role in cleavage and

polyadenylation because together with WDR33 it appears

to be involved in binding to and selecting the poly(A)

signal AAUAAA [27,28]. Remarkably, although CPSF30

is highly conserved, the YTH domain appears to be

restricted to plant CPSF30 [29]. Moreover, the inclusion

of the YTH domain depends upon alternative polyade-

nylation of CPSF30 pre-mRNA [30]. Expression of the

proximally polyadenylated CPSF30 isoform lacking

the YTH domain in oxt6 mutants defective in CPSF30

function complements some defects in RNA 30 end

formation, while expression of the full-length CPSF30

isoform that includes the YTH domain complements

other 30 end defects [30]. Together, these findings raise

the possibility that 30 end formation in plants may be

particularly sensitive to m6A methylation.

m6A and also its recognition by YTH domain proteins

likely alters the structural and ribonucleoprotein land-

scape of mRNA such that the accessibility of other RNA

binding proteins is affected [31]. In this sense, mRNA

methylation is not only read, but interpreted in terms of

the impact that it has on subsequent, specific processing

events. For example, it is possible that there are RNA

binding proteins whose affinity for RNA is diminished by

the presence of m6A within their preferred binding sites.

Such ‘anti-readers’ could have an equally important role

in determining m6A-dependent phenotypes.

Erasing m6A

An important aspect of the concept of a regulated epi-

transcriptome is that m6A mRNA methylation is revers-

ible. Two human enzymes of the AlkB family (nonheme

Fe(II)/a-ketoglutarate (a-KG)-dependent dioxygenases),

FTO and ALKBH5, have been shown to demethylate

mRNA m6A [32,33]. Thirteen proteins of the AlkB family

have been reported to be encoded in the Arabidopsis

genome [34], but it is not yet known if any function to

demethylate m6A. AlkB proteins were originally charac-

terised as dioxygenases required for the repair of glyco-

sidic bonds introduced into DNA as a result of exposure

to alkylating agents. However, some AlkB family mem-

bers have much wider roles, including demethylation of

DNA by the stepwise oxidation of 5 methylcytosine [35].

Consequently, the specificity of these enzymes on differ-

ent substrates in vitro needs to be tested, and evidence of

increased m6A levels associated with disruption of the

corresponding gene obtained before they can be consid-

ered as m6A demethylases.
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Interestingly AlkB proteins with a demonstrated prefer-

ence for RNA substrates are encoded in some viruses that

infect plants [36]. Although these enzymes may function

to repair the RNA genomes of these viruses, an untested

possibility is that they may target host mRNAs during

infection. The interplay between the epitranscriptome

and pathogen interactions is unexplored (Figure 1).

The dynamic nature of m6A methylation
If m6A is regulatory, one might expect it to be dynamic.

There is so far insufficient data to know if this is the case

in Arabidopsis. However, the global levels of m6A is

different in specific Arabidopsis tissues indicating it

may be under some level of control [2].

MeRIP-seq data exists for two different Arabidopsis

accessions. Although many of the methylated tran-

scripts are common, strain-specific differences were

also detected [12��]. A comparison of differential ex-

pression between the two strains indicated that highly

expressed transcripts were more likely to be methylat-

ed. This finding apparently differs from a role for m6A

in targeting human mRNAs for degradation [21�]. How-

ever, this distinction appears to be associated with m6A

modifications enriched at the 50 end of Arabidopsis

transcripts where the target consensus sequence may

also be different [12��]. Arabidopsis may therefore

exhibit plant- specific features and consequences of

m6A methylation.

Is that all there is? Other mRNA modifications
In addition to N6 methyladenosine, around 150 modifica-

tions of RNA exist and other modified mRNA nucleotides

are known in eukaryotes. Some of these are likely specific

to metazoans, but it seems probable that others will also

be found in plants.

For example, most eukaryote mRNAs are modified at

their 50 end by the addition of a 7-methyl guanosine

(m7G) cap in a 50 to 50 pyrophosphate linkage to the first

nucleoside of the nascent transcript. If no additional

modifications are made to the cap-adjacent nucleotides,

the structure is referred to as a cap 0. In metazoans, the

first or first and second nucleotides following the cap are

frequently modified by methylation on the ribose in the

20 position to form cap 1 or cap 2 structures [37]. However,

homologues of the animal cap 1 and cap 2 methylases are

not found in Arabidopsis [38] and only cap 0 mRNAs are

found. Likewise, inosine has been reported in the

mRNAs of many metazoans. Since inosine is read as a

guanosine upon reverse transcription, it can be mapped

in RNA sequencing data. Inosine is formed post tran-

scriptionally by the action of adenosine deaminases

(ADARs) acting on the N6 amino group of adenosine.

However, Arabidopsis lacks homologues of these

ADARs, and inosine has not been reported in plant

mRNAs.
Current Opinion in Plant Biology 2015, 27:17–21
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It is an open question whether other modifications are

found in Arabidopsis mRNAs. Pseudouridine [39,40] and

5-methylcytosine [41,42] have recently been reported in

yeast and mammalian mRNAs. Proteins related to the

NSun family of methyltransferases implicated in cytosine

methylation in mammals [43] are encoded by the Arabi-

dopsis genome. 20O methylation is a common modifica-

tion in rRNA and tRNA that has also been reported

within the body of mRNAs. Indeed, the first biochemical

mapping of m6A within bovine prolactin identified a 20O
methylated uridine just 42 nucleotides upstream of the

m6A site [15]. Analysis of a partially characterised non-

standard nucleotide detected at low levels within the

poly(A) tails of maize mRNA transcripts [44] could per-

haps be explained by misincorporation of deoxy adeno-

sine by poly(A) polymerase.

Future directions — more questions than
answers
The epitranscriptome is a field wide open to progress.

The first maps of m6A have appeared, but a method that

allows site-specific transcript mapping is needed to allow

quantitative analyses.

We know some of the enzymes involved in writing m6A,

but almost nothing of the wider complex, its interactions

or its regulation. We still do not know if any of the

conserved reader YTH domains or related eraser AlkB

proteins carry out epitranscriptome related functions in

plants. If they do, then how are the functions of the

13 different Arabidopsis YTH domain proteins special-

ised? Do all of the YTH proteins bind to m6A with the

same affinity and do they have complimentary, synergis-

tic or competitive functions? If YTH proteins recognize

the m6A, do the different YTH readers interact with

different protein ‘interpreters’?

In what situations is the epitranscriptome dynamically

controlled? Does the reprogramming of gene expression

during development or stress responses depend upon

methylated transcripts? And what are the consequences

of disrupting mRNA methylation on pre-mRNA proces-

sing, export, translation and stability?

We do not yet know if any other modifications are found

in Arabidopsis mRNA. Beyond 5-methylcytosine and

pseudouridine (already identified in yeast and mammali-

an mRNA), there are around 150 known RNA modifica-

tions. However, the recent development of the ‘HAMR’

software by Li-Sang Wang, Brian Gregory and colleagues

enables the identification in RNA-Seq data of modifica-

tions that affect reverse-transcriptase activity [45��]. Con-

sequently, we may soon have maps of transcriptome

features we never knew we were missing. Revealing

the epitranscriptome landscape and defining its function-

al impact will be essential for us to understand what plant

genomes really encode.
Current Opinion in Plant Biology 2015, 27:17–21 
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