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1. Introduction

In the present paper we study a relation between the Lorentzian twistor equation and CR-
geometry. Besides the Dirac operator there is a second important conformally covariant differ-
ential operator acting on the spinor fields I'(S) of a smooth semi-Riemannian spin manifold
(M, g) of dimension n and index k, the so-called twistor operator D. The twistor operator is
defined as the composition of the spinor derivative V* with the projection p onto the kernel of
the Clifford multiplication

DTS) o T(T*M @ S) A T(TM ® S) ~> T(Ker ).

The elements of the kernel of D are called mwistor spinors. A spinor field ¢ is a twistor spinor
if and only if it satisfies the rwistor equation

: I
V§¢+;X~D¢>:0

foreach vector field X, where D is the Dirac operator. Each twistor spinor ¢ defines a conformal
vector field V,, on M by

gV, X) =" "X - ¢, ¢).

Twistor spinors were introduced by R. Penrose in General Relativity (see [32,33,31]). They
are related to Killing vector fields in semi-Riemannian supergeometry (see [1]). In Riemannian
geometry the twistor equation first appeared as an integrability condition for the canonical
almost complex structure of the twistor space of an oriented four-dimensional Riemannian
manifold (see [2]). In the second half of the 80th Lichnerowicz and Friedrich started the
systematic investigation of twistor spinors on Riemannian spin manifolds from the viewpoint
of conformal differential geometry. Nowadays one has a lot of structure results and examples for
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manifolds with twistor spinors in the Riemannian setting (see [28,27,29,10,30, 11,6, 13,15, 14,
20,21,22,23,24]). Crucial results were obtained by studying the properties of the conformal
vector field V,, of a twistor spinor ¢. Twistor operators also turned out to be a usefull tool
in proving sharp eigenvalue estimates for coupled Dirac operators on compact Riemannian
manifolds (see, e.g., [4]).

In opposite to this, there is not much known about solutions of the twistor equation in the
general Lorentzian setting. In 1991 Lewandowski studied local solutions of the twistor equation
on 4-dimensional space-times, [26]. In particular, he proved that a 4-dimensional space-time
admitting a twistor spinor ¢ without zeros and with twisting conformal vector field V,, is locally
conformal equivalent to a Fefferman space. On the other hand, on 4-dimensional Fefferman
spaces there exist local solutions of the twistor equation. The aim of the present paper is the
generalisation of this result.

Fefferman spaces were defined by Fefferman [9] in case of strictly pseudoconvex hyper-
surfaces in C", its definition was extended by Burns, Diederich, Shnider [7], Farris [8] and
Lee [25] to general non-degenerate CR-manifolds. Sparling [34], Lee [25], Graham [12] and
Koch [19] studied geometric properties of Fefferman spaces. A Fefferman space is the total
space of a certain S'-principal bundle over a non-degenerate CR-manifold M equipped with a
semi-Riemannian metric defined by means of the Webster connection. By changing the topo-
logical type of the S!-bundle defining the Fefferman space, we can prove that there are global
solutions of the twistor equation on the (modified) Fefferman spaces of strictly pseudoconvex
spin manifolds of arbitrary dimension. These solutions have very special geometric proper-
ties which are only possible on Fefferman spaces. More exactly, we prove (see Theorem 1,
Theorem 2):

Let (M*"*1 Ty, 6) be a strictly pseudoconvex spin manifold and (VF, hy) its Fefferman
space. Then, on the Lorentzian spin manifold (VF. hg) there exist a non-trivial twistor spinor
¢ such that

1. The canonical vector field Vg of ¢ is a regular isotropic Killing vector field.

2.V - ¢ = 0. In particular, ¢ is a pure or partially pure spinor field.

3. Vy,¢ =icp, c = const € R\ {0}.
On the other hand, if (B, h) is a Lorentzian spin manifold with a non-trivial twistor spinor
satisfying 1.=3., then B is an S'-principal bundle over a stricly pseudoconvex spin manifold
(M, Tyg, 8) and (B, h) is locally isometric to the Fefferman space (VF, hy) of (M, Ty, 0).

In particular, if (M 21+l T, 0) is a compact strictly pseudoconvex spin manifold of constant
Webster scalar curvature, then the Fefferman space («/f Lhe) of (M, Ty, 0) is a (2n + 2)-
dimensional non-Einsteinian Lorentzian spin manifold of constant scalar curvature R and the
twistor spinor ¢ defines eigenspinors of the Dirac operator of (v/F, hy) to the cigenvalues
+1./(2n + 2)R/(2n + 1) with constant length.

After some algebraic prelimeries in Section 2 we introduce in Section 3 the notion of
Lorentzian twistor spinors and explain some of their basic properties. In order to define the
(modified) Fefferman space we recall in Section 4 the basic notions of pseudo-hermitian ge-
ometry. In particular, we explain the properties of the Webster connection of a non-degenerate
pseudo-hermitian manifold, which are important for the spinor calculus on Fefferman spaces.
In Section 5 the Fefferman spaces are defined and in Section 6 we derive a spinor calculus
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for Lorentzian metrics on S'-principal bundles with isotropic fibre over strictly pseudoconvex
spin manifolds. Finally, Section 7 contains the proof of the Theorems 1 and 2 which state the
properties of the solutions of the twistor equation on Fefferman spaces of strictly pseudoconvex
spin manifolds.

2. Algebraic prelimeries

For concrete calculations we will use the following realization of the spinor representa-
tion. Let Cliff, ; be the Clifford algebra of (R", —(-, -};), where (-.-); is the scalar product

XOV)p = =Xy — s — XV + X Vs + - - + X, v, For the canonical basis (e. ..., e.)
of R" one has the following relations in Cliff, 4 : ¢; - ¢; +¢; - ¢, = —2¢;8;;. where
-l j<k
£ =
l. j >k
Denote
i. j<k
=
I, j>k
and

i 0 0 i 1 0 0 —i
v=(0 ) v ce=( ) = |
0 —i i 0 0 1 [ 0

Then an isomorphism
Gom s : Cliff5, , — M(2": C)
is given by the Kronecker product
il =1, 1 EQ --QEQURT®---QT.
Poms(2) =1, E® - QERVRT®---QT. (h
J=1

Let Spiny(n. k) C CIiff, ; be the connected component of the identity of the spin group. The
spinor representation is given by

m

Xnk = ¢rLk’Spin”(n.I<) : Sping(n, k) — GL(C-).

We denote this representation by A, ¢. If n = 2m. Ay, splits into the sum Ay, 4 = A;,,.k b
A5, - Where Ai,i « are the eigenspaces of the endomorphism ¢, (¢ - - - €2, ) to the eigenvalue
={"“* Let us denote by u(8) € C? the vector

1 1
8y = — . 6 ==+l
u(8) ﬁ(—éi)

and let

M((Sl ~~~~~ (Sm):H(51)®"'®Ll(8m), 8/ = £l (2)
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Then

(u(Sl,...,Bm)‘jlj[léj::I:I)

is an orthonormal basis of Azimy , with respect to the standard scalar product of C*".

3. Lorentzian twistor spinors

Let (M™!, g) be a connected space- and time-oriented Lorentzian spin manifold V of di-
mension n > 3 with a fixed time orientation & € I'(T M), g(&,&) = —1. We denote by S the
spinor bundle of (M™', g), by V3 : T(S) = T(TM* ® S) the spinor derivative given by the
Levi-Civita connection of (M™!, g) and by D : I'(S) — I'(S) the Dirac operator on S.

On S there exists an indefinite scalar product {-, -) of index % dim S such that

X, ¥) = (Vie. ¥)+{p, Vy¥) (4)

for all vector fields X and all spinor fields ¢, ¢ € I'(S). Furthermore, there is a positive definite
scalar product (-, -); on S depending on the time orientation £ such that

forallg, ¢ € I'(S)(see[3,Chap. 1.5,3.3.1]).Let p : TM®S — Ker u denote the orthogonal
projection onto the kernel of the Clifford multiplication p (with respect to (-, -)); p is given
by

1 n
PX®Y=XB¢+-) an®su X-g
k=1

where (s, ..., s,) is a orthonormal basis of (M, g) and &, = g(sy, s¢) = £1.

Definition 1. The twistor operator D of (M™!, g) is the operator given by the composition of
the spinor derivative with the projection p

s
DTS > (T*M®S) ~T(TM ® S) 2> T'(Ker ).

Locally, we have

& |
Dy = Zaksk ® (ka(p + ;sk . D(p) .
k=1

Definition 2. A spinor field ¢ € I'(S) is called a rwistor spinor, it Dy = 0.

Let us first recall some properties of twistor spinors which are proved in the same way as in
the Riemannian case.
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Proposition 1. ([6, Th. 1.2]) For a spinor field ¢ € T'(S) the following conditions are equiva-
lent:

1) @ is a twistor spinor;

2) @ satisfies the so-called twistor equation

' 1
V}:'(ﬂ + ”X -Dp =20 (6)

for all vector fields X,
3) for all vector fields X and Y

, > ]
X-V$w+Y-V§¢=;g(X.Y)D<p (7)

holds;
4) there exists a spinor field v € T'(S) such that

¥ =g(X. X)X - Vi (8)
Sor all vector fields X with |g(X. X)| = 1.

Proposition 2. ([6, Th. 1.7]) The twistor operator is conformally covariant: Let § = " g be
a conformally equivalent metric to g and let D be the twistor operator of (M. g). Then

D@ =e¢ "*D(e= - ¢),

where ™ 1 S — S denotes the canonical identification of the spinor bundles of (M. g) and
(M. 2).

Proposition 3. ([6, Cor. 1.2]) The dimension of the space of twistor spinors is conformally
invariant and bounded by

dim Ker D < 272141,

Proposition 4. (|6, Cor. 1.3]) Let ¢ € T'(S) be a non-trivial twistor spinor and xo € M. Then
w(xo) # 0or Dp(xy) # 0.

Let R be the scalar curvature and Ric the Ricci curvature of (M™!, g). If dimM = n > 3.
K denotes the (2, 0)-Schouten tensor

1 R
K(X. V)= — Ricl.
XN =S mond ™ Re

We always identify TM with T M* using the metric g. For a (2, 0)-tensor field B we denote
by the same symbol B the corresponding (1, 1)-tensor field B : TM — TM, g(B(X).Y) =
B(X.Y). Let C be the (2, 1}-Schouten—Weyl tensor

C(X.Y)=(VyK)(Y) — (VyK)(X).

Furthermore, let W be the (4. 0)-Weyl tensor of (M, g) and let us denote by the same symbol
the corresponding (2. 2)-tensor field W : A*M —> A’M. Then we have
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Proposition 5. ([6, Th. 1.3, Th. 1.5]) Let ¢ € ['(S) be a twistor spinorandn =Y NZ € A°M
a two-form. Then

Dlp— L M g ©)
LR

ViDy = 1nK(X) - ¢, (10)

W -9 =0, (11)

W(n) - Do =nC(Y, Z) - ¢, , (12)

(VxW)(n)-<0=X-C(Y,Z)-<P+;(XJ W(n)) - De. (13)

If the scalar curvature R of (M™!, g) is constant and non-zero, equation (9) shows that the
spinor fields
1 n—1

=—-¢x
Vs 2('0 nR

are formal eigenspinors of the Dirac operator D to the eigenvalue :i:%\/n R/(n —1).
A special class of twistor spinors are the so-called Killing spinors ¢ € I'(S) defined by the
condition

Dy

Vie=1X ¢ forall X e T(TM),

where A is a constant complex number, called the Killing number of ¢. Using the twistor
equation and the properties (9) and (10) one obtains that for an Einstein space (M™', g) with
constant scalar curvature R # 0 the spinor fields vy are Killing spinors to the Killing number
A = F1/R/n(n —1). Hence, on this class of Lorentzian manifolds each twistor spinor is the
sum of two Killing spinors. Therefore, we are specially interested in non-Einsteinian Lorentzian
manifolds which admit twistor spinors.

To each spinor field we associate a vector field in the following way.

Definition 3. Let ¢ € I'(S). The vector filed V,, definied by
8(Vy, X) = —(X -9, ¢}, X e I(TM)
is called the canonical vector field of .

Because of (1), V,, is a real vector field. By Zero(¢) and Zero(X) we denote the zero sets of
a spinor field ¢ or a vector field X.

Proposition 6. 1. Zero(¢) = Zero(V,,) for each spinor field ¢ € T'(S).
2.Ifniseven,n < 6and ¢ € I'(S%) is a half spinor, then Vo - ¢ = 0. In particular, V,, is
an isotropic vector field.

Proof. Let ¢ € I'(S). From (5) follows for the time orientation &

eWVo&)=—& 0. 0)=~E & 0, 9 =—(¢,0):.

Since the scalar product (-, -)¢ is positive definite, this shows that Zero(V,,) = Zero(g). The
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sccond statement is proved by a direct calculation using a basis representation of ¢ and V,, and
the formulas (1) and (2). [

In the Riemannian case Proposition 6.1 is not true. There exist non-trivial spinor fields ¢
such that the canonical vector field V,, is identically zero (see [21]). On the other hand, the zero
set Zero(g) of a Riemannian twistor spinor is discrete {6, Th. 2.1}. This is in the Lorentzian
setting not the case.

We call a subset A C M isotropic, it each differentiable curve in A is isotropic.

Proposition 7. Ler ¢ € 1'(S) be a twistor spinor. Then the zero set of ¢ is isotropic.

Proof. Let y : I — Zero(g) be a curve in Zero(¢). Then ¢(y (1)) = 0 and therefore
Ve = 0. From the twistor equation (6) it follows y (1)- Dg(y (1)) = 0. Since by Proposition 4
Do(y (1)) #0, y(r)isisotropic forallr e I. U]

Proposition 8. Let ¢ € T'(S) be a twistor spinor. Then V,,; is a conformal vector field and the
Lie derivative satisfies

4
Ly g= - Re (¢, Do) g.

Proof. Let V := V,,. From the definition of V,, it follows
(Lvg)(X.Y) = g(VxV.,Y) 4 g(X. VyV)
= X(gV.Y)) —g(V,VyY) + Y(g(X. V) — g(VyX. V)
=—X({Y -0, 0) =YX 9, ¢) +(VxY 0. 0) +{VyX 9. ¢)
Z—(VxY . ) — (Y Vig. 9) — ¥ -0, Vig) — (Vv X . ¢)
—(X Vg, @) — (X 0. Vig) +(VxY -9, @) + (VyX - ¢ ¢)
LY Vie+ X Vi ¢)— (0. Y- Vip+ X - Vig).
Using (7) we obtain
(Lvg)(X.Y) = —gg(X, Y)Re (¢, Dp). [

From Proposition 8 follows that for each twistor spinor ¢, div(V,) = —2Re {¢. Dy). For
the imaginary part ot (p. D¢) we have

Proposition 9. Let ¢ € T'(S) be a twistor spinor. Then the function C, := Im{g, D) is
constant on M.

Proof. Because of (3) the function (Y - v, ¥) is real for each vector field ¥ and each spinor
ficld ¥. Furthermore,

(4) Y y
X(Dg.g) = (ViDg, )+ (Dg. Vi)
(6).(10y 1 1
= §<K(X)~¢, ®) —;(D%X-DW

Hence X (D¢, @) is a real function. Therefore, C, = Im(¢p, D) is constant. [
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Let us denote by C the (3, 0)-Schouten—Weyl tensor C(X, Y, Z) = g(X, C(Y, Z)).

Proposition 10. Let ¢ € I'(S) be a twistor spinor. Then
1.V, 1 C=0.
2. Ifn=4,thenV, 1 W =0.

Proof. From (11) and (12) we obtain
C(Vp X.¥) = g(V,y, C(X. ¥)) = —(C(X.Y) - . 9)

l(D(p, WX AY)-g)=0.

1
(WX AY)- Do, <P>=;

n

Let ¢ = au(e, 1) + bu(—e, —1) € I'(8%) be a half spinor on a 4-dimensional manifold. Then
by a direct calculation using (1) and (2) we obtain

V, = (lal* + 1b1P)s + (lal* — |b|*)s2 — 2Re(iab)s; — 2eRe(ab)ss.

Hence,
W (V. sis5j,51) = (al? + 161 Wiy + (lal® = [b1*) Waij a4
— 2Re(iab) Wy;j; — 2eRe(ab)Wa;ji.
On the other hand, from the basis representation of
0=W(sjAs) = 28;48/ Witk Sr - S1- @
r<l
result the equations
0= Wi —eiWsga + (i Wisj — eWaajp — eWigjr +iWigji) - b, (15)
0= (Wi +eiWauji)b+ (—iWpzj +eWuj — eWiajn +iWnsja. (16)

Then looking at the real and imaginary part of the equations (15) a &= (16) b and ( 15) b+(16)a
one obtains W(V,, s;,s5;,5,) =0. U

4. Pseudo-hermitian geometry

Before we define the Fefferman spaces we recall some basic facts from pseudo-hermitian
geometry in order to fix the notations. The proofs of the following propositions are obtained
by easy direct calculations (see [35, 5]).

Let M?*+! be a smooth connected manifold of odd dimension 2n+1. A complex CR-structure
on M is a complex subbundle 7o of TM € such that

1. dimc T]() =n,
2. TioN Tyo = {0},
3.[T'(Tyo), I'(T10)] C I'(Thp) (integrability condition).
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A real CR-structure on M is a pair (H, J), where

1. H C TM is areal 2n-dimensional subbundle,

2.J : H —> H is an almost complex structure on H : J?> = —id,

3N X.Y e I'(H), then [JX, Y]+ [X.JY] € T(H) and Ny(X,Y) := J(JX. Y]+
X, JY]D) = [JX. JY]+[X. Y] =0 (integrability condition).

Obviously the complex and real CR-structure correspond to each other: If Tyy € TM* is
a complex CR-structure, then H := Re(To & T10)), J(U + U) := i(U — U) defines a real
CR-structure. If (H. J) is a real CR-structure, then the eigenspace of the complex extension of
J on H" to the eigenvalue i is a complex CR-structure. A CR-manifold is an odd-dimensional
manitold equipped with a (real or complex) CR-structure. Let (M, Tyy) be a CR-manifold. The
hermitian form on 7T

L:TxTy— E:=TM“/(Tio® To). LWU.V):=ilU.V].

where Xy denotes the projection of X € TM® onto E, is called the Levi form of (M. Tyy).
The CR-manifold is called non-degenerate, it its Levi form L is non-degenerate. A nowhere
vanishing 1-form 6 € Q' (M) is called a pseudo-hermitian structure on (M, T\p), if 6| = O.
(M. Ty, 0) is called a pseudo-hermitian manifold. There exists a pseudo-hermitian structure ¢
on (M. Tyy) if and only if M is orientable. Two pseudo-hermitian structures 6. 6 differs by a
real nowhere vanishing function f € C*(M):6 = f-6.Let (M. Tyo. 6) be a pseudo-hermitian
manifold. The hermitian form Lg : Tig x Tyg —> C

Lo(U, V) :=—idoU, V)

i~ called the Levi form of (M, Tyg, 8). Obviously, we have 8(L(U.V)) = Lo(U, V). The
pseudo-hermitian manifold (M, Ty, 8) is called strictly pseudoconvex, if the Levi form L,
1< positive definite. If the pseudo-hermitian manifold (M, T}¢, €) is non-degenerate. then the
pseudo-hermitian structure 8 is a contact form. We denote by T € I"(T M) the characteristic
vector field of this contact form, e.g., the vector field uniquely defined by

0(Ty=1 and T 1d6 =0.

From now on we always suppose, that (M, Tyy. ¢) is non-degenerate. If M is oriented, we
always choose 8 such that a basis of the form (X, /X, ..., X,,. JX,,, T) is positive oriented
on M. We consider the following spaces of forms:

AOM ={we AME |V 1 w=0VV e Ty
A"M:={we AMM® |V 1 w=0 VYV e Tyl
ATIM :=span{w Ao | w e AP'M, o € A" M),
AM ={we A"M | T 1 w=0).
Now. let us extend the Levi form of (M. Ty, 0) to TM® by
Ly(U.V):=Lg(U, V)= Ly(V,U)., LyU,V):=0, Ly(T,-):=0.

where U, V € Typ.
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Proposition 11. Let Ly : TM© x TM® — C be the Levi form of (M, Ty, 6) and let T be
the characteristic vector field of 6. Then

(T,Z1eT(Tw®Tw) if Zel(Tw) or ZeT(Ty), (17)
Lo((T, U1, V) + Lg(U,[T, V) = T(Lg(U,V)) YU,V €T (Ty), (18)
Lo([T, U1, V) = Lg([T, V], U) YU,V e ' (Ty), (19)
Lo(IT, U1, V) = Le¢(IT, V], U) YU,V e I'(Ty). (20)

If we consider the Levi form Ly as a bilinear form on the real tangent bundle, we obtain a
symmetric bilinear form on 7 M which is non-degenerate on H.

Proposition 12. Ler (M*'*! Ty, 6) be a non-degenerate pseudo-hermitian manifold and
(H, J) the real CR-structure, defined by Tyy. Let X and Y be two vector fields in H. Then
the Levi form Ly : TM x TM — R satisfies

Lo(X,Y)=do6(X,JY), (21
Lo(JX,JY)=Lo(X,Y) and Lg(JX,Y)+ Lg(X,JY) =0, (22)
Lo([T,X1,Y)— Lo([T, Y], X) = Lo((T, J X1, JY) — Lo([T. JY]. J X). (23)

On non-degenerate pseudo-hermitian manifolds there exists a special covariant derivative,
the so-called Webster connection, which was introduced by Tanaka [35] and by Webster [37].

Proposition 13. Let (M, T\o, 8) be a non-degenerate pseudo-hermitian manifold and let T be
the characteristic vector field of 6. Then there exists a uniquely determined covariant derivative
V¥ . T'(Tyo) — T(T*M® ® Tyo) on Tio such that
1. V¥ is metric with respect to Ly:
X(Le(U,V)) = Lo(VY U, V) + Lo(U,VY¥V), U,V eT(Ti), X e (TM®) (24)

2. VU =pryolT, U], (25)
3. VYU =pr,lV, U], (26)
where pr,, denotes the projection on Tyo. Furthermore, V¥V satisfies
VWV VYU =[U,V], U,V eT(Ty). 27)
Now, we extend the Webster connection to 7M€ by VW := V¥ and V¥ T := 0.

Proposition 14. The torsion Tor™ of the Webster connection T(T M€) L T'(T*M & T M®)

satisfies
Tor (U, V) = Tor" (U, V) = 0, (28)
Tor" (U, V) =iLo(U, V) T, (29)
Tor" (T, Uy = —pry, [T, U], (30)
Tor (T, U) = —pr,o[T, U], (31)

where pry; denotes the projection onfo Ti0, P10 the projection onto Tig and U, V € T'(Tyg).
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Let (M., Ty. #) be a non-degenerate pseudo-hermitian manifold and let (p, g) be the signa-
ture of (Tyg. Ly). Then gg := Ly + 0 o 0 defines a metric of signature (2p,2¢g + 1) on M.

Proposition 15. Ler (M, Tg, 6) be a non-degenerate pseudo-hermitian manifold. Then the
Webster connection VY : T(TM) — T(T*M ® T M) considered on the real tangent bundie
is metric with respect to gg and the torsion of V¥ is given by

Tor"(X.Y)=Ly(JX.Y)-T for X.Y e "'(H). (32)
Tor"(T. X) = =H{[T. X1+ JIT. JX|} for X € T(H). (33)

Furthermore, on I'(H)
VWold=40V", (34)
Now. let RV" € I'(A2ME @ End(T M, T M®)) be the curvature operator of V%
RV (X. V) =[V¥. VY1~ Vi
Then the (4, 0)-curvature tensor RY
RV(X. Y. Z, V)= go(RV (X.Y)Z. W), X.Y.Z.WeTM"
has the following symmetry properties:
Proposition 16. Ler X. Y. Z,V € TM®, A, B,C, D € Ty,. Then

RY(X.Y.Z.V)==RY(Y.X. Z. V)= -RV(X. Y. V. Z).
RY(X.Y.Z. V) =RV (X, Y Z.V).
RY(A.B.C.D)=2RY(C. B, A.
RY(A.B,-.) =0.

D).

Let w € A°MF be a complex 2-form and @ : T\g —> Tio the uniquely determined C-
linear map with w(U, V) = Ly(@U, V), U,V € Tiy. Then the 6-trace of w is defined by
Trpw = Trw). K (Z,...., , Z,,) is an unitary basis of (T\¢. Ly). &x = Lo(Zy. Zy), then

Tro 0 = Zs,, W (Zos Zay).

o=

The (2, 0)-tensor field
n
Ric" == Tri’ P RY = > e, RV (.. Za, Zo)
is called the Webster—Ricci tensor, the function RY := Try Ric% isthe Webster scalar curvature.

Proposition 16 shows that Ric¥ € A"'M Ric"(X,Y) e iRforall X.Y € TM and that RY
is a real function.
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5. Fefferman spaces

Let (M?"*1, Tip) be a CR-manifold. The complex line bundle K := A"*Y9M of (n + 1, 0)-
forms is called the canonical bundle of (M*"*!, Tyo). R" actson K* = K\ {0} by multiplication.
Let F':= K*/p+. Then (F, w, M) is the § I_principal bundle over M associated to K. We call
(F, m, M) the canonical S'-bundle of (M, Typ). Now, let (M, Tio, 8) be a non-degenerate
pseudo-hermitian manifold and V¥ : T'(Tyg) — I'(T*M® @ Ty) its Webster connection.
V¥ allows us to define a connection AY on the canonical S!-bundle F in the following way:
Lets = (Zy,..., Z,) be a local unitary basis of (T}, Lg) over U C M and let us denote by
w; = (wqp) the matrix of connection forms of V% with respect to s

VWZy =) wipZp.
B

(Zry ..., Zn, Zy, ..., Zy, T) is a local basis of TMC over U. Let (6',...,0",8',...,6",6)
be the corresponding dual basis. Then

L= O0A0 A AU — K

is a local section in K. We denote by 7, := [1,] the corresponding local sectionin F = K*/R*.
The Webster connection V¥ defines in the standard way a covariant derivative VX in the
canonical line bundle K such that

VEE == a5 =—Tro, - 4.
a
Since V¥ is metric with respect to Lg, the trace Tr w; is purely imaginary. Hence VX is

induced by a connection A" on the associated S 1-principal bundle (F, , M; S!) with the local
connection forms

*AY = — Trw,.

S

Let QW be the curvature form of the connection A¥ on F. Since QY is tensionell and right-
invariant, it can be considered as 2-form on M with values in iR. Over U € M

QY = dA™ = — Trdw,. (35)
holds. On the other hand,
RicY (X, ¥) = " eaLo((IVY . VY1~ VX v) Za. Za)
o

= (3 dorwe = Y wup A wpa ) (X, 1.
a o, B

Hence, Ric" = Trdw, — Tr(w, A w;) = Trdw,. From (35) it follows
Q% — —Ric%. (36)

The connection A" on the canonical S'-bundle (F, 7, M) is called the Webster connection
on F.Two connections on an S'-principal bundle over M differ by an 1-form on M with values
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in /R. The connection

Ay = AY — i RY
2n+ 1)

on the canonical S'-bundle (F, r, M) is called the Fefferman connection on F.
Let us consider the following right-invariant metric on £:

o4
hy =7* Ly — i 70 o Ay.
n+2

where o denotes the symmetric tensor product; hy is called the Fefferman metric on F. It
(T)o. Ly)isofsignature (p, g ), then hy hassignature (2p+1, 2g+1). In particular, if (M. Ty, 0)
is strictly pseudoconvex, hy is a Lorentzian metric. The semi-Riemannian manifold (F. /1)
is called the Fefferman space of (M, Tyy.8). The fibres of the canonical S'-bundle F are
isotropic submanifolds of (F, hg). From the special choise of the Fefferman connection A,
in the definition of hy results that the conformal class [/4,] of the metric Ay is an invariant of
the oriented CR-manifold (M, Tyy), e.g., if 6 = f -8, f > 0, is a further pseudo-hermitian
structure on (M., Typ), then h; = f - hy (see [25, Th. 5.17.]). We remark that Fefferman spaces
are never Einsteinian.

In the following we always assume that (M, T\, €) is strictly pseudoconvex. In order to
find global solutions of the Lorentzian twistor equation on Fefferman spaces it is necessary to
change the topological type of the canonical S'-bundle.

Proposition 17. Let (M. Ty, 0) be a strictly pseudoconvex spin manifold. Then each spin
structure of the Riemann manifold (M, gy) defines a square root JF of the canonical S'-bundle
F (e.g., VF is an S'-bundle over M such that the associated line bundle L = VF x g C
satisfies L @ L = K).

Proof. Let U(n) — SOQ2n) — SO(2n + 1) be the canonical embedding of U(n) in
SOQ2n + 1).

Py = {(X\.JX\..... X, JX0 T (X1, I X X, JX,) ON-basis of (H, Lu)}

is an U(n)-reduction of the bundle Py of SO(2n + 1)-frames of (M, gy). Let (Qu. far) be a
spin structure of (M, gy} and let us denote by (Qy. fr) the reduced spin structure

Ou = fu'(Pu),  fu:= fulo,

Now, the proof of Proposition 17 is a repetition of Hitchin’s proof of the fact that each spin
structure on a Kihler manifold defines a square root of the canonical bundle (see |16}). Since
we need some notation later on, we repeat the idea of the proof.
Let ¢ : U(n) — Spin(2n)C = Spin(2n) %z, S! be defined by
: O | . O 0 ,
(A) = § — o f - d . A=l (37)
(A) H (cos 5 + sin 5 fx O(fA)) X e

k=1



82 H. Baum

where (fi, ..., f,) is an unitary basis of C" such that Af; = e'% f; and Jy : C* — C" is the
standard complex structure of C". Then we have the following commutative diagram:

st 2 o Spin@n)® 2 Spin(2n)

AP U(n) — SO(2n)

det

where i, ji, j» denote the canonical embeddings and A : Spin(2n) — SO(2n) is the universal
covering of SO(2n). Hence, for each A € U(n) and each square root of det(A) one has

A71(A) = jiaT (i (A)) = £€(A) Det(A) /2.

Now, let {(Ugg. 8ap : Uupg — A"(U(n)))}a_ﬁ are the cocycles defining the reduced spin
structure (Q g, fr). Then on Uyp we choose a square root iigg @ Ugg — S I of the determinant
of A(go(ﬁ)_l such that

hig =Det(A(gap)) ' and  gop = £(1(8ap)) - hap- (38)

{(Uqp, hap)lap are cocyles defining a square root (\/f .7, M) of the canonical S'-bundle
(F,nm, M), O

Let (+/F, 7, M) be the square root of the canonical S'-bundle defined by the spin structure
of (M, gg). Then the Webster connection A" on F defines a corresponding connection AYY on
VF:Llet{5, : U, = Qpu) be acovering of Qy by local sections with the transition functions
8aps So = 5p + 8ap- Let sy = fy(Sa) € Py and denote by /T, : Uy — V'F the local sections
in +/ F with transition functions Aqg,

VT = Ty Haps
defined by (38). Then the local connection forms of AYV are given by

VETAW =1 AW = I (39)
and the curvature of AVW is

QW =10% = _IRic". (40)

The connection Ag,/ on +/F defined by

Py v pup— L
4n+1)
is called the Fefferman connection on +/F and the Lorentzian metric
8 J
hg i =m*Ly —1i 700 A
¢ ot n+2 °

is the Fefferman metric on / F. As we will see in the next section, the spin structure (Q s, far)
of (M, gy) defines a canonical spin structure on (v/ F', hy).
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Definition 4. The Lorentzian spin manifold (VF. hg) is called the Fefferman space of the
strictly pseudoconvex spin manifold (M, Ty, 0. (Qum. fu)).

6. Spinor calculus for S'-bundles with isotropic fibre over strictly pseudoconvex spin
manifolds

Let (M>"*' Ty, 6) be a strictly pseudoconvex manifold and let (Q 7, far) be a spin structure
of (M. g,). Furthermore, consider an S‘—principle bundle (B. 7. M: S') over M. a connection
A on B and a constant ¢ € R\ {0}. Then

hi=ha, =7"Ly—ica*0oA

is a Lorentzian metric on B. In this section we want to derive a suitable spinor calculus for the
Lorentzian manitfold (B, h).

Let N € T'(T B) be the fundamental vector field on B defined by the element 2i /¢ € iR of
the Lie algebra iR of S'

2. _d 2y
N(b):;l(h) = E(b'e‘ )|f:(>'

Denote by T* € I'(T B) the A-horizontal lift of the characteristic vector field T of 6. Then N
and T* are global isotropic vector fields on B such that #(N.T*) = 1. Consider the global
vector fields

1 * l *
S :‘\/—E(N—T ) and S2—:7§(N+T ). (41)
Then

h(sy,s1) =—1. h(sz.s2)=1. h(s;.5)=0.

Let the time orientation of (B, k) be given by s, and the space orientation by the vectors
(2. X7 JXT. .0, X JX¥)), where (X, JXy,....X,,JX,) € Py.and X* denotes the A-
horizontal lift of a vector field X on M. Now, let (Qy. fy) be the reduced spin structure of
(M. g») defined in the previous section. Denote by

SH = QH X5 YUy AZM,O
the corresponding spinor bundle of (H, Ly). Obviously, the bundle

Py = {(sl.Sg,Xf, JX{o..0 X

ne 1

LIXD | X IX X,. JX,) on-basis of (H. Ly)}

is an U(n)-reduction of the frame bundle Py of (B, k) with respect to the embedding U(n) —
SOy(2n + 2. 1). Since Py ~ m* Py we have Py = 7" Py Xy SOp(2n + 2. 1). Therefore,

Qp =7"0n X3 1wy Sping(2n + 2. 1), fo =112

is a spin structure of the Lorentzian manifold (B. #). The corresponding spinor bundle § on
(B. h) is given by

S = JT*QH X5 H(Un)) A2”+2A]. (42)
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Proposition 18. Let Sy be the spinor bundle of (H. Lg) over M. Then the spinor bundle S of
(B, h) can be identified with the sum

S~a*Sy ®n*Sy,

where the Clifford multiplication is given by

s, ¥) = (=¥, ~9), (43)

s2-(0.Y) = (V. 0), (44)

X*(p,9)=(-X-9.X-¥), XeH (45)
In particular,

N-(@, %) =(=v2v,0), (46)

T* - (0. ¥) = (0.V2¢). (47)

Furthermore, the positive and negative parts of S are
St=n*SE @n*Sy, ST =n*Sy dn*Sy. (48)
The indefinite scalar product (-, -) in S is given by

(9, ¥), (@, ) = =¥, P)sy — (@ Vs, (49)
where (-, -)s,, is the usual positive definite scalar product in Sy.
Proof. By definition of the spinor bundle S (see (42)) we have only to check, how the Spin(2n)-
modul Aj,2 decomposes into Spin(2n)-representations. Let the embedding i : R —

R?>™+2: 1 pe givenby i(x) = (0, 0, x) and let Spin(2n) < Spiny(2n+2, 1) be the corresponding
embedding of the spin groups. Consider the following isomorphisms of the representation spaces

X D A2to1 —> Agpo ® Aspos
u@u(l) +vQu(—=1) — (u,v),
where we use the notation of Section 2. Then formula (1) shows that
x(er- (u@u(l)+v®u(—1)) = (—u, —v),
x(ex- (u@u(l) +v®u(—1))) = (u, —v),
xler - Wu(l)+vQu(—1)) = (—ep_s-u, e_n-v), k=>2.

Therefore, x is an isomorphism of the Spin(2n)-representations and (43)—(45) and because of
(41) also the formulas (46), (47) are valid. Let w42 = e - - e2,.> be the volume element
of Cliffy, 1> 1 and wy, = e - - - €2, the volume element of Cliff,, 5. Then using the identification
X weobtainwy, 2-(u, v) = (—wyy, -, wy,-v). According to the definition of S* this shows (48).
Because of (5) the scalar product satisfies

(@, ), (@, ) = (51 - (@, W), (@, ¥))s,
= (=¥, —=9), (@, V),
=~ P)s, — (@, ¥)s,. O
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In order to describe the spinor derivative in the spinor bundle S of B we need the connection
torms of the Levi-Civita connection of (B, h). Let X, Y, Z be local vector fields on (B. h) of

constant length and constant scalar products with each other. Then the Levi-Civita connection
V of (B, h) satisfies

h(VxY.Z) = J{r(X. Y], Z)+ h(Z. Y], X) + h(Z. X]. V) }. (50)

For a vector Z € T, B we denote by Z" the projection on the horizontal tangent space and by
Z" the projection on the vertical tangent space. If X € T;)M, then X* € T, B denotes the
horizontal lift of X. Let Q4 € Q2(M; iR) be the curvature form of the connection A. From the
connection theory in principle bundles follows for vector fields X, ¥ on M

[X*, N} =0, (51
[X*. Y*]' = LicQ*(X,Y)- N, (52)
(X*. Y = (X, YT (53)

Now, let X, Y € I'(H). Since [T, X] € '(H) and
(X, Y] =prylX. Y]+ 60(X.Y]) - T =prylX. Y] =dO(X.Y) - T

we obtain from (52) and (53)
[T* X*]=[T. X"+ 1icQ"(T.X) N, (54)
(X" Y =prylX,Y]" —dO(X,Y)-T" + % icQYX, V) N. (5%)

Proposition 19. Let X. Y, Z € I'(H) be vector fields of constant lenght and constant L-scalar
products with each other. Then

WVx-Y* Z*) = Lo(Vy Y, Z),
h(VyY*. Z%) = 1d6(Y, Z),
(V- Y*. 2% = Y Lo(IT. Y], Z) — Lo(IT, ZL. Y) — L ic QY. Z)}.
h(Vx:Y* Ny = —1dO(X,Y),
h(Vx-Y*. T*) = HLo(IT, X1.Y) 4+ Lo(IT. Y]. X) + L ic Q*(X. ")}
WV T* 2% = —1ic QNT. 2).
W(VN.T*) = h(VT*, T*) = h(VN*. N*) =0,
h(VyN,Z*y = h(VyT*, Z*) = h(V7<N, Z*) = 0.
Proof. From (50) and (55) it follows
2R(VxY*, Z¥) = hipryl X, Y1*, Z*) + h(pry Z, Y1*, X*) + h(pry[Z, X]*. V")
= Ly(IX.Y), Z) + Lo(IZ, Y], X) + Lo(1Z. X1, V).
According to (32) Tor" (X, Y) = Lg(JX.Y) - T. Hence,
Lo(IX, Y], Z) = Lo(VyY — V) X — Tor"(X. V), Z)
= Lo(VYY — V)X, 2Z).
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Therefore, using that V¥ is metric with respect to Ly we obtain A(Vx-Y*, Z*) = Lg (V)V(V Y, 7).
The other formulas follow immediately from the definition of 4 and (50), (51), (54) and (55).
[

By definition the spinor derivative on S is given by the following formula:

Lets : U — Qu be alocal sectionin Qy and s = (X4, ..., X2,) = fu(5) € Py the
corresponding orthonormal basis in (H, Ly). Consider a local spinor field ¢ = [s, u] in S.
Then

2n
Vi =[5, dul — 3 h(Vsi, )51 - 82- 0 — 3 Y h(Vsi, X])s1 - X} - ¢
k=1

+1 Ezn:h(vsz, X s Xp -+ 3D RIXLXDXE - X] - 6.
k=1 k<l

Using the definition of s; and s, (see (41)) and Proposition 19 we obtain A(Vs, s2) = 0.
Furthermore, if we denote by a,(Z) the vector field

ai(Z) = h(Vzsa, X7) s — h(Vzsy, X7) 51,
from Proposition 19 results

ax(N) =0,

ap(T*) = =LicQ*(T, Xy) - N,

a(X3) = 5d0(X;, X)T* — 3{Lo([T. X;1, Xi)

+ Lo([T, Xi1, X;) + 2 ic QM(X;, X0 IN.

These formulas and Proposition 19 give the following formulas for the spinor derivative in the

spinor bundle S of (B, h):

Proposition 20. Let s : U —> Qg be a local section in Qg,s = fy(is) = (X1, ..., X2)
and let ¢ =[5, u] be a local section in S. Then for the spinor derivative of ¢ we have

Ve =[5, Nwl+1do*- ¢,
Vi =[5.T* W]+ 3ic(T 1 QY - N-¢— Lic(Q))*- ¢
+ 1) {LoUT. Xil, X)) — Lo((T. X1, X0} X7 - X} - ¢,
k<l
Vi =15, X" ()] — 5(X 1 do)" - T* - ¢+ Lie(X 1 QY- N - ¢

n

- % Z {Lﬁ([T’ X1, Xi) + Lo(IT, Xi], X)}X;; N -¢
k=1

+ 3> LoV Xk X)) Xi - X} - 0,
k<l

where oy denotes the projection of a form o € AP M onto AJM, o} is its horizontal lift on B
and the vector field X belongs to the set {X,, ..., X2,}.
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Proposition 21. Ler (X, ..., Xa,) be a local orthonormal basis of (H, Ly) with Xa, =
J(X2e1). Denote by o', ..., 0% the dual basis of (Xy..... Xy,) and by s = (Z, . ... Ly
Lo = \%(Xgu,l — i X5y), the corresponding local unitary basis of (Tiy, Ly). Consider the
2-forms
by =Y {Lo(T. Xel, X)) — Lo(IT. Xi1, X0) } o A0’
k<l
d(X) =) Lo(V¥Xi, Xpot no's XeH.
k=l
Then
I.by € Ay (M) and Try by = 2 Trw,(T):
2.dy(X) € Ay (M) and Try dy(X) = Tro,(X).
iwhere w, is the matrix of connection forms of the Webster connection V¥ with respect 10
yv= (2, ..., Z,).

Proof. A 2-form ¢ belongs to A"'M iff o(JX,JY) = o(X.Y) forall X,Y € H. From
formula (23) of Proposition 12 follows for X. Y € {X;..... Xa,}

b (JX. JY)Y=Lo(IT,JX1,JY)— Lp(IT.JY |, JX)
B Lo(T. X1, Y) — Lo(IT. Y], X)
=b(X.,Y).

Therefore, b, € Aﬂ,‘] M . Furthermore,

TI‘H b.\* =1 Zb,\'(XQ.Ol*l* XZ(X)
a=1

=i » {Lo(T. X2g1). X2u) = Lo(IT. X¢ | X201}
a=I
Inserting Xo,—1 = (Z4 + Za)/ﬁ, Xoy = i(Zy —- Za)/\/i one obtains

Try by = Y {Lo(T. Zol, Zo) = Lo(IT, Za, Zo)|

a=1

=20 Y Im {Lo(pryolT. Zo). Za)}

a=I

— 2 Zlm Lo(VY Z4y, Z4))

o=1

= 2i Im(Trw,(T)).

Since VY is metric with respect to Ly, we have wys + @pe = 0. Hence, wy (T) is imaginary.
Therefore, Try by = 2 Trw, (T).
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According to formula (34) of Proposition 15 and formula (22) of Proposition 12 we have for
Y. Ze{X,,...,XonJand X ¢ H

dy(X)(JY, JZ) = Lo(Vy Y, JZ) = Lg(JVY Y. JZ) = Le(VYY, Z)
= d,(X)(Y, Z).

This shows that d, (X) € A} (M). Furthermore,

Trgde(X) =i Y Lo(Vy Xaq_1. Xau)
a=I

n

= 1Y {Lo(VY Za. Zo) — Lo(VY Za Zo)]

a=I

=1 ImTrw,(X)
=Trw (X). O

Next we proof a property of the spinor bundle Sy of (H, Lg), which is very similar to the
properties of the spinor bundle of Kihler manifolds (see [18]).

Proposition 22. Ler (M 2+ T, 0) be a strictly pseudoconvex spin manifold and (VF, hy)
its Fefferman space. Then the spinor bundle Sy of (H, Ly) has the following properties:
1. Sy decomposes into n 4 1 subbundles

n
Sy = @ S(—n+2r)is
r=0

where Sy; is the eigenspace of the endomorphism d6- . Sy — Sy to the eigenvalue ki. The

dimension of S; is ( n +',’() /2). In particular, there are two 1-dimensional subbundles S;,;, ¢ =

*1, of Sy satisfying do - |s,,, = eni - Idg, .
2.Ifo € Ay' M, then

o - |55m. =& 'Trg(d) . IdS

eni

3. The induced bundles 7*S,.; on the Fefferman space VF are trivial. A global section
Yo € I'(*S,.i) is given in the following way:
Lets : U — Qg bealocal sectionin Qg s the local unitary basis in (Tyg, Lg), corresponding
to fy(s) : U —> Py. Furthermore, let \J7; : U —> V'F be the local section in ~/F defined

by § and let g, : F|y —> S' be given by p = \/T,((p)) - ¢, (p). Then
Ye(p) := [§((p)), 0s(p) Cule, ... )]

defines a global section in T' (70" Sy¢;).

Proof. Azi,ho is a U(n)-representation, where U(n) acts by

Un) -5 Spin®(2n) 228 GL(AE, ).



Lorentzian twistor spinors and CR-geometry 89

Theelement Qy =¢;-ex+---+ e, - €3, € Cliff%‘m() acts on Ai_(, by

n

Q”-u(a,....s,,):i(Zsk)u(sl ..... En).

k=1

Hence, A3, , decomposes into U(n)-invariant eigenspaces £, (29) of € to the eigenvalues
tr = (—=n+2r)i,r =0....,n. In particular, the eigenspace to the eigenvalue eni, ¢ = +1.
is I-dimensional and given by E;,.(Q0) = C - u(e. ..., e). By definition of ¢ (see (37)) we
obtain for A = diag(e'”, ... /"

; u(g, ....¢), e =—1;
LA u(e. ..., &)= (56)
DetA - u(e,....8), e=1.

Hence, £, is the trivial U(n)-representation and E,; is isomorphic to the U(n)-representation
A"(C"). Since the subspaces E,, (£2)) of Ai.o are invariant under the action of A~ (U(n)) we
obtain the decomposition

n
SH = @S/l,w where S;L, = QH X WUy E/z, (QO)-
r=0
Ifs: U — Qp isalocal section in Qp, d6 acts on Sy by

de - [; U] = [: Q() 4 U].

Therefore, S, is the eigenspace of d6- to the eigenvalue g, ..

Now, let n = [¢.,u(e, ..., €)] € Seni.e = 1. Denote fyig) = (X,..... Xa,) € Py,
Xoy = JXog_yand s = (Z,, ..., Z,) the corresponding unitary basis in (T}, Ly) with Z, =
S Xyt —id X)) Let (0, ..., 6") be the dual basis of (Z,,....Z,) and (o', .... o)
V2
the dual basis of (X, . ... X5,). If o € Ay' M is aform of type (1. 1), then

g = Z (Tuﬂf)d /\é}‘

o. =1
1 2 ) ) ] ) TH— Qo — Rl
= Z%ﬂ(a_m Aoy g A o) +%Z%%“((’_u L PN )
a#f T ap
Hence.
1
0'77:[‘1' E%Uuﬁ (€20—1 - €251 + €24 - €2p) U, . ... €)

i
+ ) ;%ﬁ(@a Se2p| — €291 - €2p) U(E, ..., 5)]

where oy = 0(Z,, Zﬁ). Using formula (1) we obtain
(e2q—1 - €251 + €2y - €28) - Ule, . ... e)=0 o # B,
(e:a‘€2ﬂ7| — €2y—1 '€2ﬁ)-u(8 ..... 8)20 (175/3

(€2y - €2y | —€2y1-€3q) - ule,....8) = =2¢eiu(e, ..., ).
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Therefore,

a.n:[q,gZa(Za,Za)-u(s,...,&‘)]
=c¢-Tryo-n.

Now, let us consider the section , € I'(7*S,,;) defined by
Ve(p) = [5(p)), 9s(p) Cute, ... €)].

Let5,5: U — Oy be two local sections, § = 5. gandleth : U — S' be the function
defined by (38):

((Mg))-h =g, h*=Det(r(g) . (57)
Then ¢;(p) = ¢s(p) - h(7w(p)) and
Ve(p) = -go@fule ... o)
= Boop) g ue, ... o)
= [F.e(p)h'g-ue, ... o)l
T B Fh“‘zmg))u(s )
G

(56).(57)

P (p)Fule, ..., &)l
Hence, ¥, is a global section in the bundle 7*S,,; on v/F. O

7. Twistor spinors on Fefferman spaces

Let (M?"!' Ty, 6) be a strictly pseudoconvex spin manifold, («/F , T, M) the square root
of the canonical S'-bundle corresponding to the spin structure of (M, gs) and h the Fefferman
metric on +/F. Denote by ¥. € I'(m*Sy) the global sections in the bundles 7*S,,; over JVF
defined in Proposition 22. Now, we are able to solve the twistor equation on the Lorentzian
spin manifold (VF, hg).

Theorem 1. Let S := n*Sy & n*Sy be the spinor bundle of (VF, hg). Then the spinor fields
¢ 1= (Y., 0) € T'(S), e = %1, are solutions of the twistor equation on (VF, ho) with the
following properties:

1. The canonical vector field Vy_of ¢. is a regular isotropic Killing vector field.

2. Vg, -9 =0.

3.V ¢ = —%mqﬁg.

4 gelle = 1.

Remark. If n is even, then ¢; and ¢_, are linearly independent spinor fields in S*. If n is odd
then ¢, € T'(S™) and ¢_; € ['(S7) (see Proposition 18). The second property of Theorem |
shows that ¢, is a pure or partially pure spinor field (see [36]). A vector field is called regular,
if all of its integral curves are closed and of the same shortest period.
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Proof of Theorem 1. We use the formulas for the spinor derivative in S given in Proposition 2()
for the Fefferman connection A = Ag/ and the constant ¢ = 8/(n + 2). Lets : U — (Q be
a local section and ¢, : \/F|U — S! the corresponding transition function in VI (see
Proposition 22). Then for the fundamental vector field N on ' F

Nigy) = {(n+D)ig, (58)

holds. It Y*is an A;,/—horizontal lift of a vector field ¥ on M, we obtain using standard formulas
from connection theory

Y*(p) = =g, - ST AY ()
= (Y Yoy 5
{Tra)( )+2(’+1)R ( )} (59)

where w, is the matrix of connection forms of the Webster connection with respect to the unitary
basis s in (T, Ly) corresponding to fy (5). According to Proposition 18 we have N - ¢, = (.
Theretore, from Proposition 20 and (58), (59) result

: n+2
Vevp. = <—g T*i@//‘p + 5dO e, 0)
s I RV | o Ay
Vi = iiﬂwm+~krf}m+wwmkhwanwpo

2n+1) +2
Vg = (—5 e Trog(X) ¥ + 3 do(X) - e, 0) — (X 1 d6)Y - T - ..
where b, and d,(X) are the A''-forms defined in Proposition 21. Since . is a section in

7S, by and d(X) act on ¥, by multiplication with & Try b, and ¢ Trs d,(X), respectively
(Proposition 22). Hence, according to Proposition 21,

. | AY i ;
4 ( 1n+2 0 Ve 4(11 +- l) Ve

Vi = —5(X 1d0)" - T*- ..
Furthermore, ¥, is an eigenspinor of the action ot ¢6 on Sy to the eigenvalue gni. Thercfore,
Vi, = —Leig,. (60:
Because of

Q) = —1Ric) — mdmw = —!Ric} — e RYdo.

the curvature 2" of the Fefferman connection is a form of type (1, 1). Hence.

AY v 1 ie -
Q' e = e Tr(QY )y, = (—5 RY — FTRE RWm) Ve

n+2
= —— " RYy..
F4(n+1) ve
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Therefore, we obtain
Vi.¢. = 0. (61)

According to Proposition 18, T* - ¢, = (0, «/5108). If X e{X,,..., Xo,},the 1-form X 1 d6
acts on the spinor bundle by Clifford multiplication with J(X). Hence, we have

Vide = (0. —1v27(X) - ). (62)

Now, using s = %(N —T%), 5 = %(N + T*), we obtain

—S] - Vi(b(c = 87 - Vi‘pF = X*. V)S(‘*(Pg = (O, —2—\1/5 Sl'l//g),

where X € {X, ..., X3,}. This shows, that ¢, is a twistor spinor (see Proposition 1).
From Proposition 18 it follows

(Pes Pe)e = (51 - @e, b)) = (0, =Ve), (Y, 0)) = (W, Vo), = 1.

Furthermore, we obtain for the canonical vector field Vy,
2n
Vi, = (51 Ger be) 51— (52 e, bs) 52— Y (X} e de) X3
:sl—l—sz:ﬁN. =
Therefore, Vg is regular and isotropic and satisfies Vy, - ¢, = 0. Because of (60) we have

V‘S/¢ ¢ = —(1/ V2)ei ¢ It remains to show, that the vertical vector field N is a Killing vector
field. This follows directly from the formulas of Proposition 19:

Lyho(Y,Z) = hg(VyN, Z) + he(Y,VzN) =0
for all vector fields ¥ and Z on /F. [
Conversely, we have

Theorem 2. Let (B*'*2, h) be a Lorentzian spin manifold and let ¢ € T'(S) be a nontrivial
twistor spinor on (B, h) such that

1. The canonical vector field V, of ¢ is a regular isotropic Killing vector field.

2.V, =0.

3. V‘S,wq) = icy, c = const € R\{0}.
Then B is an S'-principal bundle over a strictly pseudoconvex spin manifold (M*'*', T\, 8)
and (B, h) is locally isometric to the Fefferman space (VF, hy) of (M, Ty, 0).

Proof. Since V,, is regular, it defines an S'-action on B
BxS'— B,
(P ") — ¥} (P)

where y,Y (p) is the integral curve of V = V,, through p and L is the period of the integral
curves. Then M := B/S! is an 2n + 1-dimensional manifold and V is the fundamental vector
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ficld defined by the element 27i/L of the Lie algebra iR of S' in the S'-principal bundle
(B, 7. M; S'"). Now we use Sparling’s characterization of Fefferman spaces. proved by Graham
in [12]. Let W denote the (4, 0)-Weyl tensor, C the (3. 0)-Schouten—-Weyl tensor and K the
(2. M-Schouten tensor of (B, h). Graham proved:

If V is an isotropic Killing vector field such that

ViWw =0. (63)
ViC =0, (64)
K(V.V)=const <0, (65)

then there exists a pseudo-hermitian structure ( Ty, #) on M such that (B. #) is locally isometric
to the Fefferman space (F, hg) of (M, Tyy. 0). The local isometry is given by S'-equivariant
bundle maps ¢ : Bly — Flu.

We first prove that V =V, satisfies (63)—(65). Property (64) is valid for each twistor spinor
(see Proposition 10). Using W(X A Y) - ¢ = 0 (see (11) of Proposition 5) and the assumption
V., - ¢ = 0 we obtain

O={W(XAY) V-V.- WXAY)} ¢
=2{V1 WX A} @
=2W(X.Y. V) o

for all vector fields X and Y on B. Since V, is a nontrivial isotropic Killing field, it has no
zeros. Hence, by Proposition 6, the twistor spinor ¢ has no zeros and therefore, the vector field
W(X.Y. V) must be isotropic for all vector fields X. ¥ on B. Because of

WX. Y. V.V)=h(W(X,Y, V), V) =0,

WX, Y, V)isorthogonal to the isotropic vector field V. Since (B, /) has Lorentzian signature.
it follows that there is a 2-form A on B such that

WX, Y. V)=AX.Y)V forall X.Y e I'(TB). (66)
Now, we use formula (12) of Proposition 5 to obtain

0=V - WXAY) Dp—nlV -CX.Y)+C(X.Y)- V] o

=V - WXAY)-Dp+2nC(V,X.Y)op.

Because of V 1 C = O it results

V-WXAY) Dp=0. (67)
From the twistor equation (6) and the assumption V¢ = icg it follows

W(XAY)-V-Dp=—-nW(XAY) Vig

= —nicW(X AY) g

gy (68)
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Then (66), (67) and (68) give
O=WXAY)- V-Dp—-V -WXAY)- Dy
=2W(X,Y,V)- Dy

= 21(X, Y)V - Dy
© _2na(X. V)V
= —2ncir(X,Y)ep.

Therefore, A = 0 and V 1 W = 0. Using formula (10) of Proposition 5 we obtain
V.ViDg = %n{v CK(VY+KV) - V-p=—-nK({V,V)p.

Since V is an isotropic Killing field, it satisfies Vi,V = 0. It follows
VoV -Dp)=VyV-Do+V . -ViDp=—-nK(V,V)p

and from the twistor equation
ViVig =K(V,V)g.

Using Vi@ = icg we obtain K(V, V) = —c?. Therefore, the canonical vector field V, of the
twistor spinor ¢ satisfies the conditions of Sparling’s characterization theorem for Fefferman
metrics. Now, we proceed as in Graham’s proof of that theorem. Since Vy,, = |a|2V¢ we can
normalize ¢ in such a way that K(V,, V,)) = —%. Then, let T be the vector field on B defined
by

T, X)=—4K(X, Vo), X eI(TB).

T is isotropic and h(T, V,) = 1. Then we can use V,, and T to reduce the spin structure of
the Lorentzian manifold (B, /) to the group Spin(2r). This reduced spin structure projects to
a spin structure of (H, Ly), where 6 is the projection of the 1-form 6 € Q'(B) dual to V, and
H C TM is the projection of the subbundle H = span(T, Vo)t cTBontoM.J: H — H
is given by projection of the map

J:TB — TB, X > 2VyV,,

which acts on H with J2 = —id. Then in [12] is proved that (M, H, J, 8) in fact is a strictly
pseudoconvex manifold which we equip with the spin structure arising from that of (H, Lg)
by enlarging the structure group. In the same way as in [12] it follows that (B, k) is locally
isometric to the Fefferman space (v/F, hy), where the isometries are given by S'-bundle maps
VFly — Bly. O

Remark. Jerison and Lee studied the Yamabe problem on CR-manifolds (see [17]). They
proved that there is a numerical CR-invariant A(M) associated with every compact oriented
strictly pseudoconvex manifold M?'*!, which is always less than or equal to the value cor-
responding to the sphere $?"*! in C" with its standard CR-structure. If A(M) is strictly less
than A(S>*'), then M admits a pseudo-hermitian structure # with constant Webster scalar
curvature RY = A(M). Furthermore, one knows that the scalar curvature R of the Fefferman
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metric /4 is a constant positive multiple of the lift of the Webster scalar curvature R" to the
Fefferman space (see [25]). Now, let (M?"*! T,,) be a compact strictly pseudoconvex spin
manifold with 0 # A(M) < A(§***"). Choose a pseudo-hermitian structure 8 on (M, T\y) such
that the Webster scalar curvature R" is constant (and non-zero since A{M) # 0).

Let ¢., ¢ = £1. be the twistor spinors on (ﬁ hy), defined in Theorem 1. Then according
to the remark following Proposition 5 the spinor fields

] b+ 2n + 1 Dé
Ned = 5 Pe A T AT I3

Jek =5 (2n + )R
are eigenspinors of the Dirac operator of the Lorentzian spin manifold (VF . hy) to the eigen-
value :{:%\/(211 + 2)R/(2n + 1). The length the spinor fields n, 1 is constant with respect to
the indefinite scalar product (-, -) as well as to the positive definite scalar product (- . );.

&
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