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Abstract

Universality limits are a central topic in the theory of random matrices. We establish universality limits
in the bulk of the spectrum for varying measures, using the theory of entire functions of exponential type.
In particular, we consider measures that are of the form W2n

n (x) dx in the region where universality is
desired. Wn does not need to be analytic, nor possess more than one derivative—and then only in the region
where universality is desired. We deduce universality in the bulk for a large class of weights of the form
W2n(x) dx, for example, when W = e−Q where Q is convex and Q′ satisfies a Lipschitz condition of some
positive order. We also deduce universality for a class of fixed exponential weights on a real interval.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and results

Let M(n) denote the space of n by n Hermitian matrices M = (mij )1�i,j�n. Consider a
probability distribution on M(n),

P (n)(M) = ce−Fn(M) dM

= ce−Fn(M)

(
n∏

j=1

dmjj

)( ∏
j<k

d(Remjk) d(Immjk)

)
.
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Here Fn(M) is a function defined on M(n), and c is a normalizing constant. The most im-
portant case is

Fn(M) = 2n trQn(M),

for appropriate functions {Qn} defined on M(n). In particular, the choice

Fn(M) = 2n tr
(
M2),

leads to the Gaussian unitary ensemble (apart from scaling) that was considered by Wigner. One
may identify P (n) above with a probability density on the eigenvalues x1 � x2 � · · · � xn of M,

P (n)(x1, x2, . . . , xn) = ce
−∑n

j=1 2nQn(xj )
∏
i<j

(xi − xj )
2.

See [15, p. 102 ff.]. Again, c is a normalizing constant.
It is at this stage that orthogonal polynomials with a respect to a sequence of measures arise

[15,41]. For n � 1, let μn be a finite positive Borel measure with support supp[μn] and infinitely
many points in the support. If the support of μn is unbounded, we assume that at least the first
2n + 1 power moments

∫
xj dμn(x), 0 � j � 2n,

are finite. Then we may define orthonormal polynomials

pn,m(x) = γn,mxm + · · · + γn,m > 0,

m = 0,1,2, . . . , n, satisfying the orthonormality conditions

∫
pn,jpn,k dμn = δjk.

Throughout we use μ′
n to denote the Radon–Nikodym derivative of μn. The nth reproducing

kernel for μn is

Kn(x, y) =
n−1∑
k=0

pn,k(x)pn,k(y) (1.1)

and the normalized kernel is

K̃n(x, y) = μ′
n(x)1/2μ′

n(y)1/2Kn(x, y). (1.2)

When

dμn(x) = e−2nQn(x) dx,
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there is the basic formula for the probability distribution P (n) [15, p. 112]:

P (n)(x1, x2, . . . , xn) = 1

n! det
(
K̃n(xi, xj )

)
1�i,j�n

.

One may use this to compute a host of statistical quantities—for example the probability that a
fixed number of eigenvalues of a random matrix lie in a given interval. One particularly important
quantity is the m-point correlation function for M(n) [15, p. 112]:

Rm(x1, x2, . . . , xm) = n!
(n − m)!

∫
· · ·

∫
P (n)(x1, x2, . . . , xn) dxm+1 dxm+2 · · ·dxn

= det
(
K̃n(xi, xj )

)
1�i,j�m

.

The universality limit in the bulk asserts that for fixed m � 2, ξ in a suitable subset of the
(common) supports of {μn}, and real a1, a2, . . . , am, we have

lim
n→∞

1

K̃n(ξ, ξ)m
Rm

(
ξ + a1

K̃n(ξ, ξ)
, ξ + a2

K̃n(ξ, ξ)
, . . . , ξ + am

K̃n(ξ, ξ)

)

= det

(
sinπ(ai − aj )

π(ai − aj )

)
1�i,j�m

.

Of course, when ai = aj , we interpret
sinπ(ai−aj )

π(ai−aj )
as 1. Because m is fixed in this limit, this

reduces to the case m = 2, namely

lim
n→∞

K̃n(ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)
)

K̃n(ξ, ξ)
= sinπ(a − b)

π(a − b)
. (1.3)

Typically, this is established uniformly for a, b in compact subsets of the real line. Thus, an
assertion about the distribution of eigenvalues of random matrices has been reduced to a technical
limit involving orthogonal polynomials.

As suggested above, in many of the most important applications, Qn = Q, and we consider
measures of the form

dμn(x) = e−2nQ(x) dx.

In analyzing this case, Riemann–Hilbert methods have yielded spectacular advances—
asymptotics of orthogonal polynomials, with complete asymptotic expansions for remainder
terms, that can be substituted directly into the Christoffel–Darboux formula

Kn(x, y) = γn,n−1

γn,n

pn,n(x)pn,n−1(y) − pn,n−1(x)pn,n(y)

x − y
. (1.4)

For example, if Q is real analytic on the real axis, and Q(x)/ log(1 + x2) has limit ∞ at ±∞,
then Deift et al. [17] established (1.3), and they can derive remainder terms in the limit as well.
Subsequently, McLaughlin and Miller [39,40] used the ∂̄ technique to replace analyticity by
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conditions on the second derivative of Q. There is an extensive literature on random matrices
and Riemann–Hilbert methods. A (very!) partial list is [2–4,8–14,16,25,27–29,38,57].

Another established approach that has yielded very useful results involves classical analy-
sis and operator theory, especially Toeplitz and Hankel operators [5,6,54–56,58]. Further ap-
proaches, often with a mathematical physics origin, appear in [1,18–20,22,43,44]. Again, this
list is incomplete. The online book by Forrester [20] and the lecture notes by Deift [15] may be
used as an introduction to the subject. The recent conference proceedings of the 60th birthday
conference of Percy Deift will contain up to date references [4].

In [36] and [37] two new approaches were presented for proving universality for fixed mea-
sures on a compact set. The first new approach [36] involved a comparison inequality, and applied
to regular measures (in the sense of Stahl and Totik [48]) on [−1,1]. It required only absolute
continuity of the measure μ in a neighborhood of the point where universality is desired, together
with positivity and continuity of μ′ at that point.

It was subsequently extended to regular measures on arbitrary compact subsets of the real
line using a host of other ideas by Barry Simon [47] and Vili Totik [53]. Totik used polynomial
pullbacks for the extension to general sets, and showed that continuity of μ′ may be weakened
to a Lebesgue point type condition. Moreover, when logμ′ is integrable in an interval, then
universality holds a.e. in that interval. Simon used the theory of Jost functions for the extension
to general sets. The approach of [36] has been applied at the edge of the spectrum [35], on the
unit circle [32], and to spacing of zeros of orthogonal polynomials [33]. It has also been applied
to fixed exponential weights [34], together with other ideas. There new ways were introduced
to prove universality for exponential weights, showing that first order asymptotics of orthogonal
polynomials suffice.

The second new approach [37] is more powerful, and direct, and uses the theory of entire
functions of exponential type. It avoids the assumption of regularity of the measure, and shows
that universality is equivalent to universality along the diagonal—namely that (1.3) holds with
a = b. In this paper, we use that method to handle varying weights, and subsequently fixed
exponential weights. The hypotheses involve the nth Christoffel function for μn, namely,

λn(x) = λn(μn, x) = 1/Kn(x, x). (1.5)

When μn is absolutely continuous, we shall use also the notation λn(μ
′
n, x). There is the well-

known extremal property

λn(x) = inf
deg(P )�n−1

∫
P 2(t) dμn(t)

P 2(x)
.

In addition, we need some concepts from potential theory for external fields [45]. Let Σ be a
closed set on the real line, and

W(x) = exp
(−Q(x)

)
be a continuous function on Σ . If Σ is unbounded, we assume that

lim|x|→∞, x∈Σ
W(x)|x| = 0.



E. Levin, D.S. Lubinsky / Advances in Mathematics 219 (2008) 743–779 747
Associated with Σ and Q, we may consider the extremal problem

inf
ν

(∫ ∫
log

1

|x − t | dν(x) dν(t) + 2
∫

Qdν

)
,

where the inf is taken over all positive Borel measures ν with support in Σ and ν(Σ) = 1. The
inf is attained by a unique equilibrium measure νW , characterized by the following conditions:
let

V νW (z) =
∫

log
1

|z − t | dνW (t)

denote the potential for νW . Then

V νW + Q � FW on Σ;
V νW + Q = FW in supp[νW ].

Here the number FW is a constant. Usually νW is denoted μW , but we use a different symbol to
avoid confusion with our measures of orthogonality {μn}.

Our first result imposes similar hypotheses to those of Vili Totik [51], who studied asymptotics
for Christoffel functions for varying weights.

Theorem 1.1. Let W = e−Q be a continuous non-negative function on the set Σ , which is as-
sumed to consist of at most finitely many intervals. If Σ is unbounded, we assume also

lim|x|→∞,x∈Σ
W(x)|x| = 0.

Let h be a bounded positive continuous function on Σ , and for n � 1, let

dμn(x) = (
hW 2n

)
(x) dx. (1.6)

Moreover, let K̃n denote the normalized nth reproducing kernel for μn.
Let J be a closed interval lying in the interior of supp[νW ], where νW denotes the equilibrium

measure for W . Assume that νW is absolutely continuous in a neighborhood of J , and that ν′
W

and Q′ are continuous in that neighborhood, while ν′
W > 0 there. Then uniformly for ξ ∈ J , and

a, b in compact subsets of the real line, we have

lim
n→∞

K̃n(ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)
)

K̃n(ξ, ξ)
= sinπ(a − b)

π(a − b)
. (1.7)

In particular, when Q′ satisfies a Lipschitz condition of some positive order in a neighborhood
of J , then [45, p. 216] ν′

W is continuous there, and hence we obtain universality except near zeros
of ν′

W . Note too that when Q is convex in Σ , or xQ′(x) is increasing there, then the support of
νW consists of at most finitely many intervals, with at most one interval per component of Σ
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[45, p. 199]. More generally, if exp(Q) is convex in Σ , it is still true that the support of νW

consists of at most finitely many intervals, with at most one interval per component of Σ [7,
Theorem 5].

The proof of Theorem 1.1 depends heavily on Totik’s asymptotics for Christoffel func-
tions [51]. We note that prior to this result, the most general universality result for varying
weights places global conditions on Q′′ [40]. That paper is based on the ∂̄ Riemann–Hilbert
method. The original powerful Riemann–Hilbert methods required Q to be real analytic [17].
Theorem 1.1 follows easily from the following general result:

Theorem 1.2. For n � 1, let μn be a positive Borel measure on the real line, with at least the
first 2n + 1 power moments finite. Let I be a compact interval in which each μn is absolutely
continuous. Assume moreover that in I ,

dμn(x) = h(x)W 2n
n (x) dx, (1.8)

where

Wn = e−Qn (1.9)

is continuous on I, and h is a bounded positive continuous function on I . Let νWn denote the
equilibrium measure for the restriction of Wn to I . Let J be a compact subinterval of I o. Assume
that

(a) {ν′
Wn

}∞n=1 are positive and uniformly bounded in some open interval containing J ;
(b) {Q′

n}∞n=1 are equicontinuous and uniformly bounded in some open interval containing J ;
(c) for some C1,C2 > 0, and for n � 1 and ξ ∈ I , the Christoffel functions λn(·) = λn(μn, ·)

satisfy

C1 � λ−1
n (ξ)W 2n

n (ξ)/n � C2; (1.10)

(d) uniformly for ξ ∈ J and a in compact subsets of the real line,

lim
n→∞

λn(ξ + a
n
)

λn(ξ)

W 2n
n (ξ)

W 2n
n (ξ + a

n
)

= 1. (1.11)

Then uniformly for ξ ∈ J , and a, b in compact subsets of the real line, we have (1.7).

Remarks. (i) We note that we think of Wn as defined only on the interval I , and ν′
Wn

is the
equilibrium density for Wn defined only on I . In contrast, μn is typically defined on a larger
interval. In applications, Wn might also be defined on a larger interval, and in this case the
equilibrium measures νWn should be thought of as equilibrium measures for the restriction of
Wn to I . This can also be seen from our hypothesis (1.10), that the bounds for the Christoffel
functions for μn hold on all of I , which in applications forces I to be a proper subset of the
support of μn.
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(ii) We can weaken the equicontinuity assumption (b) on {Q′
n}. We actually need only that for

some open interval J2 containing J , and each fixed a > 0,

sup
t∈J2, |h|�a

∣∣∣∣Q′
n(t) − Q′

n

(
t + h

n

)∣∣∣∣ → 0 as n → ∞. (1.12)

In fact, we shall need this weaker hypothesis in Section 7, where we consider fixed exponential
weights.

(iii) Under mild additional conditions on {Q′
n}, such as them satisfying a uniform Lipschitz

condition, of some positive order, on some open interval containing J , one can establish (a) and
(c) in Theorem 1.2, using methods in [31] or [51]. Moreover, one can use the methods of [31],
or perhaps in greater generality, those of [50,51], to establish (d). However, we omit these here,
as this would substantially lengthen the paper, and distract from the new techniques that are used
here.

(iv) Our proof actually establishes the following limit, uniformly for ξ ∈ J and a, b in compact
subsets of the complex plane, not just the real line:

lim
n→∞

Kn(ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)
)

Kn(ξ, ξ)
e
− n

K̃n(ξ,ξ)
Q′

n(ξ)(a+b) = sinπ(a − b)

π(a − b)
. (1.13)

This paper is organised as follows. In Section 2, we present some of the main ideas of proof.
In Section 3, we present notation and background for Sections 4 through 6. In Section 4, we
use normality to establish some elementary properties, and in Section 5, we prove Theorem 1.2.
In Section 6, we deduce Theorem 1.1. In Section 7, we shall establish universality for fixed
exponential weights.

2. The ideas of proof

We start with the hypothesis (c) from Theorem 1.2. It may be reformulated as

C1 � 1

n
Kn(ξ, ξ)W 2n

n (ξ) � C2 (2.1)

for n � 1 and ξ ∈ I . Using Cauchy–Schwarz’s inequality, we obtain

1

n

∣∣Kn(ξ, t)
∣∣Wn

n (ξ)Wn
n (t) � C

for n � 1 and ξ, t ∈ I . The elements of potential theory for external fields enable us to extend this
bound into the complex plane. For this, we also use the uniform boundedness of the equilibrium
densities {ν′

Wn
}. Applying these methods in each variable ξ, t above leads to the estimate

1

n

∣∣∣∣Kn

(
ξ + a

n
, ξ + b

n

)∣∣∣∣Wn
n

(
ξ + Rea

n

)
Wn

n

(
ξ + Reb

n

)
� C1e

C2(|Ima|+|Imb|).

Here a, b ∈ C and C1 and C2 are independent of n,a, b, ξ . However, for a, b in a given compact
subset K of the plane, the estimate holds for n � n0(K). Using (2.1) again, and recalling our
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notation (1.2), we obtain

∣∣∣∣Kn(ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)
)

Kn(ξ, ξ)

∣∣∣∣W
n
n (ξ + Rea

K̃n(ξ,ξ)
)Wn

n (ξ + Reb

K̃n(ξ,ξ)
)

W 2n
n (ξ)

� C1e
C2(|Ima|+|Imb|).

Of course, the constants C1 and C2 might be different. Our assumptions on {Qn} ensure that

Wn
n (ξ + Rea

K̃n(ξ,ξ)
)Wn

n (ξ + Reb

K̃n(ξ,ξ)
)

W 2n
n (ξ)

= eΨ (ξ,n)(Rea+Reb)
(
1 + o(1)

)
,

where

Ψ (ξ,n) = − n

K̃n(ξ, ξ)
Q′

n(ξ).

Define

fn(a, b) =
Kn(ξ + a

K̃n(ξ,ξ)
, ξ + b

K̃n(ξ,ξ)
)

Kn(ξ, ξ)
eΨ (ξ,n)(a+b),

an entire function of exponential type in each variable a, b. Given A > 0, we obtain for n � n0(A)

and |a|, |b| � A, that

∣∣fn(a, b)
∣∣ � C1e

C2(|Ima|+|Imb|). (2.2)

Thus {fn(a, b)}∞n=1 is a normal family for a, b in the complex plane.
Let f (a, b) be the limit of some subsequence {fn(·,·)}n∈S of {fn(·,·)}∞n=1. It is an entire

function in a, b, but (2.2) shows more: for all complex a, b,

∣∣f (a, b)
∣∣ � C1e

C2(|Ima|+|Imb|). (2.3)

So f is bounded for a, b ∈ R, and is an entire function of exponential type in each variable. Our
goal is to show

f (a, b) = sinπ(a − b)

π(a − b)
.

Our main tool is to scale up properties of the reproducing kernel Kn, and after taking limits, to
deduce that an analogous property is true for f . Let us fix a. Since for each real ξ , Kn(ξ, t) has
only real zeros, the same is true of f (a, ·). Moreover, f (a, ·) has countably many such zeros.
Using elementary properties of the reproducing kernel Kn, we can show that for all a ∈ C,

∞∫ ∣∣f (a, s)
∣∣2

ds � f (a, ā).
−∞
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If σ is the exponential type of f (a, ·), we can show that σ is independent of a, using inter-
lacing properties of zeros of Kn. Using the fact that sinπs

πs
is a reproducing kernel for the entire

functions of exponential type that are also in L2(R), we can establish the useful inequality

0 �
∫
R

(
f (a, s)

f (a, a)
− sinσ(s − a)

σ (s − a)

)2

ds � 1

f (a, a)
− π

σ
. (2.4)

From this we deduce

σ � π sup
x∈R

f (x, x) � π.

For the converse inequality, we use Markov–Stieltjes inequalities, and a formula relating expo-
nential type of entire functions and their zero distribution, to obtain

σ � π sup
x∈R

f (x, x).

Thus,

σ = π sup
x∈R

f (x, x),

and (2.4) becomes

∞∫
−∞

(
f (a, s)

f (a, a)
− sinσ(a − s)

σ (a − s)

)2

ds � 1

f (a, a)
− 1

supx∈R f (x, x)
. (2.5)

Assuming the hypothesis (1.11) of Theorem 1.2, we immediately obtain

f (x, x) = lim
n→∞, n∈S

fn(x, x) = 1

for all x, and then σ = π . Substituting this back into (2.5), completes the proof of Theorem 1.2.

3. Notation and background

In the sequel C,C1,C2, . . . denote constants independent of n,x, y, s, t . The same symbol
does not necessarily denote the same constant in different occurrences. We shall write C = C(α)

or C �= C(α) to respectively denote dependence on, or independence of, the parameter α. We use
∼ in the following sense: given real sequences {cn}, {dn}, we write

cn ∼ dn

if there exist positive constants C1,C2 with

C1 � cn/dn � C2.

Similar notation is used for functions and sequences of functions.
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Throughout, μn denotes a finite positive Borel measure on the real line, having at least the
first 2n + 1 power moments finite. The Radon–Nikodym derivative of μn is denoted μ′

n. The
corresponding orthonormal polynomials are denoted by {pn,k}nk=0, so that

∫
pn,kpn,j dμn = δjk.

We denote the zeros of pn,n by

xnn < xn−1,n < · · · < x2n < x1n. (3.1)

The nth reproducing kernel for μn is denoted by Kn(x, t), and is defined by (1.1), while the
normalized reproducing kernel is defined by (1.2). The nth Christoffel function for μn is

λn(x) = λn(μn, x) = 1/Kn(x, x) = inf
deg(P )�n−1

∫
P 2 dμn

P 2(x)
. (3.2)

When μn is absolutely continuous, we shall often write λn(μ
′
n, x). In particular, λn(hW 2n

n , x)

will denote the nth Christoffel function for the weight hW 2n
n .

The Gauss quadrature formula asserts that whenever P is a polynomial of degree � 2n − 1,

n∑
j=1

λn(xjn)P (xjn) =
∫

P dμn. (3.3)

In addition to this, we shall need another Gauss type of quadrature formula [21, p. 19 ff.]. Given
a real number ξ , there are n or n − 1 points tjn = tjn(ξ), one of which is ξ , such that

∑
j

λn(tjn)P (tjn) =
∫

P dμn, (3.4)

whenever P is a polynomial of degree � 2n − 3. The {tjn} are zeros of

ψn(ξ, t) = pn,n(ξ)pn,n−1(t) − pn,n−1(ξ)pn,n(t), (3.5)

regarded as a function of t . Note that only the finiteness of the first 2n + 1 moments is required
for the existence of {tjn}. This is well known, and obvious from the proofs in Freud [21].

In order to prove that universality holds uniformly for ξ in J , we shall fix a sequence {ξn}
of points in J , rather than a fixed ξ . At the nth stage, we shall consider the quadrature that
includes ξn, so that

tjn = tjn(ξn) for all j. (3.6)

Because we wish to focus on ξn, we shall set t0n = ξn, and order the {tjn} around ξn, treated as
the origin:

· · · < t−2,n < t−1,n < t0n = ξn < t1n < · · · . (3.7)
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The sequence of {tjn} consists of either n − 1 or n points, so terminates, and it is possible that
all tjn lie to the left or right of ξn. However in the limiting situations we treat, where ξn lies in
the interior of the support, this will not occur. It is known [21, p. 19, proof of Theorem 3.1] that
when (pn,npn,n−1)(ξn) �= 0, then one zero of ψn(ξn, t) lies in (xjn, xj−1,n) for each j , and the
remaining zero lies outside [xnn, x1n].

Throughout I and J will be the intervals in Theorem 1.2. Recall that

μ′
n = hW 2n

n in I.

We shall often abbreviate the equilibrium measure νWn of Wn as νn. In addition to I and J , we
shall need compact intervals J1 and J2 such that

I o ⊃ J2 and J o
2 ⊃ J1 and J o

1 ⊃ J. (3.8)

We assume that our hypotheses (a) and (b) in Theorem 1.2 hold in the following more detailed
form:

0 < ν′
n(x) � C1 for n � 1 and x ∈ J2; (3.9){

Q′
n

}
are uniformly bounded in J2. (3.10)

For each fixed a > 0,

sup
t∈J2, |h|�a

∣∣∣∣Q′
n(t) − Q′

n

(
t + h

n

)∣∣∣∣ → 0 as n → ∞. (3.11)

Of course, this is the condition (1.12), which is weaker than the equicontinuity assumed in The-
orem 1.2(b), but is all we shall use in our proofs.

For the given sequence {ξn} in J , we shall define for n � 1,

fn(a, b) =
Kn(ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)
)

Kn(ξn, ξn)
eΨ (ξn,n)(a+b), (3.12)

where

Ψ (ξn,n) = − n

K̃n(ξn, ξn)
Q′

n(ξn). (3.13)

The zeros of

fn(0, t) =
Kn(ξn, ξn + t

K̃n(ξn,ξn)
)

Kn(ξn, ξn)
eΨ (ξn,n)t

will be denoted by {ρjn}j �=0. Thus, recalling (3.5) and (3.6), if tjn = tjn(ξn), we have

ρjn = K̃n(ξn, ξn)(tjn − ξn).
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We also set, corresponding to t0n = ξn,

ρ0n = 0.

For an appropriate subsequence S of integers, we shall let

f (a, b) = lim
n→∞, n∈S

fn(a, b). (3.14)

The zeros of f (0, ·) will be denoted by {ρj }j �=0, and we set ρ0 = 0. Our ordering of zeros is

· · · � ρ−2 � ρ−1 < ρ0 = 0 < ρ1 � ρ2 � · · · .
We shall denote the (exponential) type of f (a, ·) by σa—it will be defined shortly. We shall
show that σa is independent of a, and then just use σ to denote the type. Initially, this type will
be associated with the specific subsequence S .

We next review some theory of entire functions of exponential type. Most of this can be found
in the elegant series of lectures of B.Ya. Levin [30]. Recall that if g is entire of order 1, then its
exponential type σ is

σ = lim sup
r→∞

max|z|=r log|g(z)|
r

. (3.15)

We say that an entire function g belongs to the Cartwright class and write g ∈ C if it is of
exponential type and

∞∫
−∞

log+ |g(t)|
1 + t2

dt < ∞. (3.16)

Here log+ s = max{0, log s}.
We let n(g, r) denote the number of zeros of g in the ball center 0, radius r , counting multi-

plicity. It is known [26, p. 66], [30, Theorem 1, p. 127] that for g ∈ C that is real along the real
axis,

lim
r→∞

n(g, r)

2r
= σ

π
. (3.17)

When f is entire of exponential type � σ and bounded along the real axis, we have [30, p. 38,
Theorem 3]

∣∣f (z)
∣∣ � eσ |Im z|‖f ‖L∞(R), z ∈ C. (3.18)

When g is entire of exponential type σ and g ∈ L2(R), we write, as did B.Ya. Levin, g ∈ L2
σ .

Here, we have instead of the last inequality [30, p. 149]

∣∣g(z)
∣∣ �

(
2

)1/2

eσ(|Im z|+1)‖g‖L2(R), z ∈ C. (3.19)

π
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An important identity is the reproducing kernel identity [49, p. 95], [24, (6.75), p. 58]

g(x) =
∞∫

−∞
g(t)

sinσ(x − t)

π(x − t)
dt, x ∈ R, (3.20)

when g ∈ L2
σ . We shall also use [23, p. 414, No. 3.741.3]

∞∫
−∞

(
sinπs

πs

)2

ds = 1. (3.21)

Of course this integral may be deduced from (3.20) by choosing σ = π, g(t) = sinπt
πt

and x = 0.

4. Normality

We start by bounding the growth of weighted polynomials in the complex plane. Recall our
assumption from Theorem 1.2 on the equilibrium measure νWn of Wn restricted to I , which we
abbreviate as νn. For some C > 0, and some J2 satisfying (3.8),

0 < ν′
n(x) � C, n � 1, x ∈ J2. (4.1)

Also, by definition,

∫
I

dνn = 1, n � 1. (4.2)

Inasmuch as νn is the equilibrium measure for the continuous function Wn on I , we have then
supp[νn] ⊂ I and [45, Lemma 2.2, p. 36]

V νn(x) + Qn(x) = cn on supp[νn]. (4.3)

Here cn is a characteristic constant, called the equilibrium constant. Moreover we have equality
in (4.3) for all x ∈ J2, since J2 ⊂ supp[νn], as (4.1) shows.

Lemma 4.1. There exists C2 such that for n � 1, for polynomials Pn of degree � n, for x ∈ J1
and a real, we have

∣∣∣∣Pn

(
x + i

a

n

)∣∣∣∣Wn
n (x) � eC2|a|∥∥PWn

n

∥∥
L∞(I )

. (4.4)

Proof. It is an easy consequence of the maximum principle for subharmonic functions [45, The-
orem 2.1, p. 153] that for z ∈ C\I,

∣∣Pn(z)
∣∣en[V νn (z)−cn] �

∥∥Pne
n[V νn−cn]∥∥

L∞(I )
= ∥∥PWn

n

∥∥
L∞(I )

.
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Then, using (4.3),

∣∣∣∣Pn

(
x + i

a

n

)∣∣∣∣Wn
n (x) � en[V νn (x)−V νn (x+i a

n
)]∥∥PWn

n

∥∥
L∞(I )

. (4.5)

Here, for x ∈ J1,

V νn(x) − V νn

(
x + i

a

n

)

= 1

2

∫
I

log

(
1 +

(
a

n(x − t)

)2)
dνn(t)

� C1

∫
J2

log

(
1 +

( |a|
n(x − t)

)2)
dt + log

(
1 +

( |a|
ndist(J1, I\J2)

)2) ∫
I\J2

dνn(t)

� C1
|a|
n

∞∫
−∞

log

(
1 + 1

s2

)
ds + C3

( |a|
ndist(J1, I\J2)

)

� C2
|a|
n

.

Here we used (4.1) and (4.2), and made the substitution x − t = s|a|
n

. We also used the inequality
log(1 + x2) � C|x|. Now the result follows from (4.5). �

Next, we prove

Lemma 4.2.

(a) Uniformly for a in compact subsets of the real line, and ξ ∈ J2,

μ′
n(ξ + a

K̃n(ξ,ξ)
)

μ′
n(ξ)

=
(hW 2n

n )(ξ + a

K̃n(ξ,ξ)
)

(hW 2n
n )(ξ)

= exp
(
2Ψ (ξ,n)a + o(1)

)
, (4.6)

where, as in (3.13), Ψ (ξ,n) = − n

K̃n(ξ,ξ)
Q′

n(ξ).

(b)

sup
ξ∈J2,n�1

∣∣Ψ (ξ,n)
∣∣ < ∞. (4.7)

Proof. Since h is positive and continuous in compact I , we have, uniformly for a in compact
subsets of the real line,

h(ξ + a

K̃n(ξ,ξ)
)

= 1 + o(1).

h(ξ)
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We have for some ζ between ξ and ξ + a

K̃n(ξ,ξ)
,

W 2n
n (ξ + a

K̃n(ξ,ξ)
)

W 2n
n (ξ)

= exp

(
−2nQ′

n(ζ )
a

K̃n(ξ, ξ)

)

= exp
([

2Ψ (ξ,n) + δ
]
a
)
,

where

δ = 2n

K̃n(ξ, ξ)

(
Q′

n(ξ) − Q′
n(ζ )

)
.

Recalling that K̃n is defined by (1.2), and that dμn is defined by (1.8), while h ∼ 1 in I , we may
reformulate (1.10) as

K̃n(ξ, ξ) ∼ n uniformly in n and ξ ∈ I. (4.8)

As |ζ − ξ | � C
n
, our hypothesis (3.11) gives, uniformly in ξ ,

δ = 2n

K̃n(ξ, ξ)

(
Q′

n(ξ) − Q′
n(ζ )

)
= o(1).

Finally (4.8) and the boundedness of {Q′
n} give (4.7). �

Next, for the given sequence {ξn} in J, we let

fn(a, b) =
Kn(ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)
)

Kn(ξn, ξn)
eΨ (ξn,n)(a+b), (4.9)

for all complex a and b. Note that fn(a, b) is actually an entire function of exponential type in
each variable a and b. Moreover, by Lemma 4.2, and (4.8), uniformly for a, b in compact subsets
of the real line,

fn(a, b) =
K̃n(ξn + a

K̃n(ξn,ξn)
, ξn + b

K̃n(ξn,ξn)
)

K̃n(ξn, ξn)
+ o(1). (4.10)

Lemma 4.3.

(a) {fn(u, v)}∞n=1 is uniformly bounded for u,v in compact subsets of the plane.
(b) If f (u, v) is the locally uniform limit of some subsequence {fn(u, v)}n∈S of {fn(u, v)}∞n=1,

then for each fixed real number u, f (u, ·) is entire of exponential type. Moreover, for some
C1 and C2 independent of u,v ∈ C,

∣∣f (u, v)
∣∣ � C1e

C2(|Imu|+|Imv|). (4.11)

(c) For each fixed real number u, f (u, ·) has only real zeros.
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Proof. (a) By our bound (4.8) and by Cauchy–Schwarz, we have

1

n

∣∣Kn(ξ, t)
∣∣Wn

n (ξ)Wn
n (t) �

(
1

n
Kn(ξ, ξ)W 2n

n (ξ)

)1/2(1

n
Kn(t, t)W

2n
n (t)

)1/2

� C

for ξ, t ∈ I and n � 1. By Lemma 4.1, applied separately in each variable, we then have for
ξ, t ∈ J1, and real a, b,

1

n

∣∣∣∣Kn

(
ξ + i

a

n
, t + i

b

n

)∣∣∣∣Wn
n (ξ)Wn

n (t) � CeC2(|a|+|b|). (4.12)

Because (3.8) is the only restriction on J1 and J2, we may relabel, and assume that (4.12) holds
for ξ, t ∈ J2, and real a, b. Let A > 0. Note that for n � n0(A), for ξ ∈ J1, and complex u,v

with |u|, |v| � A, we may then also recast (4.12) in the form

1

n

∣∣∣∣Kn

(
ξ + u

n
, ξ + v

n

)∣∣∣∣Wn
n

(
ξ + Reu

n

)
Wn

n

(
ξ + Rev

n

)
� CeC2(|Imu|+|Imv|). (4.13)

Here C1 and C2 do not depend on A. The threshold n0 is designed to ensure that ξ + Reu
n

, ξ +
Rev
n

∈ J2. Next, recall that

K̃n(ξ, ξ) ∼ n,

and by Lemma 4.2(a), uniformly for ξ ∈ J2,

Wn
n (ξ + Reu

K̃n(ξ,ξ)
)

Wn
n (ξ)

= eΨ (ξ,n)Reu+o(1) = ∣∣eΨ (ξ,n)u+o(1)
∣∣.

Thus (4.13) implies

∣∣fn(u, v)
∣∣ � C1e

C2(|Imu|+|Imv|),

for n � n0(A) and |u|, |v| � A, where C1,C2 are independent of n,u, v,A (and of ξ ).
(b) Now {fn(u, v)}∞n=1 is a normal family of two variables u,v. If f (u, v) is the locally uni-

form limit through the subsequence S of integers, we see that f (u, v) is an entire function in u,v

satisfying for all complex u,v,

∣∣f (u, v)
∣∣ � CeC2(|Imu|+|Imv|).

In particular, f (u, v) is bounded for u,v ∈ R, and is an entire function of exponential type in
each variable.

(c) It is shown in [21, p. 19, proof of Theorem 3.1], that for each real ξn, Kn(ξn, t) has only
real simple zeros. Hence for real u, fn(u, v) has only real zeros as a function of v. Hurwitz’s
theorem shows that the same is true of f (u, v). �
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Lemma 4.4.

(a) Uniformly for u ∈ R,

f (u,u) ∼ 1. (4.14)

(b) For all a ∈ C,

∞∫
−∞

∣∣f (a, s)
∣∣2

ds � f (a, ā). (4.15)

(c) For each a ∈ R, f (a, ·) has infinitely many real zeros.

Proof. (a) We have uniformly for a in compact subsets of the real line,

Kn(ξn + a

K̃n(ξ,ξ)
, ξn + a

K̃n(ξ,ξ)
)

Kn(ξn, ξn)
eΨ (ξn,n)(2a)

=
K̃n(ξn + a

K̃n(ξ,ξ)
, ξn + a

K̃n(ξ,ξ)
)

K̃n(ξn, ξn)

(
1 + o(1)

)
� C1

(
1 + o(1)

)
,

where C1 is independent of the compact set in which a lies, and comes only from the upper
and lower bounds on the Christoffel functions implicit in (4.8). From this we deduce that for all
real a,

f (a, a) � C1.

The corresponding upper bound is similar.
(b) We use the identity

Kn(s, s̄) =
∫ ∣∣Kn(s, t)

∣∣2
dμn(t),

valid for all complex s. Let a ∈ C, and

s = ξn + a

K̃n(ξn, ξn)
.

Let r > 0. We drop most of the integral and make the substitution t = ξn + y

K̃n(ξn,ξn)
:

1 �

ξn+ r

K̃n(ξn,ξn)∫
ξn− r

K̃n(ξn,ξn)

|Kn(s, t)|2
Kn(s, s̄)

μ′
n(t) dt

=
r∫ ∣∣∣∣Kn(s, ξn + y

K̃n(ξn,ξn)
)

Kn(ξn, ξn)

∣∣∣∣
2
Kn(ξn, ξn)

Kn(s, s̄)

μ′
n(ξn + y

K̃n(ξn,ξn)
)

μ′
n(ξn)

dy
−r
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=
r∫

−r

|fn(a, y)|2
fn(a, ā)

∣∣e−Ψ (ξn,n)(2a+2y−a−ā)
∣∣μ′

n(ξn + y

K̃n(ξn,ξn)
)

μ′
n(ξn)

dy

=
r∫

−r

|fn(a, y)|2
fn(a, ā)

(
1 + o(1)

)
dy.

Here we have used Lemma 4.2(a). As n → ∞ through a subsequence, the last right-hand side
has lim inf at least

r∫
−r

|f (a, y)|2
f (a, ā)

dy,

by Fatou’s Lemma. Finally, let r → ∞.
(c) We note first that f (a, ·) is non-constant, and moreover, is not a polynomial. Indeed, it

belongs to L2(R) and satisfies f (a, a) �= 0. It also lies in the Cartwright class, because of (a),
and is real along the real axis. We can then write [30, p. 130]

f (a, z + a) = f (a, a) lim
R→∞

∏
b: |b|<R and f (a,b+a)=0

(
1 − z

b

)
. �

5. Proof of Theorem 1.2

It follows from Lemma 4.3(b) that for each real a, f (a, ·) is entire of exponential type σa ,
say. We first show that σa is independent of a. We note that σa does possibly depend on {ξn} and
the subsequence S .

Lemma 5.1. For a ∈ R, let n(f (a, ·), r) denote the number of zeros of f (a, ·) in the ball center 0,
radius r , counting multiplicity. Then for any real a, we have as r → ∞,

n
(
f (a, ·), r) − n

(
f (0, ·), r) = O(1). (5.1)

Consequently,

σa = σ0 = σ, say. (5.2)

Moreover, for all a ∈ R, f (a, ·) ∈ L2
σ .

Proof. Let Kn denote the reproducing kernel for μn. We use the following basic property of

ψn(ξ, t) =
(

γn,n−1

γn,n

)−1

Kn(ξ, t)(ξ − t) = pn,n(ξ)pn,n−1(t) − pn,n−1(ξ)pn,n(t).

For real ξ , with pn,n−1(ξ)pn,n(ξ) �= 0, ψn(ξ, t) has, as a function of t , simple zeros in each of
the intervals
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(xnn, xn−1,n), (xn−1,n, xn−2,n), . . . , (x2n, x1n).

There is a single remaining zero, and this lies outside [xnn, x1n]. When pn,n−1(ξ)pn,n(ξ) = 0,
ψn(ξ, t) is a multiple of pn,n or pn,n−1. As the zeros of the latter polynomials interlace, we see
that in this case, there is a simple zero in each of the intervals

[xnn, xn−1,n), [xn−1,n, xn−2,n), . . . , [x2n, x1n).

For all this, see [21, proof of Theorem 3.1, p. 19]. It follows that whatever ξ is, the number j of
zeros of Kn(ξ, t) in [xmn, xkn] satisfies∣∣j − (m − k)

∣∣ � 1.

Consider now Kn(ξn + a

K̃n(ξn,ξn)
, ξn + t

K̃n(ξn,ξn)
) and Kn(ξn, ξn + t

K̃n(ξn,ξn)
) as a function of t . In

any fixed interval [−r, r], it follows that the difference between the number of zeros of these two
functions is at most 2. Hence the same is true of fn(a, ·) and fn(0, ·). Letting n → ∞ through S ,
we see that (5.1) holds. Then (5.2) follows from (3.17). Finally, f (a, ·) ∈ L2(R), by (4.15), so
also f (a, ·) ∈ L2

σ . �
In the sequel, σ denotes the type of f (a, ·) for all real a.

Lemma 5.2.

(a) For all a ∈ R,

∞∫
−∞

(
f (a, s)

f (a, a)
− sinσ(a − s)

σ (a − s)

)2

ds � 1

f (a, a)
− π

σ
. (5.3)

(b)

σ � π sup
a∈R

f (a, a) � π. (5.4)

Proof. (a) The left-hand side in (5.3) equals

1

f (a, a)2

∞∫
−∞

f (a, s)2 ds − 2

f (a, a)

∞∫
−∞

f (a, s)
sinσ(a − s)

σ (a − s)
ds +

∞∫
−∞

(
sinσ(a − s)

σ (a − s)

)2

ds

� 1

f (a, a)
− 2

π

σ
+ π

σ
,

by Lemma 4.4(b), and the identities (3.20) and (3.21). Recall that f (a, ·) ∈ L2
σ , so (3.20) is

applicable.
(b) Since the left-hand side of (5.3) is non-negative, we obtain for all real a,

σ � πf (a, a).

As f (0,0) = 1, we then obtain (5.4). �
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Recall from Section 3, the Gauss type quadrature formula, with nodes {tjn} = {tjn(ξn)} in-
cluding the point ξn:

∑
j

λn(tjn)P (tjn) =
∫

P(t) dμ(t),

for all polynomials P of degree � 2n − 3. Recall that we order the nodes as

· · · < t−2,n < t−1,n < t0,n = ξn < t1,n < t2,n < · · ·

and write

tjn = ξn + ρjn

K̃n(ξn, ξn)
. (5.5)

We need a Markov–Stieltjes inequality:

Lemma 5.3. Let 1 � k < � � n. Let B ∈ R. Then

�−1∑
j=k+1

λn(tjn)e
−Btjn �

t�n∫
tkn

e−Bt dμn(t) �
�∑

j=k

λn(tjn)e
−Btjn . (5.6)

Proof. We begin by assuming that

∫
eAt dμn(t) (5.7)

is finite for all real A. Now let B � 0. By the classical Posse–Markov–Stieltjes inequality [21,
(5.10), p. 33],

∑
j : tjn<t�n

λn(tjn)e
Btjn �

t�n∫
−∞

eBt dμn(t) �
∑

j : tjn�t�n

λn(tjn)e
Btjn .

A similar inequality holds if B < 0. Indeed, consider the reflected measure dμ−
n (t) = dμn(−t).

The quadrature points for dμ−
n including −ξn will be {−tjn}. Let us assume that there are n

quadrature points {tjn} (the case of n−1 points requires trivial changes). Applying the inequality
above to μ−

n , making a substitution, and then taking account of our ordering, gives, with B > 0,

∑
j : tjn>tn+1−�,n

λn(tjn)e
−Btjn �

∞∫
tn+1−�,n

e−Bt dμn(t) �
∑

j : tjn�tn+1−�,n

λn(tjn)e
−Btjn .
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Setting k = n + 1 − � gives

∑
j : tjn>tkn

λn(tjn)e
−Btjn �

∞∫
tkn

e−Bt dμn(t) �
∑

j : tjn�tkn

λn(tjn)e
−Btjn .

Now let � > k and subtract this last inequality for k and �: for B > 0,

�−1∑
j=k+1

λn(tjn)e
−Btjn �

t�n∫
tkn

e−Bt dμn(t) �
�∑

j=k

λn(tjn)e
−Btjn .

For B � 0, the same inequality follows from the first Markov–Stieltjes inequality above. Thus
(5.6) is valid for all real B , provided we assume the convergence of all the integrals in (5.7). We
now drop that condition by a limiting argument. Throughout this argument, n, k, � are fixed. Let
ε > 0 and

dωε(t) = e−εt2
dμn(t).

Then the analogue of (5.7) holds for ωε and so the analogue of (5.6) holds for ωε . Let us denote
the quadrature points and Christoffel numbers for ωε respectively by {tjnε} and {λnε(tjnε)}. We
must show that as ε → 0+,

tjnε → tjn and λnε(tjnε) → λn(tjn).

To see that this is indeed the case, we note that for each 0 � j � 2n,

lim
ε→0+

∫
tj dωε(t) =

∫
tj dμn(t).

Hence from the well-known determinantal representation for orthogonal polynomials involving
power moments [21, (1.6), p. 57], [46, p. 15], the orthogonal polynomials for ωε of degree k,
0 � k � n, converge to those of μn as ε → 0+. �
Lemma 5.4.

(a) f (0, z) has zeros {ρj }j �=0, with

· · · � ρ−2 � ρ−1 < 0 < ρ1 � ρ2 � · · · (5.8)

and for j = ±1,±2,±3, . . . ,

ρj = lim
n→∞, n∈S

ρjn.

There are no other zeros of f . We also set ρ0 = 0.
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(b) Given � > k, we have

�−1∑
j=k+1

1

f (ρj , ρj )
� ρ� − ρk �

�∑
j=k

1

f (ρj , ρj )
. (5.9)

(c) The zeros {ρj } are at most double zeros of f (0, z), and there exist C1,C2 such that for all j ,

C1 � ρj − ρj−2 � C2. (5.10)

The constants are independent of j . Moreover, zeros are repeated in the sequence {ρj } according
to their multiplicity.

Proof. (a) We know that fn(0, s) = [Kn(ξn, ξn + s

K̃n(ξn,ξn)
)/K(ξn, ξn)]esΨ (ξn,n) has simple zeros

at s = ρjn, j �= 0, and no other zeros. Moreover as n → ∞ through S , this sequence converges
to f (0, z), uniformly for z in compact sets. As f (0,0) = 1, the function f (0, z) is not identically
zero. In particular, as n → ∞ through our subsequence S , we obtain that necessarily ρjn → ρj ,
the j th (possibly multiple) zero of f (0, z). There can be no other zeros because of Hurwitz’s
theorem.

(b) We use the Markov–Stieltjes inequality (5.6) above, with

B = K̃n(ξn, ξn)2Ψ (ξn,n).

Recall that Ψ (ξn,n) is defined by (3.13). From (5.5), we deduce that for all j ,

Btjn = Bξn + ρjn2Ψ (ξn,n).

We multiply (5.6) by Kn(ξn, ξn) and cancel e−Bξn from both sides. We also make the substitution
t = ξn + y

K̃n(ξn,ξn)
⇒ Bt = Bξn + 2Ψ (ξn,n)y in the integral. We deduce that

�−1∑
j=k+1

1

fn(ρjn, ρjn)
�

ρ�,n∫
ρkn

e−2Ψ (ξn,n)y
μ′

n(ξn + y

K̃n(ξn,ξn)
)

μ′
n(ξn)

dy

�
�∑

j=k

1

fn(ρjn, ρjn)
. (5.11)

Here by Lemma 4.2, and (a) of this lemma, for fixed � and k,

ρ�n∫
ρkn

e−2Ψ (ξ,n)y
μ′

n(ξn + y

K̃n(ξn,ξn)
)

μ′
n(ξn)

dy = ρ� − ρk + o(1),

as n → ∞ through S . Thus letting n → ∞ through S in (5.11), and taking account of the uniform
convergence of fn(·,·) to f (·,·), gives (5.9).
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(c) From (b),

1

f (ρk+1, ρk+1)
� ρk+2 − ρk �

k+2∑
j=k

1

f (ρj , ρj )
.

Since f (t, t) is bounded above and below by positive constants for real t , (5.10) follows. Of
course, we also deduce ρj+2 �= ρj , so there are at most double zeros. Since the {ρjn} are sim-
ple zeros of fn, it follows that ρk can only be a double zero of f (0, ·) if it appears twice in
the {ρj }. �

Next, we deduce:

Lemma 5.5. Let

Λ = sup
x∈R

f (x, x). (5.12)

For each real a, f (a, ·) is entire of exponential type σ = πΛ.

Proof. Because of Lemma 5.1, it suffices to show that f (0, ·) is entire of exponential type
σ = Λπ . To do this, we use (b) of the previous lemma. We have for each � > k,

�−1∑
j=k+1

1

f (ρj , ρj )
� ρ� − ρk. (5.13)

Since f (ρj , ρj ) � Λ for each j , we obtain

� − k − 1 � Λ(ρ� − ρk). (5.14)

Next, recall that {ρj }j �=0 are all the zeros of f . Moreover, each zero is at most a double zero, and
is repeated in the sequence {ρj } if it is a double zero. Thus the total number of zeros of f (0, ·) in
[ρk,ρ�] is �− k + 1 or �− k + 2 or �− k + 3 if 0 does not belong to [k, �], and �− k or �− k + 1
or � − k + 2 if it does. Thus the total number of zeros of f (0, ·) in [ρk,ρ�], is at most

(� − k − 1) + 4 � Λ(ρ� − ρk) + 4.

Recall that n(f (0, ·), r) denotes the number of zeros of f (0, ·) in [−r, r] (or equivalently in the
ball center 0, radius r). In view of (5.10), we can choose ρk a bounded distance from r , and ρ� a
bounded distance from −r . We obtain that n(f (0, ·), r) is at most the number of zeros in [ρk,ρ�]
plus O(1), and hence at most Λ(ρ� − ρk) + O(1). So

n
(
f (0, ·), r) � 2Λr + O(1).

Then by (3.17),

σ

π
= lim

r→∞
n(f (0, ·), r)

2r
� Λ.

Together with our lower bound σ � πΛ from Lemma 5.2(b), we obtain the result. �
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Proof of Theorem 1.2. Since K̃n(ξn, ξn) ∼ n, our hypothesis (1.11), with its uniformity in a,
implies also that for all real a,

lim
n→∞

K̃n(ξn + a

K̃n(ξn,ξn)
, ξn + a

K̃n(ξn,ξn)
)

K̃n(ξn, ξn)
= 1,

and hence (cf. (4.10)), for all real a,

lim
n→∞fn(a, a) = 1.

So

f (a, a) = 1 for all real a.

Hence

Λ = sup
x∈R

f (x, x) = 1.

By Lemma 5.5, for each fixed a, f (a, ·) is entire of exponential type σ = π . By Lemma 5.2(a),
we then obtain, for each real a,

∞∫
−∞

(
f (a, s) − sinπ(s − a)

π(s − a)

)2

ds =
∞∫

−∞

(
f (a, s)

f (a, a)
− sinπ(s − a)

π(s − a)

)2

ds = 0.

So for real a and s,

lim
n→∞, n∈S

fn(a, s) = f (a, s) = sinπ(s − a)

π(s − a)
.

By analytic continuation,

lim
n→∞, n∈S

fn(a, b) = sinπ(a − b)

π(a − b)
,

uniformly for a, b in compact subsets of the plane. (Recall that the left-hand side is uniformly
bounded for a, b in such sets.) As the limit function is independent of the subsequence S , we
obtain

lim
n→∞fn(a, b) = sinπ(a − b)

π(a − b)
,

again with the appropriate uniformity in a, b. Finally, using (4.10) again, and as {ξn} can be any
sequence in J , we obtain the conclusion (1.7) of Theorem 1.2, uniformly for ξ ∈ J , as well as
the limit (1.13). �
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6. Proof of Theorem 1.1

In this section, we show that the hypotheses of Theorem 1.1 imply those of Theorem 1.2.

Proof of Theorem 1.1. Let I be an open interval containing J in which νW is absolutely con-
tinuous while ν′

W and Q′ are continuous and ν′
W > 0. In particular, this implies that I lies in

supp[νW ]. For n � 1, we let

Wn = W|Ī .

It is known [45, Theorem 1.6(e), p. 196] that the equilibrium measure νn for Wn satisfies

νn = ν̂W ,

where ν̂W is the balayage measure of νW onto I . This balayage measure is obtained by sweeping
out (νW )|R\I onto I , and adding it to (νW )|I . Thus

ν̂W = (νW )|I + ̂(νW |R\I ).

Moreover, ̂(νW |R\I ) is absolutely continuous and its density is infinitely differentiable in the
interior of I [45, (4.47), p. 122], [52, p. 9, (2.28)]. Hence νn = ν̂W is absolutely continuous in I ,
and its density ν′

n is bounded in J , and of course this holds uniformly in n. Since Q′
n = Q′,

our hypothesis that Q′ is continuous in J shows that {Q′
n} are equicontinuous in J . Totik [50,

Theorem 1.2, p. 326] proved that

lim
n→∞n−1λ−1

n

(
hW 2n, x

)
hW 2n(x) = ν′

W(x), (6.1)

uniformly in a neighborhood of J , say in I. It follows that uniformly in n and x ∈ I,

C1 � λ−1
n (x)W 2n(x)/n � C2.

Finally, the asymptotic (6.1), and the continuity of ν′
W also give

lim
n→∞

λn(hW 2n, ξ + a
n
)

λn(hW 2n, ξ)

(hW 2n)(ξ)

(hW 2n)(ξ + a
n
)

= 1,

uniformly for a in compact subsets of the real line, and ξ in a neighborhood of J . As h is
continuous (and uniformly so in the region desired), (1.11) follows. So we have verified all the
hypotheses of Theorem 1.2, and that theorem gives the result. �
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7. Fixed exponential weights

In [34], the authors substituted first order asymptotics for orthogonal polynomials for fixed
exponential weights into the Christoffel–Darboux formula, and used a Markov–Bernstein in-
equality to control the tail. This led to universality in the bulk for a class of exponential weights
considered in [31].

In this section, we show how universality for fixed exponential weights can be deduced from
Theorem 1.2. One definite advantage over the method of [34] is that one does not need pointwise
asymptotics for orthogonal polynomials, so one may treat a more general class of weights. We
begin by recalling the result of [34].

Definition 7.1. Let W = e−Q, where Q : R → [0,∞) satisfies the following conditions:

(a) Q′ is continuous in R and Q(0) = 0.
(b) Q′′ exists and is positive in R\{0}.
(c)

lim|t |→∞Q(t) = ∞.

(d) The function

T (t) = tQ′(t)
Q(t)

, t �= 0,

is quasi-increasing in (0,∞), in the sense that for some C > 0,

0 < x < y ⇒ T (x) � CT (y).

We assume, with an analogous definition, that T is quasi-decreasing in (−∞,0). In addition,
we assume that for some Λ > 1,

T (t) � Λ in R\{0}.

(e) There exists C1 > 0 such that

Q′′(x)

|Q′(x)| � C1
Q′(x)

Q(x)
a.e. x ∈ R\{0}.

Then we write W ∈ F(C2).

Examples of weights in this class are W = exp(−Q), where

Q(x) =
{

Axα, x ∈ [0,∞),

B|x|β, x ∈ (−∞,0),
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where α,β > 1 and A,B > 0. More generally, if expk = exp(exp(· · · exp( ))) denotes the kth
iterated exponential, we may take

Q(x) =
{

expk(Axα) − expk(0), x ∈ [0,∞),

exp�(B|x|β) − exp�(0), x ∈ (−∞,0),

where k, � � 1, α,β > 1.
A key descriptive role is played by the Mhaskar–Rakhmanov–Saff numbers

a−n < 0 < an,

defined for n � 1 by the equations

n = 1

π

an∫
a−n

xQ′(x)√
(x − a−n)(an − x)

dx; (7.1)

0 = 1

π

an∫
a−n

Q′(x)√
(x − a−n)(an − x)

dx. (7.2)

In the case where Q is even, a−n = −an. The existence and uniqueness of these numbers is es-
tablished in the monographs [31,42,45], but goes back to earlier work of Mhaskar, Rakhmanov,
and Saff. On [a−n, an], the orthonormal polynomials pn(W

2, x) behave much like Szegő poly-
nomials on [−1,1].

We also define,

βn = 1

2
(an + a−n) and δn = 1

2

(
an + |a−n|

)
, (7.3)

which are respectively the center, and half-length of the Mhaskar–Rakhmanov–Saff interval

Δn = [a−n, an]. (7.4)

The linear transformation

Ln(x) = x − βn

δn

(7.5)

maps Δn onto [−1,1]. Its inverse

L[−1]
n (u) = βn + uδn

maps [−1,1] onto Δn. For 0 < ε < 1, we let

Jn(ε) = L[−1]
n [−1 + ε,1 − ε] = [a−n + εδn, an − εδn]. (7.6)
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We let pn(W
2, x) denote the nth orthonormal polynomial for W 2, so that

∫
pn

(
W 2, x

)
pm

(
W 2, x

)
W 2(x) dx = δmn.

Moreover, we let

Kn

(
W 2, x, t

) =
n−1∑
j=0

pj

(
W 2, x

)
pj

(
W 2, t

)

and

K̃n

(
W 2, x, t

) = W(x)W(t)Kn

(
W 2, x, t

)
.

Thus, in this section, the parameter W 2 inside pn or Kn is used to distinguish these fixed weight
quantities from the corresponding quantities for the varying weights W 2n

n .
The first result of [34] was:

Theorem 7.2. Let W = exp(−Q) ∈ F(C2). Let 0 < ε < 1. Then uniformly for a, b in compact
subsets of the real line, and x ∈ Jn(ε), we have as n → ∞,

lim
n→∞

K̃n(W
2, x + a

K̃n(W 2,x,x)
, x + b

K̃n(W 2,x,x)
)

K̃n(W 2, x, x)
= sinπ(b − a)

π(b − a)
. (7.7)

In particular, if W is even, this holds uniformly for |x| � (1 − ε)an.

In [34], we also established universality for weights of the form hW 2, when h does not grow
or decay too rapidly at ±∞.

In this section, we shall deduce universality for a more general class of weights than in Theo-
rem 7.2. Our class is [31, pp. 10–11]:

Definition 7.3. Let I = (c, d) be an open interval containing 0 in its interior. Let W = exp(−Q),
where Q : I → [0,∞) satisfies the following properties:

(a) Q′ is continuous in I and Q(0) = 0.
(b) Q′ is non-decreasing in I .

(c)

lim
t→c+Q(t) = lim

t→d−Q(t) = ∞. (7.8)

(d) The function

T (t) = tQ′(t)
, t �= 0,
Q(t)
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is quasi-increasing in (0, d), and quasi-decreasing in (c,0). In addition, we assume that for
some Λ > 1,

T (t) � Λ in I\{0}.

(e) There exists ε0 ∈ (0,1) such that for y ∈ I\{0},

T (y) ∼ T

(
y

[
1 − ε0

T (y)

])
.

(f) For every ε > 0, there exists δ > 0 such that for all x ∈ I\{0},

x+ δ|x|
T (x)∫

x− δ|x|
T (x)

Q′(s) − Q′(x)

s − x
ds � ε

∣∣Q′(x)
∣∣. (7.9)

Then we write W ∈F (dini).

Note that [34, p. 13] F(C2) ⊂ F (dini). The term dini refers to the Dini type condition in (7.9).
In particular, Definition 7.3 does not assume pointwise estimates for Q′′. We shall deduce the
following result from Theorem 1.2:

Theorem 7.4. Let W = exp(−Q) ∈ F (dini). Let 0 < ε < 1. Then uniformly for a, b in compact
subsets of the real line, and x ∈ Jn(ε), we have as n → ∞,

lim
n→∞

K̃n(W
2, x + a

K̃n(W 2,x,x)
, x + b

K̃n(W 2,x,x)
)

K̃n(W 2, x, x)
= sinπ(b − a)

π(b − a)
. (7.10)

In particular, if W is even, this holds uniformly for |x| � (1 − ε)an.

Remarks. (a) Using the techniques of [34, Theorem 1.3], one can extend this to weights of the
form hW 2, where h does not grow or decay too rapidly.

(b) Theorem 7.4 implies asymptotics for spacing of zeros of orthogonal polynomials as
in [33].

We shall apply Theorem 1.2 with

Qn(x) = 1

n
Q

(
L[−1]

n (x)
)
, x ∈ Ln(I); (7.11)

Wn(x) = exp
(−Qn(x)

)
, x ∈ Ln(I); (7.12)

dμn(x) = W 2n
n (x) dx. (7.13)
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Observe that with the notation (7.5),

W 2n
n = W 2 ◦ L[−1]

n . (7.14)

We emphasize that I in this section is used in a different sense to that in Theorem 1.2. There
I was the interval in which all {μn} are absolutely continuous, and in which the Christoffel
functions admitted a uniform bound. Here, to accord with [31], I is the (possibly unbounded)
interval of orthogonality of W 2. We shall fix

0 < ε′ < ε < 1

and let

I ′ = [−1 + ε′,1 − ε′] and J ′ = [−1 + ε,1 − ε]. (7.15)

These intervals will play respectively the roles of I and J of Theorem 1.2. We shall verify the
hypotheses of Theorem 1.2 in a series of lemmas:

Lemma 7.5. Let νn denote the equilibrium measure of Wn|I ′ for n � 1. Let J2 ⊂ (I ′)o. Then {ν′
n}

are positive and uniformly bounded in J2.

Proof. We use estimates for equilibrium densities from [31] together with properties of balayage
measures. The equilibrium measure σn(t) dt for Wn is a measure of total mass n, with support
on the Mhaskar–Rakhmanov–Saff interval Δn = [a−n, an], such that

V σn(x) + Q(x) = Cn, x ∈ Δn.

Here Cn is an equilibrium constant. The contracted density

σ ∗
n (x) = δn

n
σ
(
L[−1]

n (x)
)

has support on [−1,1] and total mass 1, and has the property that

V σ ∗
n (x) + Qn(x) = C∗

n, x ∈ [−1,1].
Again, C∗

n is an equilibrium constant. For further orientation, see [31, pp. 16–17]. To obtain the
equilibrium measure νn for (Wn)|I ′ , we use Theorem 1.6(e) in [45, p. 196]. We have

dνn(t) = σ̂ ∗
n (t) dt,

where σ̂ ∗
n (t) dt denotes the balayage measure of σ ∗

n (t) dt onto I ′. Moreover, this balayage mea-
sure is obtained by sweeping out (σ ∗

n (t) dt)|[−1,1]\I ′ onto I ′, and adding it to (σ ∗
n (t) dt)|I ′ . Thus

σ̂ ∗
n = (

σ ∗
n

)
|I ′ + ̂(

σ ∗
n |[−1,1]\I ′

)
. (7.16)

Now we apply estimates for σ ∗ from [31, (6.11), Theorem 6.1, p. 146]:
n
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C1

√
1 − t2 < σ ∗

n (t) � C2√
1 − t2

, t ∈ (−1,1), n � 1. (7.17)

There the upper and lower bounds in (7.17) were proved in stronger forms, and for the slightly
larger class of weights F (Dini), which satisfy a less restrictive Dini condition than (7.9). In
particular, then,

0 <
(
σ ∗

n

)
|I ′(t) � C, t ∈ J2, n � 1.

Next, we need the formula [45, (4.47), p. 122], [52, (2.28), p. 9], valid for t ∈ I ′:

̂(
σ ∗

n |[−1,1]\I ′
)
(t) = 1

π
√

(1 − ε′)2 − t2

∫
[−1,1]\I ′

√
s2 − (1 − ε′)2

|t − s| σ ∗
n (s) ds.

Since the interval [−1,1]\I ′ is independent of n, our upper bound (7.17) shows also that

̂(
σ ∗

n |[−1,1]\I ′
)
(t) � C, t ∈ J2, n � 1.

Now (7.16) gives the result. �
Lemma 7.6. Let J2 ⊂ (I ′)o.

(a) {Q′
n}∞n=1 are uniformly bounded in I ′.

(b) For each fixed a > 0,

sup
t∈J2,|h|�a

∣∣∣∣Q′
n(t) − Q′

n

(
t + h

n

)∣∣∣∣ → 0 as n → ∞. (7.18)

Proof. (a) We use the bound [31, (3.40), Lemma 3.8, p. 77]

∣∣Q′(x)
∣∣ � Cn√

δn(an − x)
, x ∈ [0, an).

This readily yields

∣∣Q′(x)
∣∣ � C(ε′) n

δn

, x ∈ [
0,max{an − ε′δn,0}].

A similar bound holds for negative x, and we deduce that

∣∣Q′(x)
∣∣ � C

n

δn

, x ∈ L[−1]
n [−1 + ε′,1 − ε′] = [a−n + ε′δn, an − ε′δn]. (7.19)

Then, recalling (7.11),

∣∣Q′
n(t)

∣∣ = δn ∣∣Q′(L[−1]
n (t)

)∣∣ � C, t ∈ [−1 + ε′,1 − ε′] = I ′.

n
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(b) This is the most technical estimate in this section. We first establish the estimate

T (t)

|t | = |Q′(t)|
Q(t)

= o

(
n

δn

)
, t ∈ [a−n + εδn, an − εδn]\[−η,η]. (7.20)

Here η > 0 is any fixed positive number. Indeed for t ∈ [a−n + εδn, an − εδn]\[a− logn, alogn],
we have by (7.19) and the monotonicity of Q that

T (t)

|t | � C
n

δnQ(a± logn)
= o

(
n

δn

)
,

since Q(a± logn) → ∞ as n → ∞. This latter limit follows from (7.8) and the fact that
alogn → d , a− logn → c as n → ∞ [31, Theorem 2.4(iii), p. 41]. Next, for t ∈ [a− logn, alogn]\
[−η,η], we have that Q is bounded below, so

T (t)

|t | � C
∣∣Q′(a± logn)

∣∣ � C(logn)2 = o

(
n

δn

)
.

Here we used (3.17) in [31, p. 69] and (3.38) in [31, p. 76] for the upper estimate on |Q′(a± logn)|.
Also, if Λ > 1 is as in Definition 7.3, we used the fact that δn increases with n and that [31, (3.30),
Lemma 3.5(c), p. 72]

δn = O
(
n1/Λ

)
.

So (7.20) is established.
Let us now fix small ρ > 0. By (7.9) of Definition 7.3, we can choose α > 0 so small that for

all X ∈ I\{0},

X+ 2α|X|
T (X)∫

X− 2α|X|
T (X)

Q′(s) − Q′(X)

s − X
ds � ρ

∣∣Q′(X)
∣∣. (7.21)

Suppose that a > 0, n � 1 and x, y ∈ I ′ with x < y � x + a
n

. Let

X = L[−1]
n (x) and Y = L[−1]

n (y).

Then

0 � Y − X = δn(y − x) � a
δn

n
.

Consequently for n � n0(a,α), we have, by (7.20), as long as X,Y /∈ [−η,η],

Y − X � α
|X|

. (7.22)

T (X)
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The threshold n0 does not depend on n, x, or y. We use the fact Q′ is monotone increasing, and
the integral

Y+ 1
2 (Y−X)∫
Y

ds

s − X
= log

3

2

to deduce that

Q′
n(y) − Q′

n(x) = δn

n

(
Q′(Y ) − Q′(X)

)

= δn

n log 3
2

Y+ 1
2 (Y−X)∫
Y

Q′(Y ) − Q′(X)

s − X
ds

� δn

n log 3
2

X+2α
|X|

T (X)∫
X

Q′(s) − Q′(X)

s − X
ds

� δn

n log 3
2

ρ
∣∣Q′(X)

∣∣.
In the next to last line, we used (7.22) and the monotonicity of Q′, and in the last line, we
used (7.21). Finally our bound on Q′ from (7.19) gives for n � n0 and x, y ∈ I ′ with x < y �
x + a

n
,

0 < Q′
n(y) − Q′

n(x) � Cρ,

as long as also X,Y /∈ [−η,η]. It is crucial here that C is independent of n,x, y,ρ, so we may
choose ρ as small as we please provided n � n0(ρ). Finally, if X,Y ∈ [−η,η], we can use the
boundedness of Q′ in [−η,η] to deduce that

Q′
n(y) − Q′

n(x) = δn

n

(
Q′(Y ) − Q′(X)

)
� C

δn

n
= o(1).

The case where one of X,Y belongs to [−η,η], and the other does not, may be handled by
considering X,η and Y,η. Thus uniformly for x, y ∈ I ′, with x < y � x + a

n
, we have

Q′
n(y) − Q′

n(x) = o(1).

The range x − a
n

� y � x is similar. So we have (7.18). �
Lemma 7.7.

(a) For some C1,C2 > 0, and for n � 1 and ξ ∈ I ′, we have

C1 � λ−1
n (ξ)W 2n

n (ξ)/n � C2. (7.23)
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(b) Uniformly for a in compact subsets of the real line, and ξ ∈ I ′,

lim
n→∞

λn(ξ + a
n
)

λn(ξ)

W 2n
n (ξ)

W 2n
n (ξ + a

n
)

= 1. (7.24)

Proof. (a) Let 0 < α < 1. By Corollary 1.14 in [31, p. 20], we have uniformly for n � 1 and
x ∈ [a−αn, aαn],

λn

(
W 2, x

) ∼ ϕn(x)W 2(x).

Here

ϕn(x) = |x − a−2n||a2n − x|
n
√[|x − a−n| + |a−n|η−n][|x − an| + anηn] ,

and

η±n =
[
nT (a±n)

√
|a±n|
δn

]−2/3

= o(δn).

If α is close enough to 1, it follows from [31, (3.50), Lemma 3.11, p. 81] that

L[−1]
n (I ′) = L[−1]

n

([−1 + ε′,1 − ε]) ⊂ [a−αn, aαn]. (7.25)

Moreover, for n � 1 and x ∈ [a−n + ε′δn, an − ε′δn] = L
[−1]
n (I ′), we have

ϕn(x) ∼ δn

n
.

Thus for n � 1 and x ∈ L
[−1]
n (I ′),

λn

(
W 2, x

) ∼ δn

n
W 2(x). (7.26)

Next,

λn(ξ) = λn

(
W 2n

n , ξ
)

= inf
deg(P )�n−1

∫
(P 2W 2n

n )(t) dt

P 2(ξ)

= inf
deg(P )�n−1

∫
P 2(t) exp(−2Q ◦ L

[−1]
n (t)) dt

P 2(ξ)

= inf
deg(R)�n−1

∫
R2(s) exp(−2Q(s))δ−1

n ds

R2(L
[−1]
n (ξ))

= δ−1
n λn

(
W 2,L[−1]

n (ξ)
)
. (7.27)

Then (7.23) follows from (7.26).
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(b) Let 0 < α < 1. By Theorem 1.25 in [31, p. 26], we have as n → ∞

λn

(
W 2, x

)
/W 2(x) = σ−1

n (x)
(
1 + o(1)

)
,

uniformly for x ∈ [a−αn, aαn]. Then (7.27) and (7.14) show that uniformly for ξ ∈ I ′,

λn(ξ)/W 2n
n (ξ) = δ−1

n σ−1
n

(
L[−1]

n (ξ)
)(

1 + o(1)
)

= n−1σ ∗−1
n (ξ)

(
1 + o(1)

)
. (7.28)

It is shown in Theorem 6.2 in [31, p. 147] that {σ ∗
n } are equicontinuous in each compact subset

of (−1,1). Then the desired conclusion (7.24) follows from (7.28). To deal with the possibility
that ξ + a

n
lies outside I ′, we use the arbitrariness of ε ∈ (0,1) in (7.15). �

Proof of Theorem 7.4. By Theorem 1.2, we have universality for the varying weights {W 2n
n } at

each ξ ∈ J ′, uniformly with respect to ξ . Indeed, the four hypotheses of Theorem 1.2 were estab-
lished in Lemmas 7.5–7.7 (except that we established (7.18) rather than equicontinuity of {Q′

n}).
As noted after Theorem 1.2, this is what we used in the proof of Theorem 1.2. The orthogonal
polynomials pn(x) = pn(W

2n
n , x) are related to those for W 2 by the identity

pn(x) = pn

(
W 2n

n , x
) = δ

1/2
n pn

(
W 2,L[−1]

n (x)
)
.

This is easily established by a substitution in the orthonormality relation for {pn(x)}. Hence
the reproducing kernel Kn(x, t) = Kn(W

2n
n , x, t) for W 2n

n is related to the reproducing kernel
Kn(W

2, x, t) for W 2 by the identity

Kn(x, t) = δnKn

(
W 2,Ln(x),Ln(t)

)
.

Then the result follows from Theorem 1.2. �
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