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Abstract

A theoretical framework is defined that allows plasticity and damage models of inelastic behaviour to be combined
within a consistent approach. Much emphasis is placed on the fact that, within this framework, the entire constitutive
response is specified through two potential functions, with no additional assumptions or evolution equations being neces-
sary. Both plastic strain and damage parameter have roles as internal variables within the theory. Two classes of models
are derived: involving respectively uncoupled and coupled plasticity and damage. Examples of application of the theory are
presented.
Crown Copyright � 2006 Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The inelastic behaviour of materials has been successfully modelled using two distinct approaches: plasticity
and damage mechanics. Plasticity theory is very widely used in the modelling of ductile metals, and has also
been successfully applied to geomaterials. It is based on the concept of additive elastic and plastic strains, the
latter only occurring once a yield criterion is satisfied. Many authors have applied thermodynamic principles
to plastic materials, and we have had considerable success in applying a method we term ‘‘hyperplasticity’’,
which is rooted in thermodynamics, to derive plasticity theories (Houlsby and Puzrin, 2000). Continuum damage
mechanics (CDM) was pioneered by Kachanov (1958). The damage of materials is the progressive process by
which they break and thus lose strength and stiffness, and this process is represented in CDM by introducing a
‘‘damage internal variable’’. Damage theories are successfully used for modelling materials as diverse as poly-
mers or brittle rocks. Whilst some approaches presented in the literature have a purely phenomenological
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basis, others have based the formulation of CDM taking into account thermodynamic principles. In this
paper, we express CDM within the same framework as hyperplasticity, thus encompassing the two concepts
of plasticity and damage within a single theory. It is shown that the entire constitutive knowledge of a model
that undergoes plasticity and damage can be expressed through definition of two potentials. This allows the
constitutive response to be derived directly in a way that ensures consistency with the laws of thermodynamics.

The ‘‘hyperplasticity’’ framework (Houlsby and Puzrin, 2000) allows the development of plasticity theories,
within the framework of Generalized Thermodynamics, or Thermodynamics of Internal Variables (TIV), and
has much in common with the work of Lubliner (1972), Halphen and Nguyen (1975), Ziegler (1977), and
Maugin (1992). The roots of this work are found in that of Ziegler (1977) as developed by Houlsby (1981),
Collins and Houlsby (1997), Houlsby and Puzrin (2000) and Einav (2002). A special feature of this approach
is an emphasis on the fact that the entire constitutive response of a material can be derived from definition of
only two potential functions: an energy potential and a dissipation potential.

It is demonstrated here that the hyperplasticity formulation can be used to develop a damage model, without
plasticity. We call this a ‘‘damage hyperelastic model’’. The difference between this type of model and a plas-
ticity model arises from the physical role the internal variables, which in turn derives from the functional nature
of the potentials. Pure damage models have been presented by many authors including Krajcinovic (1983),
Ortiz (1985), Kattan and Voyiadjis (1990), Maugin (1992) and Lemaitre (1992). For rate independent processes
it is customary to assume (effectively) the existence of a yield surface for damage. Here instead the yield surface
is derived from the assumed existence of a dissipation potential function, and the evolution of the damage inter-
nal variable is defined from further properties of the dissipation potential. In some models the evolution of
damage is postulated as a separate evolution law: no such additional assumptions are necessary here.

Many damage models involve the use of an isotropic (scalar) measure of damage. Others have employed
two scalar measures of damage for concrete in tension and compression (e.g. Mazars and Pijaudier-Cabot
(1989), Fremond and Nedjar (1995), Lee and Fenves (1998), and Nguyen (2005) who used a separate measure
of damage for concrete in tension and compression). However, there are good reasons, e.g. based on analysis
of microscopic crack distributions, to make use of a tensorial damage variable (e.g., Ladeveze, 1983; Ju, 1989,
1990; Murakami and Kamiya, 1997). Most of those damage-plasticity approaches are based on stress criteria
which do not usually give crack orientations in accordance with experimental data at the onset of damage. As
a consequence, the direction of damage propagation may not be correct and the advantage of tensorial dam-
age therefore can be lost. Furthermore, the calibration of such models against experimental data is not
straightforward, and isotropic damage models are therefore often preferred for routine use. Our purpose here
is to explore the combination of damage and plasticity theories, and so we deliberately keep the damage theory
as simple as possible and use only isotropic damage.

It is also demonstrated how the concept of multiple surface hyperplasticity, proposed by Puzrin and Hou-
lsby (2001), can allow description of models which undergo damage as well as plasticity (e.g. Lemaitre, 1985;
Maugin, 1992; Hansen and Schreyer, 1994; Chaboche, 1997; Li, 1999). We term these ‘‘damage hyperplastic’’
models, and two classes of these are introduced. The first are uncoupled damage hyperplastic models in which
damage and plasticity are independent processes, although the two processes can (under certain conditions)
occur simultaneously. The second class are coupled damage hyperplastic models, in which damage and plas-
ticity always occur simultaneously.

Even in the ‘‘uncoupled’’ models described below, plasticity and damage can on occasions occur simulta-
neously, and are implicitly linked at this stage. Alternative approaches have been made in the past to the
coupling between plasticity and damage. Firstly the coupling can be implicitly embedded in the yield and
damage criteria (Luccioni et al., 1996; Nguyen and Houlsby, 2004; Salari et al., 2004; Nguyen, 2005), with
the material strength being a decreasing function with respect to the damage variable. This implicit coupling
characterizes the strength reduction due to the material deterioration and is equivalent to introducing effective
instead of nominal stress into the yield function (Lemaitre and Chaboche, 1990; Lemaitre, 1992). This way of
introducing coupling enables the constitutive modelling to use separate yield and damage criteria, both of
which can be derived from the dissipation function. The corresponding internal variables (damage variable
and plastic strains for the coupled model) of the model do not explicitly depend on each other.

An alternative type of coupling has been used by others (Lemaitre, 1985; Lee and Fenves, 1998; Faria et al.,
1998), in which only one loading function is specified and used to control the dissipation process. This function
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can be a damage loading function (Voyiadjis and Kattan, 1992; Faria et al., 1998) or a yield function (Lemai-
tre, 1985; Lee and Fenves, 1998). In the first case with a damage loading function governing the dissipation
process, an evolution law for the plastic strain is required (Faria et al., 1998). For the use of a yield function,
the damage measures, activated by a simple damage criterion, are expressed explicitly in terms of other inter-
nal variables controlling the plastic flow process. Many ad hoc assumptions are usually used during the for-
mulation of such constitutive models (see Lee and Fenves, 1998; Faria et al., 1998). As an example, we explore
the structure of the coupled damage-plasticity von Mises model by Lemaitre (1985), and suggest an alternative
and more systematic form. While the energy potential takes a similar form to that used by Lemaitre, the dis-
sipative mechanisms are expressed differently, yet in a clear and consistent manner.

In Section 2, we present briefly the general formulation, introducing multiple internal variables, without
giving a specific interpretation to their physical meaning. In Section 3, we use this framework to develop
two theories with a single internal variable: a simple hyperplastic model and a damage hyperelasticity model.
It is emphasized that the two theories are expressed within the same framework. In Section 4, we use the gen-
eral formulation to derive damage hyperplasticity constitutive relations with two internal variables, damage
and plastic strain. Both uncoupled and coupled damage hyperplasticity models are explored.
2. Theoretical background

2.1. Notation

This paper concerns processes that can be idealized as rate independent, isothermal and undergoing only
small strain deformations. It is convenient to employ second order tensors, indicated by bold face a. The inner
product between two second order tensors is denoted by a:b. The tensor 1 denotes the second order identity
tensor, i.e. (1)ij = dij, also called the Kronecker delta. The sign ‘�’ over a variable ~a is added if its dimension is
left undefined: it could be a tensor, vector or scalar, according to its physical interpretation. The sign ‘‘•’’
denotes the inner product between two variables with the same unknown dimension, e.g. ~a � ~b. The superposed
dot over a variable _~a denotes a rate of change.
2.2. Formulation

The following description summarizes the approach for deriving thermomechanical models. The formula-
tion of Houlsby and Puzrin (2000), which we follow here, was originally applied to derive elastoplastic models
that we term ‘‘hyperplastic’’. In this paper we demonstrate how the same approach could be used to derive
continuum damage models. It is convenient to present the theoretical concepts in terms of an arbitrary number
of internal variables, thus allowing the framework to encompass the two concepts of plasticity and damage
within a single theory. The local state of the material is assumed to be completely defined by knowledge of
(a) strain tensor e, (b) a set of N internal variables ~ai; A �Að~a1; . . . ; ~aNÞ, (c) the entropy, although this does
not enter the formulation for the isothermal case.

The First Law of Thermodynamics effectively states that there is a function of the state, called the internal
energy. In isothermal conditions this function can be replaced by the Helmholtz free energy f ¼ f ðe;AÞ,
which depends only on the kinematic state variables. Alternatively, a Legendre transform can be made to
express a Gibbs free energy g ¼ gðr;AÞ, where r is the Cauchy stress tensor. The two energies are related by
gðr;AÞ ¼ f ðe;AÞ � r : e ð1Þ
The formalism of Houlsby and Puzrin (2000) requires that, if f is defined
r ¼ of
oe

ð2Þ
or alternatively if g is defined
e ¼ � og
or

ð3Þ



2490 I. Einav et al. / International Journal of Solids and Structures 44 (2007) 2487–2508
We define the generalized stress as
~�vi ¼ �
of
o~ai
¼ � og

o~ai
ð4a; bÞ
We next assume that the mechanical dissipation d is a strictly non-negative function of both the state of the
material and of the rate of change of the internal variables d ¼ df ðe;A; _AÞ ¼ dgðr;A; _AÞP 0. In the case of
rate-independent processes the dissipation function is homogeneous first order function of the internal vari-
able rates. When the internal variable set consists of a single internal variable, this homogeneity can be
expressed by Euler’s equation d ¼ od=o _~a � _~a. For N internal variables, we write
d ¼
XN

i¼1

od

o _~ai

� _~ai ¼
XN

i¼1

~vi � _~ai ð5Þ
where ~vi ¼ od=o _~ai is termed the dissipative generalized stress.
The formulation is completed by adopting Ziegler’s orthogonality condition, which simply takes the form

~�vi ¼ ~vi for any i 2 [1, N]. Although ~�vi ¼ ~vi, for formal purposes it is convenient to keep ~vi and ~�vi as separate
variables.

To develop rate independent thermomechanical models, Puzrin and Houlsby (2001) suggested a decoupled
form of dissipation function that is appropriate for multiple surface kinematic hardening plasticity models.
Section 2.2.1 presents some outcomes resulting from this form of dissipation. In the current work it is shown
how this formulation could be used for developing plasticity models that also introduce damage. Adopting
decoupled dissipation for plasticity-damage models may result in damage prior to plastic straining, or plastic
straining prior to damage.

However, another form of the dissipation potential, this time coupled in its terms, is suggested in Section
2.2.2. This class of potentials defines models that introduce damage whenever plasticity occurs and vice versa.
It is shown that the uncoupled theory of Section 2.2.1 corresponds to a singular case of the coupled theory.
Moreover, while the coupled theory introduces a single yield surface in the higher-dimensional space A, the
uncoupled theory is linked to N individual yield surfaces.

2.2.1. Decoupled dissipation and discrete field of yield surfaces

Puzrin and Houlsby (2001) suggest the following decoupled form of dissipation function:
d ¼
XN

i¼1

df
i ðe;A; _~aiÞ ¼

XN

i¼1

dg
i ðr;A; _~aiÞP 0 ð6Þ
Here, the internal variables could be either the plastic strain or damage. With the condition that each of the
dissipation terms must be non-negative
de
i ¼

ode
i

o _~ai

� _~ai ¼ ~vi � _~ai P 0 8i 2 ½1;N � ð7Þ
where the superscript e denotes either f or g.
In the formulation of multiple surface models, the incremental stress–strain response requires the functional

form of the yield surfaces to be defined. The ith yield surface, associated with the evolution of the ith internal
variable ~ai, is related to the ith component of dissipation function given in (6). The relationship is given by a
degenerate special case of the Legendre transformation because the dissipation is homogeneous and first order
in the rates (Collins and Houlsby, 1997)
kiye
i ¼ ~vi � _~ai � de

i ¼ 0 8i 2 ½1;N � ð8Þ

where yf

i ¼ yf
i ðe;A; ~viÞ and yg

i ¼ yg
i ðr;A; ~viÞ are the ith yield function in ith generalized stress space in f-form

and g-form and ki is a non-negative multiplier in the same space. The properties of the degenerate Legendre
transform require the flow rules
_~ai ¼ ki
oye

i

o~vi
ð9Þ
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Since ki P 0 and kiye
i ¼ 0 from (8), the Kuhn–Tucker complementary conditions are completed by requiring

ye
i 6 0. The condition ye

i ¼ 0 represents the ith yield function. If this condition is met, and since ye
i cannot be

larger than zero, the consistency condition becomes
_yf
i ¼

oyf
i

oe
: _eþ

XN

j¼1

oyf
i

o~aj
� _~aj þ

oyf
i

o~vi
� _~vi ¼ 0 ð10aÞ

_yg
i ¼

oyg
i

or
: _rþ

XN

j¼1

oyg
i

o~aj
� _~aj þ

oyg
i

o~vi
� _~vi ¼ 0 ð10bÞ
The summation of the oye
i =o~aj � _~aj terms represents a possible coupling of the evolution of the ith yield surface

with the evolution of the jth internal variable. This coupling is weak since it happens only when both the ith
and the jth yield surfaces are active. Each surface must be checked independently for loading or unloading.

2.2.2. Coupled dissipation and yield surface

Consider alternatively a dissipation function that cannot be decomposed into additive terms, as given by
the summation operator in Eq. (6), so that we simply write
d ¼ df ðe;A; _AÞ ¼ dgðr;A; _AÞP 0 ð11Þ

In that case, the dissipation potential is related to a single yield function by a single degenerate special case of
the Legendre transformation in the form
kye ¼
XN

i¼1

~vi � _~ai � de ¼ 0 ð12Þ
where yf ¼ yf ðe;A;BÞ, yg ¼ ygðr;A;BÞ and B denotes the set of dissipative stresses B � Bð~v1; . . . ; ~vN Þ,
where the ith in the set is given by
~vi ¼
ode

o _~ai

ð13Þ
Unlike the uncoupled theory, in this case the yield function must be expressed in N-dimensional generalized
dissipative stress B space. However, this yield surface is linked to N flow rules, all containing a common non-
negative multiplier k, in the form
_~ai ¼ k
oye

o~vi
; 8i 2 ½1;N � ð14Þ
Since k P 0 and kye = 0 from (8), the Kuhn–Tucker complementary conditions are completed by requiring
ye
6 0, while ye = 0 denotes a single yield surface. The above introduces a strong coupling between internal

variables, as all of them evolve if yielding occurs. If ye = 0 and k > 0 only a single consistency condition is
introduced by
_yf ¼ oyf

oe
: _eþ

XN

i¼1

oyf

o~ai
� _~ai þ

XN

i¼1

oyf

o~vi
� _~vi ¼ 0 ð15aÞ

_yg ¼ oyg

or
: _rþ

XN

i¼1

oyg

o~ai
� _~ai þ

XN

i¼1

oyg

o~vi
� _~vi ¼ 0 ð15bÞ
The summation over the oye=o~ai � _~ai terms represents the same possible weak coupling between internal vari-
ables as in the uncoupled theory. This time, however, a stronger coupling is also introduced by the summation
over the oye=o~vi � _~vi terms.

For example, consider a dissipation function
df ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

cf
i ðe;AÞUið _~aiÞ

� �nn

vuut ð16Þ
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where cf
i ðe;AÞ is a positive definite function and Uið _~aiÞ is a homogeneous first order function operator return-

ing a positive scalar. For convenience we also require that the derivative U0ið _~aiÞ ¼ oUið _~aiÞ=o _~ai satisfies the con-
dition U0ið _~aiÞ � U0ið _~aiÞ ¼ 1. For instance, if _~ai ¼ _ai is a scalar, a possible operator could be the absolute function
Uð _aiÞ ¼ j _aij, then the inner product sign ‘•’ denotes simple multiplication between two scalars and the differ-
ential is just sgn( _ai). If _~ai ¼ _ai is a second order tensor, a possible operator could be the norm of the tensor
Uð _aiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
_ai : _ai
p

. The inner product sign in this case corresponds to ‘:’ between two second order tensors
and the differential is _ai=Uð _aiÞ. Another possible operator on second order tensors could be related to the first
invariant of the tensor _ai by Uð _aiÞ ¼ j _ai : 1=3j. This time, the inner product sign denotes simple multiplication
between two scalars and the differential is sgn( _ai : 1).

From the definition of the ith dissipative generalized stress in (13), we have
~vi

cf
i ðe;AÞ

¼
cf

i ðe;AÞUið _~aiÞ
� �n�1

U0ið _~aiÞPN
i¼1 cf

i ðe;AÞUið _~aiÞ
� �n

� �n�1
n

ð17Þ
The yield function can then be obtained, and is given by
yf ¼
XN

i¼1

~vi � ~vi

cf
i ðe;AÞ

2

 ! n
2ðn�1Þ

� 1 6 0 ð18Þ
In this theory, n could be identified as a parameter that controls the coupling intensity. The case n = 1 is a
singular case, and the dissipation in Eq. (16) becomes uncoupled as described in Eq. (6).

Using the same arguments, the following dissipation and yield surface could be expressed for g-form
potentials:
dg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

cg
i ðr;AÞUið _~aiÞ

� �nn

vuut ð19Þ

yg ¼
XN

i¼1

~vi � ~vi

cg
i ðr;AÞ

2

 ! n
2ðn�1Þ

� 1 6 0 ð20Þ
The yield function in (20) is described in N-dimensional dissipative generalized stress space, but could be de-
picted in conventional Cauchy stress space by substituting orthogonality in the form ~�vi ¼ ~vi and Eq. (4b).

3. Single internal variable models

When the formulation employs only a single internal variable, hyperplasticity models (without damage), or
damage hyperelastic models (without plasticity) can be developed. In these cases a single internal variable is
used and the subscript ‘i’ omitted from ~ai. The dimension of ~ai is defined for each specific theory and the tilde
‘�’ removed; bold face indicates if the variable is a tensor.

3.1. Hyperplasticity theory

So far no particular emphasis has been placed on the interpretation of the internal variables. It is readily
shown that their physical role is related to the functional form of the energy and dissipation expressions cho-
sen. Collins and Houlsby (1997) showed for instance that if the Gibbs free energy can be decomposed in the
following form:
gðr; apÞ ¼ g1ðrÞ � r : ap þ g2 ap

� �
ð21Þ
then the strain is immediately derived as
e ¼ � og1ðrÞ
or

þ ap ð22Þ
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So that it is seen that ap plays the role of plastic strain. Furthermore, in such a model the elastic properties do
not depend on plastic strains, so that the elasticity is said to be uncoupled. It is readily shown that the corre-
sponding form of the Helmholtz free energy is
f ðe; apÞ ¼ f1ðe� apÞ þ g2ðapÞ ¼ f1ðeeÞ þ g2ðapÞ ð23Þ
From the definition of the generalized stress (4), in the case of potentials (21)
�vp ¼ r� og2ðapÞ
oap

ð24Þ
where �vp differs from the true stress by the term �og2=oap, which corresponds to the ‘‘back stress’’ in kinematic
hardening plasticity. Moreover, it can also be observed that
r ¼ of1ðeeÞ
oee

ð25Þ
so that for energies in the form of (23), the stress definition is in the same form as for hyperelasticity. However,
since in elasticity there are no plastic strains, in that case (23) degenerates to
f ðeÞ ¼ f1ðeÞ ð26Þ
Examples of this kind of model can be found in Houlsby and Puzrin (2000).

3.2. Damage hyperelasticity

We now demonstrate how, with a different choice of functional forms, the internal variable can instead play
the role of damage variable.

3.2.1. Damage internal variable

The scalar damage concept was first introduced by Kachanov (1958) in the form of the phenomenologically
based ‘‘effective stress’’ concept (see for example Lemaitre and Chaboche, 1978; Simo and Ju, 1987; Lemaitre,
1992). Alternatively, models can be based on the ‘‘effective strain’’ concept by Cordebois and Sidoroff (1982)
and Simo and Ju (1987). In either case the damage variable is a scalar (starting from 0 and increasing to a
maximum 1) is defined by
ad ¼ ðA� AsÞ=A ð27Þ
where A is the total cross-section area of a surface within the unit cell in one of the three perpendicular direc-
tions; As is the solid matrix area within A. We use the notation ad rather than the common D in order to
emphasize that this is an internal variable, and as such can used in the above formulation without conceptual
changes.

Using the hypothesis of strain equivalence (Lemaitre, 1971), and definition (27), the relation between the
macroscopic continuum mechanics stress r and the corresponding ‘‘effective’’ stress could be found as
�r ¼ r=ð1� adÞ ð28Þ
If we consider a free energy in the following form:
f ðe; adÞ ¼ f1ðeÞð1� adÞ ð29Þ
we can derive immediately
r ¼ of1ðeÞ
oe
ð1� adÞ ð30Þ
which can be seen to correspond to the formulation of Lemaitre (1971) if we identify the effective stress as
�r ¼ of1ðeÞ
oe

ð31Þ
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Using Legendre transformation (1) gives the Gibbs free energy
gðr; adÞ ¼ f1ðeð�rÞÞð1� adÞ � r : eð�rÞ ð32Þ
When eð�rÞ is linear in �r, f1(e) is quadratic in e (and �r) and the Gibbs potential has the structure
gðr; adÞ ¼
g1ðrÞ
ð1� adÞ

ð33Þ
while g1(r) is the Gibbs free energy if no damage occurs.
The hypothesis of stress equivalence (Cordebois and Sidoroff, 1982; Simo and Ju, 1987) presents the inverse

view to the former equivalence hypothesis. Although the hypothesis of strain equivalence is more widely used,
the hypothesis of stress equivalence has the advantage of being related to stress space, thus more naturally
combined with plasticity models. Using this hypothesis, and definition (27), the inverse stress space could
be followed. In which case we start from the effective strain definition
�e ¼ eð1� adÞ ð34Þ
relating between the macroscopic continuum mechanics strain e and the corresponding effective strain �e. Dif-
ferentiating (33) we obtain
e ¼ � og1ðrÞ
or

1

ð1� adÞ
ð35Þ
which is equivalent to the Simo and Ju (1987) formulation if we identify the effective strain as
�e ¼ � og1ðrÞ
or

ð36Þ
The transformed form of f(e,ad) = f1(e)(1 � ad) again only applies if the material is linear elastic.
As observed by Simo and Ju (1987), and supported in the above, this means that the strain equivalence is

naturally associated with strain-based formulation and the stress equivalence corresponds to a stress-spaced
formulation. As shown here, they produce the same results only in linear elastic materials, in which case ad

has the same constitutive meaning in both cases. In the case of non-linear elasticity, each should be viewed
according to the related space. However, in any case they rely on the same ideal microscopic idealisation.
Li (2000) explores different microscopic expressions and other (energy based) equivalence principles, which
result in, as before, different meanings for the internal damage variable ad. In general, those cases introduce
different factors instead of (1 � ad) (say instead some monotonically decreasing function M(ad) from 1 to 0).
However, the energy potentials may be given by one of the forms
f ðe; adÞ ¼ f1ðeÞMðadÞ ð37aÞ

gðr; adÞ ¼
g1ðrÞ
MðadÞ

ð37bÞ
for the hypothesizes of strain and stress equivalence respectively, but with a possible change in meaning of the
internal variables.

The use of (1 � ad) or M(ad) is of minor importance in this paper. The important consideration is that we
have set a consistent way to develop damage elastic models, which can be completely derived from the explicit
form of only two potential functions. In the same way, it could be demonstrated how anisotropic damage
internal variables can be introduced to the formulation, simply by varying the structure of the energy potential
functions. Ju (1990) highlighted the limitations and implications when the damage variable is taken as scalar
and suggested a fourth order tensorial form of the damage internal variable if microcracks and/or microvoids
are not spatially perfectly randomly distributed in all directions. Many authors prefer to develop anisotropic
damage models using second order, or fourth order damage tensors (Yazdani and Schreyer, 1988; Kattan
and Voyiadjis, 1990; Hansen and Schreyer, 1994; Li, 1999). If those measures agree with the laws of
thermodynamics they could be easily incorporated here.
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3.2.2. Damage generalized stress

Each of damage internal variable is associated with a stress dual, called the damage generalized stress.
When the damage internal variable is scalar, then according to Eqs. (4a) and (37a), this is given by
�vd ¼ �f1ðeÞM 0ðadÞ ð38Þ
Alternatively, according to Eqs. (4b) and (37b), the damage generalized stress is given by
�vd ¼ g1ðrÞ
M 0ðadÞ
MðadÞ2

ð39Þ
Eqs. (38) and (39) show that the damage generalized ‘‘stress’’ in fact has the dimension of energy, as the dam-
age internal variable is dimensionless. The two ‘‘stress’’ definitions are of course equivalent only when the
meanings of the damage internal variables are the same.

For any monotonically decreasing function M(ad) in ad, M 0(ad) is always negative, and since f1(e) in (38)
corresponds to the undamaged elastic stored energy, which is by definition non-negative, �vd P 0 is also
non-negative. For example, when M(ad) = (1 � ad), M 0(ad) = �1, thus giving �vd ¼ f1ðrÞ as the undamaged
elastic stored energy. The same result could be shown using Eq. (39).

3.2.3. Damage evolution

The model is completed by specifying either de (a function of the rate of the damage internal variable), or
alternatively by specifying the damage yield surface (as a function of the damage generalised stress). If the lat-
ter is used the damage evolution equation is expressed using the flow rule (either Eqs. (9) or (14) for a single
internal variable)
_ad ¼ k
oyf ðe; vd; adÞ

ovd

ð40aÞ

_ad ¼ k
oygðr; vd; adÞ

ovd

ð40bÞ
which are equivalent again only when the interpretation of the damage internal variable is the same.
Rewriting Eq. (5) in the notation of damage hyperelasticity
de ¼ vd _ad ð41Þ
Since vd ¼ �vd then for monotonically decreasing M(ad) the damage internal variable rate would always be
non-negative, i.e. _ad P 0, provided that the proposed explicit dissipation is indeed non-negative
de ¼ df ðe; ad; _adÞ ¼ dgðr; ad; _adÞP 0. If M(ad) is not monotonically decreasing it is possible that _ad < 0. Thus,
M(ad) should be required to be a monotonically decreasing function if the damage internal variable ad is al-
ways to grow with time.

3.3. Example of one-dimensional damage hyperelastic model

Consider a model given by one of
f ðe; adÞ ¼
Ee2ð1� adÞ

2
ð42aÞ

gðr; adÞ ¼ �
r2

2Eð1� adÞ
ð42bÞ
Together with the appropriate one of
df ¼ kPðadÞjejj _adj
2ð1� adÞ

P 0 ð43aÞ

dg ¼ kPðadÞjrj
2Eð1� adÞ2

j _adjP 0 ð43bÞ
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P(ad) is a positive definite function describing the changes in dissipation as the material is damaged, satisfying
P(ad = 0) � 1; we note that ad in f-form and g-form has the same meaning as f is quadratic in e; thus, using
Eqs. (4) and (42a,b)
Fig. 1
demon
�vd ¼
Ee2

2
¼ r2

2Eð1� adÞ2
ð44a; bÞ
is always positive, and corresponds to the undamaged energy. The degenerate Legendre transformation of
(43a,b) into the yield function gives
yf ¼ jvdj �
kPðadÞjej
2ð1� adÞ

6 0 ð45aÞ

yg ¼ jvdj �
kPðadÞjrj

2Eð1� adÞ2
6 0 ð45bÞ
Using the orthogonality condition in the form vd ¼ �vd, and Eqs. (44a,b), the yield functions in strain and stress
spaces are recovered
ye ¼ Ejejð1� adÞ � kPðadÞ 6 0 ð46aÞ
yr ¼ jrj � kPðadÞ 6 0 ð46bÞ
During yielding, the condition ye = 0, results in the pair of equations in which stress and strain are expressed
parametrically in terms of ad
ryðadÞ ¼ �kPðadÞ ð47aÞ

eyðadÞ ¼ �
kPðadÞ

Eð1� adÞ
ð47bÞ
where the subscript y was added to denote that these equations are followed only during yield. The determi-
nation of the function P(ad) should be based on these parametric equations.

Criterion (45a,b) matches to the ideal elasto-plastic criterion if P(ad) = 1. In that case, the energy threshold
will be constant k upon yielding. If P(ad) > 1 then during loading the stress will exceed the value k; If
. Stress–strain curves of one-dimensional damage hyperelasticity model in ideal, hardening and softening conditions (reloading
strated in the ideal case).
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P(ad) < 1 the stress will go below the value k while yielding. These options are described by the three stress–
strain curves given in Fig. 1. In this model, the reloading curve returns to initial conditions since no residual
plastic strain is introduced. This fact is demonstrated in the figure only for the ideal case of P(ad) = 1.

The instantaneous elastic modulus (damaged modulus) in this model is varying upon damage. Using Eqs.
(2) and (42a) gives
r ¼ E 1� adð Þe ð48Þ
4. Damage hyperplastic models

When the thermomechanical formulation, described in Section 2, depends on two internal variables, one
identified as the plastic strain and the other as the damage variable, damage hyperplastic models can be devel-
oped. We present two options for modelling damage hyperplastic materials. The general structure of the
energy potentials of the two theories is the same. Following Eqs. (23) and (29), the Helmholtz free energy
potential is given by
f ðe; ap; apÞ ¼ f1ðe� apÞð1� adÞ þ f2ðapÞ ð49Þ
Following Eqs. (21) and (33), the Gibbs free energy potential is given by:
gðr; ap; adÞ ¼
g1ðrÞ
ð1� adÞ

� r : ap þ g2ðapÞ ð50Þ
As discussed before, the two approaches produce the same results in the case of linear elasticity (i.e. f1 and g1

are quadratic functions).
The difference between the two theories comes from the different structure of the dissipation potential. Cor-

responding to Section 3, the first option is defined using decoupled dissipation function either in f-form
df
d ¼ df

dðe; ap; ad; _adÞ þ df
pðe; ap; ad; _apÞP 0 ð51aÞ
or in g-form
dg
d ¼ dg

dðr; ap; ad; _adÞ þ dg
pðr; ap; ad; _apÞP 0 ð51bÞ
Using the degenerate Legendre transformation gives yield functions in generalized stress space (damage yield
function in damage generalized stress space vd and plastic yield function in plastic generalized stress space vp),
either given in f-form
yf
d ¼ yf

dðe; ap; ad; vdÞ 6 0 ð52aÞ
yf

p ¼ yf
pðe; ap; ad; vpÞ 6 0 ð53aÞ
or alternatively in g-form
yg
d ¼ yg

dðr; ap; ad; vdÞ 6 0 ð52bÞ
yg

p ¼ yg
pðr; ap; ad; vpÞ 6 0 ð53bÞ
Corresponding to Section 3, the second option could be defined using coupled dissipation function, given
respectively by the f-form and g-form functions
df ¼ df ðe; ap; ad; _ap; _adÞP 0 ð54aÞ
dg ¼ dgðr; ap; ad; _ap; _adÞP 0 ð54bÞ
Using the degenerate Legendre transformation gives, this time, a single yield function in combined damage-
plastic generalized stress {vd,vp} space, given in one of the forms
yf ¼ yf ðe; ap; ad; vp; vdÞ 6 0 ð55aÞ
yg ¼ ygðr; ap; ad; vp; vdÞ 6 0 ð55bÞ
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An example is given by applying Eq. (20)
yf ¼
vp � vp

cf
pðe; ap; adÞ2

 ! n
2ðn�1Þ

þ vd

cf
dðe; ap; adÞ

 ! n
n�1

� 1 6 0 ð56aÞ

yg ¼
vp � vp

cg
pðr; ap; adÞ2

 ! n
2ðn�1Þ

þ vd

cg
dðr; ap; adÞ

	 
 n
n�1

� 1 6 0 ð56bÞ
The following examples are given only for the second option because in the past the notion of separate yield
surfaces for damage growth and plastic strain evolution has been explored, while the second option has largely
been overlooked. The examples will be given in the stress-space form (i.e. in g-form); although we should men-
tion that the f-form potentials could be recovered from the corresponding relations.

4.1. Example of one-dimensional coupled damage hyperplasticity model

Suppose a model which combines the hyperplasticity model of Eq. (21) (but with g2(ap) = 0) and the dam-
age hyperelasticity of Eq. (42b) in the following way:
gðr; ap; adÞ ¼ �
r2

2Eð1� adÞ
� rap ð57Þ

dgðr; ad; _ap; _adÞ ¼ kPðadÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrp _apÞ2 þ rd

r

2Eð1� adÞ2
_ad

 !2
vuut P 0 ð58Þ
where and rd are factors relating to the ratio between the internal variable rates. Their interpretation will be-
come clearer later on.

Following the g-form, Eq. (45b) gives a yield function in combined plastic-damage generalized stress space
of the form:
yg ¼
vp

krpPðadÞ

	 
2

þ vd � 2Eð1� adÞ2

krdPðadÞr

 !2

� 1 6 0 ð59Þ
Using Eqs. (3) and (58) we find that
e ¼ r
Eð1� adÞ

þ ap ð60Þ
such that the first component is recognized as the damage hyperelastic strain and the second as the plastic
strain. Using Eqs. (4b) and (58) gives
�vp ¼ r; �vd ¼
r2

2Eð1� adÞ2
ð61a; bÞ
which upon substitution in the generalized stress space yield function (59) gives the stress space yield function
yr ¼ r
k

� �2 r2
p þ r2

d

r2
pr2

d

" #
1

P2ðadÞ
� 1 6 0 ð62Þ
This means that during yielding, the stress–strain curve is again a function of the damage internal variable, but
now also of the plastic strain internal variable
ryðadÞ ¼ �
rprdffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

p þ r2
d

q kPðadÞ ð63aÞ

eyðad; apÞ ¼
ryðadÞ

Eð1� adÞ
þ ap ð63bÞ
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For consistency with the two idealised models in Section 3, we set P(0) � 1, such that ry(ad = 0) = ±k, thus
according to (62) we can find that the factors rp and rd are related by the equation
Fig. 2.
demon
1

r2
p

þ 1

r2
d

¼ 1 ð64Þ
from which it immediately follows that rp P 1 and rd P 1.
In the limiting case of rp P 1, rd!1. In that case the yield function (59) is expressed only in plastic gen-

eralized stress space
yg ¼
vp

k

� �2

� 1 6 0 ð65Þ
agreeing with the ideal hyperplastic model. In the same way, when rd = 1, rp!1 and the yield function (59)
can be expressed only in damage generalized stress
yg ¼ vd

kPðadÞ

	 
2

� 1 6 0 ð66Þ
agreeing with the ideal damage hyperelastic model.
The relation between the internal variable rates could be found by applying Eq. (14) to the yield function

(59) and substitution of relations (61), (62) and (64)
_ad

_ap

¼
vp

vd

rp

rd

	 
2

¼ 2Eð1� adÞ2

kPðadÞ
rp

rd

	 
2

ð67Þ
which shows that the ratio rp/rd determines the ratio of internal variable rates, and hence the balance between
damage and plasticity.

Corresponding to Fig. 1, the stress–strain curve of the one-dimensional damage hyper-plastic model is
given in Fig. 2. In this model, the reloading curve introduces residual plastic strain when returning to initial
stress conditions. This is demonstrated in the figure only for the case P(ad) = 1. The magnitude of the plastic
strain is a function of the rate equation (67).
Stress–strain curves of one-dimensional damage hyper-plasticity model in ideal, hardening and softening conditions (reloading
strated in the ideal case).
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4.2. Example of coupled damage-plasticity von Mises model

Lemaitre (1985) presents a variant of coupled damage-plasticity von Mises model, often simply known as
the Lemaitre model. In the following a different form of coupled damage-plasticity von Mises model is pre-
sented, and discussed in the context of the Lemaitre model. The energy potential is expressed similarly to
the Lemaitre approach, but the dissipative mechanisms are expressed in quite a different way. While the plas-
ticity yield surface and dissipation potential of the Lemaitre model were treated as quite independent, here
they are interlinked using the Legendre transformation. This linkage is an important feature of our approach,
and one which we consider lends it added consistency and rigour.

Lemaitre (1985) expresses the Helmholtz free energy potential for an isothermal linear elastic, isotropic cou-
pled damage-plasticity model. With a slight change in notation, this potential could be written as
f ðe; ap; adÞ ¼ Gð1� adÞðe0 � a0pÞ : ðe0 � a0pÞ þ
1

2
Kð1� adÞ trðe� apÞ2 ð68Þ
where G and K represent the shear and bulk moduli; x0 ¼ x� 1
3
trðxÞ1 is the distortional (deviatoric) part of the

second order tensor x and tr(x) = xii is the trace of the tensor. The trace and deviator parts of the stress tensor
are defined by applying Eq. (2)
trðrÞ ¼ 3	
of

otrðeÞ ¼ 3	K	ð1� adÞ	trðe� apÞ ð69Þ

r0 ¼ of
oe0
¼ 2Gð1� adÞðe0 � a0pÞ ð70Þ
and using Eqs. (4a,b) the trace and deviator parts of the plasticity generalised stress and damage scalar gen-
eralised stress are defined as
trð�vpÞ ¼ �3	
of

o trðapÞ
¼ trðrÞ ð71Þ

�v0p ¼ �
of
oa0p
¼ r0 ð72Þ

�vd ¼ �
of
oad

¼ Gðe0 � a0pÞ : ðe0 � a0pÞ þ
1

2
K trðe� apÞ ¼

r0 : r0

4Gð1� adÞ2
Rv ð73Þ
where it is convenient to introduce
Rv ¼ RvrðrÞ ¼ 1þ G
2K

trðrÞ2

r0 : r0
ð74aÞ

Rv ¼ Rveðe� apÞ ¼ 1þ K
2G

trðe� apÞ2

ðe0 � a0pÞ : ðe0 � a0pÞ
ð74bÞ
is defined as the ‘‘triaxiality function’’ (in two possible forms), and as Lemaitre noted is a function of the tri-
axiality ratio trðrÞ2=r0 : r0. For zero triaxiality ratio tr(r) = 0 and Rv = 1. Lemaitre (1985) postulated the fol-
lowing yield surface (without linking it to an explicit dissipation potential):
y	 ¼ �vd �
k2

Gð1� adÞ2
RvðrÞ ¼ 0 ð75aÞ
where we use the asterisk on y* to highlight that it was not derived from an explicit dissipation function.
Lemaitre noticed that by applying Eq. (73), Eq. (75a) reverts to the classical elasto-plastic von Mises yield
surface
y	 ¼ r0 : r0 � 2k2 ¼ 0 ð75bÞ

where k is the strength parameter that corresponds to the simple shear test.
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Lemaitre completes his formulation by postulating another function, this time the dissipation potential, but
importantly not the one which is associated with the dissipative action of the yield surface in (75a). The rela-
tionship of the dissipation and the yield surface expressed through the Legendre transform was ignored, and
the choice of the dissipation made apparently arbitrarily, allowing derivation of a convenient curve-fitting
evolution equation for the damage internal variable. In the present formulation this is impossible, as yield
and dissipation are explicitly interlinked. Furthermore, Lemaitre writes the dissipation potential, in an
explicit form, only for rate dependent materials, giving the result _ad ¼ ð�vd=S0Þs0ð1� adÞ�1 and
_ap ¼ 3

2
r0 3

2
r0 : r0

� ��1=2ð1� adÞ�1 (where S0 and s0 are two material parameters which although not given an
explicit physical meaning, clearly relate to the rate-dependent behavior of the material). For rate independent
deformations Lemaitre suggested simply multiplying these expressions by k, without any particular justifica-
tion, and without writing the explicit form of the dissipation potential.

In the following, the model is modified into a more consistent form, without introducing ad hoc assump-
tions about the evolution equations. The yield surface will be associated directly to the dissipation. We shall
assume the following dissipation:
df ðe; a0p; ad; _a0p; _adÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

p _a0p : _a0p þ
1

2
Rveðe� apÞ rd

1

Gð1� adÞ2
_ad

 !2
vuut P 0 ð76Þ
Using Eq. (56a) the yield function in combined plastic-damage generalized stress space takes the following
form:
yf ¼ yf ðvp; vd; e; ap; adÞ ¼
v0p : v0p

2ðkrpÞ2
þ vd � 2Gð1� adÞ2

ðkrdÞ2Rveðe� apÞ
� 1 6 0 ð77Þ
On the use of Eqs. (72)–(74b), �v0p ¼ v0p, and �vd ¼ vd the stress space yield function is derived
yr ¼ r0 : r0
r2

p þ r2
d

r2
pr2

d

" #
� 2k2

6 0 ð78aÞ
If we set the coupling damage-plasticity parameters according to Eq. (64), this function reduces to the von
Mises yield function
yr ¼ r0 : r0 � 2k2
6 0 ð78bÞ
such that yr = y* is the same as in the Lemaitre model, but this time derived from the dissipation. However,
now it is possible to derive the evolution equation of the damage and plasticity internal variables directly from
the flow rule
_ad ¼ k
2Gð1� adÞ2

ðkrdÞ2Rv

; _a0p ¼ k
v0p

ðkrpÞ2
ð79a; bÞ
giving
_adffiffiffiffiffiffiffiffiffiffiffiffiffi
_a0p : _a0p

p ¼
ffiffiffi
2
p

Gð1� adÞ2

Rvk
rp

rd

	 
2

ð80Þ
showing once more that the ratio rp/rd determines the balance between damage and plasticity, though in this
case the balance also depends on the degree of triaxiality. For zero triaxiality ratio, Eq. (80) becomes
_adffiffiffiffiffiffiffiffiffiffiffiffiffi
_a0p : _a0p

p ¼ Gð1� adÞ2ffiffiffi
2
p

k

rp

rd

	 
2

when trðrÞ ¼ 0 ð81Þ
which upon integration gives (provided zero triaxaility is maintained)
ad ¼
rd

rp

� �2

n	

1þ rd

rp

� �2

n	
; n	 ¼

ffiffiffi
2
p

k
2G

n ð82Þ
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Fig. 3. Relation between damage and cumulative plastic shear strain in coupled damage-plasticity von Mises model.
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such that in this loading case, damage is purely a function of the cumulative plastic shear strain n (with n*

being a normalised form of n)
n ¼
Z

t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_a0p : _a0p

q
dt ¼

Z a0p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da0p : da0p

q
ð83Þ
As is seen from Eq. (82) the relation between the damage and cumulative plastic shear strain is given by a
hyperbola, with the ratio rp/rd determining the initial slope in ad � n* space (see Fig. 3).

4.3. Example of coupled damage-plasticity Modified Cam Clay model

Modern trends in the offshore industry are towards deeper water developments, where the seabed soils typ-
ically comprise soft sediments, many of which are highly sensitive clays, i.e. with strength loss by factors of 3–
10, when they are strained. The term ‘‘sensitive clay’’ was introduced by Mitchell (1976) to describe this char-
acteristic of the material constitutive behaviour. Alternatively, the term ‘‘structured clay’’ is used to describe
the microscopic-scale chemical, fabric and stability features (Mitchell, 1976; Burland, 1990) of the same mate-
rials. The most distinctive characteristic of the stress–strain compression curves of sensitive clays, when com-
pared with remoulded clays, is that the isotropic pre-consolidation pressure property undergoes degradation
(Burland, 1990; Liu and Carter, 1999). This behaviour of sensitive clays have been described using a variety of
approaches, focusing on the strength loss. However, experiments suggest that during compression, the
strength loss of sensitive clays is additional to further degradation in the elastic moduli (Holtz et al., 1986).
Existing constitutive models fail to represent this strength-stiffness degradation coupling via damage. This
is the motive behind the following section, were we adopt the damage hyperplasticity approach to extend
the Modified Cam Clay model. This is facilitated by following the ideas presented in Example 4.1 and employ-
ing the ‘‘non-damage’’ Hyperplastic Modified Cam Clay formulation by Houlsby (1981) and Collins and
Houlsby (1997).

Many authors (e.g. Ladeveze and Le-Dantec, 1992; Lemaitre, 1992; Fish and Yu, 2001) have introduced
two scalar damage internal variables (or a two-dimensional vectorial damage internal variable) to model
the damage evolution in two separate modes of deformations. This method is popular for materials such as
laminated composites, in which the mechanism of damage may be different in tension and shear. Our model
for sensitive clays will also incorporate two measures of scalar damage, one for volumetric and another for
shear deformation modes.

According to Collins and Houlsby an entire Modified Cam Clay model could be encapsulated (in terms of
the so-called ‘‘triaxial’’ variables commonly used in soil mechanics) through the following two potentials:
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g ¼ �j	p log
p
p0

	 

� 1

	 

� q2

6G
� pav

p � qas
p ð84aÞ

dg ¼
py

2
_av

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _av

pÞ
2 þ ðM _as

pÞ
2

q	 

P 0 ð84bÞ
where
P av
p

� �
¼ exp av

p=ðk
	 � j	Þ

� �
ð85aÞ

py av
p

� �
¼ py0P av

p

� �
ð85bÞ
is the ‘‘preconsolidation pressure’’, which together with the volumetric stress–strain relation
ev ¼ �og=op ¼ j	 logðp=p0Þ þ av

p, gives the conventional MCC compression curve in Fig. 4a.
Consider a similar model, but this time a model that includes damage, which could be completely derived

from the following two potentials:
g ¼ � j	p
ð1� av

dÞ
log

p
p0

	 

� 1

	 

� q2

6Gð1� as
dÞ
� pav

p � qas
p ð86aÞ

dg ¼
py

2
_av

p þ Rv
d _av

d þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rp _av
p

� �2

þ rdRv
d _av

d

� �2 þ rpM _as
p

� �2

þ rdMRs
d _as

d

� �2

r !
P 0 ð86bÞ
where Rv
dðp; av

dÞ ¼ j	 log p
p0

� �
� 1

� �
=ð1� av

dÞ
2, Rs

dðq; as
dÞ ¼ q=6Gð1� as

dÞ
2 and we require as before that

1=r2
p þ 1=r2

d ¼ 1.
In the above p and q are the mean effective and shear stresses and p0 is a reference pressure; av

d and as
d are

two damage internal variables, associated with volumetric and shear deformations respectively; py is the pre-
consolidation pressure; av

p and as
p are the plastic strain internal variables associated with the volumetric and

shear deformations respectively; G is the shear modulus; j* and k* are the elastic compressibility index related
to the bulk modulus and the slope of the virgin compression line respectively. The yield function may be
obtained as
yg ¼
vv

p � py=2

rp

	 
2

þ
vv

d � Rv
dpy=2

rdRv
d

	 
2

þ
vs

p

rpM

	 
2

þ vs
d

rdMRs
d

	 
2

�
py

2

� �2

¼ 0 ð87Þ
The yield function in stress space can be extracted from the two potentials, after some manipulation, by adopt-
ing Eq. (4b) in the form �vv

p ¼ �og=oav
p, �vs

p ¼ �og=oas
p, �vv

d ¼ �og=oav
d, �vs

d ¼ �og=oas
d, Eq. (13) in the form

vv
p ¼ �od=o _av

p, vs
p ¼ �od=o _as

p, vv
d ¼ �od=o _av

d, vs
d ¼ �od=o _as

d, and (87)
y ¼ p �
py

2

� �2

þ q
M

� �2

�
py

2

� �2

6 0 ð88Þ
Fig. 4. Compression models. (a) Conventional and (b) damage hyperelastic.
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where py ¼ pyðav
p; a

v
d; a

s
dÞ. The specific form of this function will determine the role of the damage parameters,

as we explore later. If this expression reduces to py ¼ pyðav
pÞ ¼ py0Pðav

pÞ the yield function of the damage
Modified Cam Clay model becomes that of the conventional Modified Cam Clay model.

The volumetric and shear strains are defined from Eq. (3)
ev ¼ �
og
op
¼ �j	 log

p
p0

	 

þ av

p ¼
j	

ð1� av
dÞ

log
p
p0

	 

þ av

p ð89aÞ

es ¼ �
og
oq
¼ q

3�G
þ as

p ¼
q

3G 1� as
d

� �þ as
p ð89bÞ
which agrees again with Collins and Houlsby’s hyperplastic version of Modified Cam Clay, but here the model
includes the two damage internal variables. We identify the effective shear modulus and effective compressibility
index by
G ¼ Gð1� as
dÞ ð90aÞ

�j	 ¼ j	

ð1� av
dÞ

ð90bÞ
We now turn attention to the normal compression behaviour of the model. First, let us postulate a hypo-
thetical damage hyperelastic model (i.e., by imposing rd = 1 and rp!1 in the above model, and removing the
dependence on ap). Further assume the following expression to describe the degradation of the strength
parameter due to damage, by replacing Eq. (85)
Cðav
dÞ ¼ drem þ ð1� dremÞ exp �3av

dð1� D95Þ=D95 1� av
d

� �� �� �
ð91aÞ

py av
d

� �
¼ py0C av

d

� �
ð91bÞ
where drem is the fully remoulded strength ratio, and D95 is the amount of damage required to cause 95%
reduction (from peak to remoulded). (Note that exp(�3) 
 0.05.) This formula and Eq. (89a), gives the dam-
age hyperelastic MCC compression curve in Fig. 4b.

However, it is well established that clays (whether sensitive or not), are strongly dependent on the plastic
strain. Therefore, let us now remove the imposition of damage hyperelastic models (rp = 1, rd!1) and go
back to the full version of the damage hyperplastic model by combining Eqs. (85) and (91)
py av
p; a

v
d

� �
¼ py0P av

p

� �
C av

d

� �
ð92Þ
Fig. 5. The compression stress–strain behaviour of the damage hyperplastic MCC model.
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This time the plastic strain is not eliminated from Eq. (89). Prior to yielding, the elastic behaviour is given by
the effective compressibility index �j	 ¼ j	=ð1� av

dÞ, denoting the damaged linear compressibility slope in the
ev � log(p) space. Upon yielding, the normal compression curve (q = 0) satisfies p = py, and we get the
combine effects of the hardening plasticity and softening damage. When av

d ¼ 1 and the material is fully
remoulded, the pressure p and preconsolidation pressure reduce to p ¼ pyðav

p; a
v
dÞ ¼ drempyðav

pÞ ¼
drem expðav

p=ðk
	 � j	ÞÞ, and this is represented in Fig. 5.

Let us compare the above with the experimental data. For example, Holtz et al. (1986) presented results
from carefully executed oedometer tests on undisturbed samples of a natural, sensitive clay deposit. During
the test, both the vertical and lateral stresses were measured, allowing to recover the stress–strain normal com-
pression in Fig. 6. The same test was repeated using the damage hyperplastic MCC model, and the predictions
are plotted in the same figure. The results agree well with the fact that both the strength and compressibility
modulus j* are being degraded during loading.

In this figure, we added the amount of damage and plastic strain that correspond to the reloading stages. As
noted, the damage grows from being zero (ad = 0) at the beginning, to ad = 0.731 and ad = 0.753 during the
first and second reloading stages. This entails an increase in the effective compressibility index from
�j	 ¼ j	 ¼ 0:005 to �j	 ¼ 0:018 and �j	 ¼ 0:02, i.e., a reduction factor of about 4 in the bulk modulus. Obvi-
ously, this aspect of stiffness reduction has a great influence on engineering problems. The capability of the
damage hyperplasticity approach to predict this characteristic of sensitive clays, which is frequently ignored
by other models, motivates further work in this area.

The model is completed, by updating Eq. (92) to represent the effect of damage on the pre-consolidation
pressure via shear deformations
py av
p; a

v
d

� �
¼ py0P av

p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C av

d

� �
C as

d

� �q
ð93Þ
where the square root term was chosen such that in normal compression the model will behave exactly as in
Figs. 5 and 6, and that in shear deformations the reduction factor is symmetric. Fig. 7 presents an example of
how the model behaves under undrained shear test conditions (i.e., ev = 0), of normally consolidated sensitive
clay, where we examine the effect of the damage-plasticity coupling parameter rp. The rest of the parameters
remains as those used for Fig. 6 (j* = 0.005, k* = 0.09, py0 = 410 kPa, M = 1.2, D95 = 0.93, drem = 0.3,
G = 20,000 kPa). When rp = 1, the model performs exactly as the conventional MCC model, as the damage
mechanism is deactivated. However, when rp > 1 the model is allowed to undergo damage and therefore soft-
ening. When rp!1 (rd = 0), the model is purely a damage hyperelastic, without any plastic straining. In this
model, the stress paths always end along the failure line q = Mp (i.e. the friction angle is constant) but the final
stresses (q and p) are smaller than in the original MCC, reflecting the sensitivity of the material in shear.
Fig. 7b presents how the shear mode damage scalar evolves during the test, reaching a critical asymptotic
damage value that increases with increase in coupling via rp.
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5. Conclusions

We demonstrate how the same constitutive framework can be adopted to describe both the growth of dam-
age and the evolution of plastic strains, solely from two energy potentials. Both damage and plastic strain are
identified as internal variables. Their physical interpretation comes from their particular role in the potential
functions.
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The most important advantage of the present work is that the energy potentials, in the form of dissipation
and Helmholtz or Gibbs free energies, are given explicitly. The entire constitutive behaviour is encapsulated in
these two functions. This guarantees a consistent and coherent formulation. Features such as the yield surface,
flow rule and damage evolution law are the outcome of the explicit form of the potential functions. No addi-
tional ad hoc assumptions, such as a damage evolution law are needed.

An important distinction is made, identifying two families of combined damage-plasticity models. The first
encompasses models with decoupled plasticity and damage yield surfaces. In this case, pure damage can occur
without plastic straining, or vice versa, pure plastic straining can happen without damage. The second family
describes models with a coupled damage-plasticity yield surface, such that any plastic straining is accompanied
to damage.

A discussion was made regarding the interpretation of damage internal variable, in accordance with the
effective stress and strain concepts. These two concepts give identical meaning to the damage internal variable
only when the hyperelastic component of the potential is quadratic in the strain/stress variables, and produce
linear damage hyperelasticity.

Finally, examples of constitutive models were given and showed the versatility of the framework and the
possible applications to development of geomaterials undergoing damage.
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