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1. Introduction 

In the present paper we study a relation between the Lorentzian twistor equation and CR- 

geometry. Besides the Dirac operator there is a second important conformally covariant differ- 

ential operator acting on the spinor fields F(S) of a smooth semi-Riemannian spin manifold 

(:U. s) of dimension 17 and index k, the so-called fwistor operutor D. The twistor operator i:, 

defined as the composition of the spinor derivative V” with the projection p onto the kernel of‘ 

the Clifford multiplication I_I 

‘D : F(S) 2 F(T*M @S) k F(TM @I S) I’ F(Kerp). 

The elements of the kernel of 9 are called mistor spinors. A spinor field cp is a twistor spinor 

if and only if it satisfies the twistor equation 

v;qJ+~x.D(o=o 
17 

for each vector field X, where D is the Dirac operator. Each twistor spinor cp defines a conformal 
vector held V, on M by 

s( v,, X) = ?+’ (X . cp3 cp). 

Twistor spinors were introduced by R. Penrose in General Relativity (see [32,33,3 11). They 

are related to Killing vector fields in semi-Riemannian supergeometry (see [ 1 I). In Riemannian 

geometry the twistor equation first appeared as an integrability condition for the canonical 

almost complex structure of the twistor space of an oriented four-dimensional Riemannian 

manifold (see [21). In the second half of the 80th Lichnerowicz and Friedrich started the 
systematic investigation of twistor spinors on Riemannian spin manifolds from the viewpoint 

ofconformal differential geometry. Nowadays one has a lot of structure results and examples for 
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manifolds with twistor spinors in the Riemannian setting (see [28,27,29,10,30,11,6,13,15,14, 

20,2 1,22,23,24]). Crucial results were obtained by studying the properties of the conformal 

vector field V, of a twistor spinor q. Twistor operators also turned out to be a useful1 tool 

in proving sharp eigenvalue estimates for coupled Dirac operators on compact Riemannian 

manifolds (see, e.g., [4]). 

In opposite to this, there is not much known about solutions of the twistor equation in the 

general Lorentzian setting. In 199 1 Lewandowski studied local solutions of the twistor equation 

on 4-dimensional space-times, [26]. In particular, he proved that a 4-dimensional space-time 

admitting a twistor spinor p without zeros and with twisting conformal vector field V, is locally 

conformal equivalent to a Fefferman space. On the other hand, on 4-dimensional Fefferman 

spaces there exist local solutions of the twistor equation. The aim of the present paper is the 

generalisation of this result. 

Fefferman spaces were defined by Fefferman [9] in case of strictly pseudoconvex hyper- 

surfaces in c’, its definition was extended by Burns, Diederich, Shnider [7], Farris [8] and 

Lee [25] to general non-degenerate CR-manifolds. Sparling [34], Lee [25], Graham [ 121 and 

Koch [19] studied geometric properties of Fefferman spaces. A Fefferman space is the total 

space of a certain S’-principal bundle over a non-degenerate CR-manifold A4 equipped with a 

semi-Riemannian metric defined by means of the Webster connection. By changing the topo- 

logical type of the S’-bundle defining the Fefferman space, we can prove that there are global 

solutions of the twistor equation on the (modified) Fefferman spaces of strictly pseudoconvex 

spin manifolds of arbitrary dimension. These solutions have very special geometric proper- 

ties which are only possible on Fefferman spaces. More exactly, we prove (see Theorem 1, 

Theorem 2): 

Let (M , , *‘+I T,o 6) be a strictly pseudoconvex spin manifold and (fi, he) its Fefferman 

space. Then, on the Lorent&z spin manifold (fi, ho) there exist a non-trivial twistor spinor 

C$ such that 

1. The canonical vectorjeld V, of 4 is a regular isotropic Killing vectorjeld. 

2. V# . 4 = 0. In particular, 4 is a pure or partially pure spinorjeld. 

3. ““$4 = ic$, c = const E Iw \ (0). 
On the other hand, if (B, h) is a Lorentzian spin manifold with a non-trivial twistor spinor 

satisfying l.-3., then B is an S’ -principal bundle over a stricly pseudoconvex spin manifold 

(M, TIO, 19) and (B, h) is locally isometric to the Fefferman space (@. he) of (M, TIO, Q). 

In particular, if (M 2n+‘, TIO, Q) is a compact strictly pseudoconvex spin manifold of constant 
Webster scalar curvature, then the Fefferman space (fi, hH) of (M, TIO, Q) is a (2n + 2)- 

dimensional non-Einsteinian Lorentzian spin manifold of constant scalar curvature R and the 

twistor spinor 4 defines eigenspinors of the Dirac operator of (@, ho) to the eigenvalues 

ztiJ(2n + 2)R/(2n + 1) with constant length. 

After some algebraic prelimeries in Section 2 we introduce in Section 3 the notion of 
Lorentzian twistor spinors and explain some of their basic properties. In order to define the 

(modified) Fefferman space we recall in Section 4 the basic notions of pseudo-hermitian ge- 
ometry. In particular, we explain the properties of the Webster connection of a non-degenerate 

pseudo-hermitian manifold, which are important for the spinor calculus on Fefferman spaces. 
In Section 5 the Fefferman spaces are defined and in Section 6 we derive a spinor calculus 



for Lorentzian metrics on S’-principal bundles with isotropic tibre over strictly pseudoconvex 

spin manifolds. Finally, Section 7 contains the proof of the Theorems 1 and 2 which state the 

properties of the solutions of the twistor equation on Fefferman spaces of strictly pseudoconvex 

\pin manifolds. 

2. Algebraic prelimeries 

For concrete calculations we will use the following realization of the spinor representa- 

tion. Let Cliff ,I,~ be the Clifford algebra of (R”, -(. . .)A), where (. . .)A is the scalar product 
:Y. ?)A := -_uivi - .. . - xk_& + xk+Iyk+l + . . . + x,,~,,. For the canonical basis (cl. . . e,.) 

of R” one has the following relations in Cliff,,.k : ei . e,j + ej e; = -2fE;J;.j, where 

-1. .i <k; 
F, = 

I. ,i > k. 

I>enote 

i. j <k: 
T, = 

1. .i > k 

and 

Then an isomorphism 

$zJrl.k : Cliff:,,., + M(2”‘: c) 

i\ given by the Kronecker product 

$2 ,,,. ~(e2,-1)=r~.,~1 E@...@EEU@TT.~~@TT, 

&!,lr.~ (~‘2,) = rlj E @ . ’ ’ @E@V@T@...@T. 
-- 

j-~ I 

(1) 

Let Spino(n. k) c Cliff,,,l, be the connected component of the identity of the spin group. The 

spinor representation is given by 

x,,.x = @,,.k Isp,n,,(tr.kj : Spin&. k) --+ CL(@“” ). 

We denote this representation by A,,,k. If IZ = 2rn. A,,,,,, splits into the sum Az,,,,x = AZ,,,, @ 

A2W.h ’ where A$,,., are the eigenspaces of the endomorphism &,,,,~ (ei . . . CY,,~) to the eigenvalue 
Zl “‘I -‘. Let us denote by u (6) E @’ the vector 

and let 

u(S,. . . . . S,,,) = Ll(J,) c3 . . c3 L1(&,,). 6, = il. (2) 
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Then 

( u(6,,...,S,) 1 fisj =*I> 
,j=l 

is an orthonormal basis of At,,k with respect to the standard scalar product of C’“‘. 

3. Lorentzian twistor spinors 

Let (Mn,‘, g) be a connected space- and time-oriented Lorentzian spin manifold V of di- 

mension y1 3 3 with a fixed time orientation c E l?(TM), g(c, c) = -1. We denote by S the 

spinor bundle of (Mn.‘. g), by V ’ : T(S) --+ r(TM* @ S) the spinor derivative given by the 

Levi-Civita connection of (M”, ’ , g) and by D : r(S) --+ r(S) the Dirac operator on S. 

On S there exists an indefinite scalar product (. , .) of index i dim S such that 

(X. cp, 1cr) = (vo, x. lb), (3) 

X(cp7 llr) = (V&7 1cr) + (cp, V$N (4) 

for all vector fields X and all spinor fields cp, $ E f’(S). Furthermore, there is a positive definite 

scalar product (. , .)c on S depending on the time orientation $ such that 

for all cp, @ E r(S) (see [3, Chap. 1.5,3.3.1]). Let p : TM@,S + Ker p denote the orthogonal 

projection onto the kernel of the Clifford multiplication p (with respect to (. , .)); p is given 

by 

where (s,, . . . , s,) is a orthonormal basis of (M, g) and &k = g(sk, sk) = fl. 

Definition 1. The twistor operator !!I of (Mns’, g) is the operator given by the composition of 

the spinor derivative with the projection p 

9 : r(S) 2 r(T*M @ S) L r(TM @ S) -% r(Kerl-1). 

Locally, we have 

Definition 2. A spinor field 40 E r(S) is called a twistor spinor, if ZIq = 0. 

Let us first recall some properties of twistor spinors which are proved in the same way as in 
the Riemannian case. 



Proposition 1. (16, Th. 1.21) For a spinor,field cp E r(S) thefillmving conditions are eyui\vr- 

Irnt: 

I ) cp is a trz~istor .spinnr; 

3) q~ .wtisfies the so-called twistor equation 

(0) 

4) there e.rists u spinor,field I/I E r(S) such that 

3 = g(X, X)X. v&G (8) 

jot- ~111 \tector,field.s X ctith lg( X. X) 1 = 1. 

Proposition 2. (16, Th. 1 .71) The twistor opercltor is confi,rmall~ cowriant: Let jj = ~‘~,q be 

(I cmfimncdly equi~ulent metric to g and let II he the twistor opemtor of (M. j ). Therl 

Lj(jj = e-“l’ L)(eT. cp), 

\~‘hrrv _ : S + 3 denotes the canonical ident(fication of thcl spinor hmd1e.s (!f (M. s) mtl 

(M. ,q,. 

Proposition 3. ([6. Cor. 1.21) The dimension of the spme of tnlistor spir1or.s is cor~fi~rmulr~\ 
iworitrnt and hounded b> 

Proposition 4. (16. Cor. I .31) Let cp E T(S) be ~1 non-triilial ttvistor .spinor and x0 E M. Th~rl 

V)(SO) # 0 or Dcp(x~) # 0. 

Lxt R be the scalar curvature and Ric the Ricci curvature of (A+“‘,‘, g). If dim M = II ,Z .3. 

K denotes the (2. O)-Schouten tensor 

K(X. Y) = ,,‘i{&- Ric}. 
We always identify TM with TM* using the metric g. For a (2,0)-tensor field B we denote 
hy the same symbol B the corresponding (1. I)-tensor field B : TM - TM. g( B(X ). Y) := 

H( X. Y). Let C be the (2, 1 )-Schouten-Weyl tensor 

C(X. Y) = (VxK)(Y) - (VyK)(X). 

Furthermore, let W be the (4.0)-Weyl tensor of (M. g) and let us denote by the same symbol 
the corresponding (2. 2)-tensor held W : A’M + A’M. Then we have 
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Proposition 5. ([6, Th. 1.3, Th. 1.51) Let cp E T(S) be a twistorspinorand q = Y A Z E A2M 

u two-form. Then 

1 n 
D2q = - -Rqo, 

4n- 1 
(9) 

ViDp = inK(X) . cp, (10) 

W(v) . cp = 0, (11) 

W(q). Dp = nC@‘, Z). cp, (12) 

(Vx W)(q) . q = X. C(Y, Z> . cp + ,‘(X A W(q)) . Dq. (13) 

If the scalar curvature R of ( M”xt, g) is constant and non-zero, equation (9) shows that the 

spinor fields 

are formal eigenspinors of the Dirac operator D to the eigenvalue ki,/, R/(n - 1). 

A special class of twistor spinors are the so-called Killing spinors cp E r(S) defined by the 

condition 

V&=hX.cp for all X E r(TM), 

where h is a constant complex number, called the Killing number of cp. Using the twistor 

equation and the properties (9) and (10) one obtains that for an Einstein space (M”,‘, g) with 

constant scalar curvature R # 0 the spinor fields $* are Killing spinors to the Killing number 

h = F$JR/n(n - 1). Hence, on this class of Lorentzian manifolds each twistor spinor is the 

sum of two Killing spinors. Therefore, we are specially interested in non-Einsteinian Lorentzian 

manifolds which admit twistor spinors. 

To each spinor field we associate a vector field in the following way. 

Definition 3. Let p E r(S). The vector filed VP defmied by 

g(V,, X) := -(X . cp, cp), x E r(TM) 

is called the canonical vector field of cp. 

Because of(l), V, is a real vector field. By Zero(q) and Zero(X) we denote the zero sets of 
a spinor field 40 or a vector field X. 

Proposition 6. 1. Zero(p) = Zero( VP) for each spinor$eld cp E r(S). 

2. If n is even, n < 6 and C+J E T(S*) is a half spinor, then V9 . cp = 0. In particular, VP is 

an isotropic vector$eld. 

Proof. Let p E I(S). From (5) follows for the time orientation 6 

&VP? 6) = -($ vo, cp) = -(< . t . cp? VP>6 = -_(vD, cp)t. 

Since the scalar product (. , .)c is positive definite, th’ is shows that Zero( VP) = Zero(q). The 



second statement is proved by a direct calculation using a basis representation of cp and VP and 

the formulas (1) and (2). 0 

In the Riemannian case Proposition 6.1 is not true. There exist non-trivial spinor fields q, 

such that the canonical vector field V, is identically zero (see [2 11). On the other hand, the zero 

set Zero(‘) of a Riemannian twistor spinor is discrete 16, Th. 2.1 ]. This is in the Lorenkarr 

setting not the case. 

We call a subset A c M isotropic, if each differentiable curve in A is isotropic. 

Proposition 7. Let cp E T(S) br a twistor spimr: Then the zero .set of’cp is isotropic. 

Proof. Let y : I - Zero(q) be a curve in Zero(q). Then cp(y(t)) = 0 and therefore 

V,,cr,q = 0. From the twistorequation (6)itfollows v(t).Dcp(y(t)) E 0. Since by Proposition4. 
l)cp(y(t)) # 0, p(r) is isotropic for all t E I. C! 

Proposition 8. Let cp E r(S) be a twistor spirwr: Then V, is II cor?fi)rmal wctor,fjrld o~ld tlw 

L./r dcriwtive satisfies 

Lv, s = -i Re (cp, Dq) g. 

Proof. Let V := V,. From the definition of V, it follows 

(L\,g)tX* Y) = g(VxV, Y) + g(X. vy V) 

= X(g(V. Y)) - g(V. VXY) + Y&(X. V,) - g(VyX, vi 

= -X(Y . cp, cp) - Y(X. p. cp) + (VXY cp. cp) + (VYX (Q. y) 

“” -(VxY . cp. cp) - (Y . v&l, p) - (Y . cp, V$p) - (VyX . cp. c/9) 

-(X . V,s% cp) - (X . cp, V$f) + (VXY . cp, cp) + (VyX p. cp) 

‘2 -(Y . v&G + x. v,cp, 

I’sing (7) we obtain 

(L g)(X. Y) = --g(X Y)Re(p,‘Dq) 

$0) - ($0, Y . v;(p + x . V&f). 

4 
1’ 

17 ( 
. u 

From Proposition 8 follows that for each twistor spinor cp. div( V,) = -2 Re (cp. Dp). Fw 

the imaginary part of (cp. D~J) we have 

Proposition 9. Let cp E r(S) br a twistor spimy: Therl the ,furzc.tion C, := Im(p, Dcp) ;.c 
(~c~tzZ.stm71 on M. 

Proof. Because of (3) the function (Y . (I, +) is real for each vector field Y and each spinoi 

ticld I.,/?. Furthermore, 

X(Dp. cp) ‘2 (V;Dq, cp) + (Dq. V;cp) 

%‘(‘) ; (K(X). y, y) - ,I (Dq, X Dcp). 

Hence X( Dep. cp) is a real function. Therefore, C, = Im(cp, Dcp) is constant. q 
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Let us denote by C the (3,0)-Schouten-Weyl tensor C(X, Y, Z) = g(X, C(Y, Z)). 

Proposition 10. Let cp E T(S) be a twistor spinor: Then 

l.V, J c=o. 

2. If n = 4, then V, A W = 0. 

Proof. From (11) and (12) we obtain 

C(V,, x, Y) = g(V,, C(X, Y)) = -(C(X, Y) . cp, v) 

= -; (W(X A Y) . &. VP) = $0, W(X A Y). q) = 0. 

Let cp = au (E, 1) + bu (-&, - 1) E r (S’) be a half spinor on a 4-dimensional manifold. Then 

by a direct calculation using (1) and (2) we obtain 

V, = (Ial + lb12)sl + (Ial* - lb12)s2 - 2Re(iah)ss - 2&Re(ab)sd. 

Hence, 

W(Vq, pi, “j, ok) = (Ial* + Ib12)Wlijk + (Ial - lb12)W2i.~~ 

- 2Re(ia&) Wxijk - 2&Re(ab) Wbi,jk. 

On the other hand, from the basis representation of 

(14) 

result the equations 

0 = (W12jk - EiW34jk)a + (iwljjk - Ew24jk - Ew14jk + iw14jk) . b, 

0 = (-wl2,jk + &iWj4,jk)b + (-iWl_?jk + FW24jk - FW14jk + iW2jjk)a. 

(15) 

(16) 

Then looking at the real and imaginary part of the equations ( 15) G f (16) & and ( 15) & f ( 16) ii 

one obtains W ( VP, s;, “,j, Sk) = 0. 0 

4. Pseudo-hermitian geometry 

Before we define the Fefferman spaces we recall some basic facts from pseudo-hermitian 

geometry in order to fix the notations. The proofs of the following propositions are obtained 

by easy direct calculations (see [35,5]). 

Let IVIES+’ be a smooth connected manifold of odd dimension 2n+ 1. A complex CR-structure 

on M is a complex subbundle T,o of TM@ such that 

1. dim@ T,o = n, 

2. TIO n TIO = 101, 
3. [r(T,o), T(Tlo)] c r(T,o) (integrability condition). 
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A reul CR-structure on M is a pair (H, J), where 

I. H c TM is a real 2n-dimensional subbundle, 

2. J : H ---+ H ic an almost complex structure on H : J’ = - id, 

3. If x. Y E T(H), then [JX, Y] + [X, JY] E T(H) and N./(X, Y) := .I([.lX. YI -I- 

IX. .I Y 1) - [ JX. JY ] + [X, Y] = 0 (integrability condition). 

Obviously the complex and real CR-structure correspond to each other: If TICI c TM’ is 

a complex CR-structure, then H := Re(TIo ~3 T,(,)), J(U + 0) := i(U - 0) defines a real 

CR-structure. If (H. J) is a real CR-structure, then the eigenspace of the complex extension of 

.I on H” to the eigenvalue i is a complex CR-structure. A CR-manifold is an odd-dimensional 

manifold equipped with a (real or complex) CR-structure. Let (M. Tl,,) be a CR-manifold. The 

hcrmitian form on Tlo 

L : TIC, x Tlo + E := TM“,‘(T,, @ Tlo), L(U. V) := i[U, VI,. 

Lrhere XE denotes the projection of X E TM” onto E, is called the Levi.form of (M. T,(j). 

The CR-manifold is called non-degenerate, if its Levi form L is non-degenerate. A nowhere 

vanishing l-form 8 E B’(M) is called a pseudo-hermitinn structure on (M. TIN), if HIH = 0. 

( M. Tlo, H) is called a pseudo-hermitian manifold. There exists a pseudo-hermitian structure 0 
on (M. TIo) if and only if M is orientable. Two pseudo-hermitian structures 0. 6 differs by ,.I 

real nowhere vanishing function ,f E P(M): 6 = f.0. Let (M. TIC), H) be a pseudo-hermitian 

manifold. The hermitian form .&I : TICI x TICI ----+ c 

Le(U, V) := -ide(U, v) 

i\ called the Levi ,fbr-rn of (M, TAO, 0). Obviously, we have @(L(U, V)) = Lo(U, V). The 

pseudo-hermitian manifold (M, T,o, 0) is called strictly pseudoconvex. if the Levi form L,, 

ix positive definite. If the pseudo-hermitian manifold (M, TAO, 0) is non-degenerate. then the 

pseudo-hermitian structure Q is a contact form. We denote by T E r( TM) the c,hczruc,tcri.stic. 

lwtor,field of this contact form, e.g., the vector field uniquely defined by 

H(T) = 1 and T A dB = 0. 

From now on we always suppose, that (M, TIC). f3) is non-degenerate. If M is oriented, we 

always choose 8 such that a basis of the form (Xl, JX,. , X,. JX,,, T) is positive oriented 

on M. We consider the following spaces of forms: 

A”.“M := {co E AqM” 1 V A w = 0 VV E TIcI}, 

A”,“M := (a, E AYM” 1 V A w = 0 VV E T,(,], 

A”.‘lM := span{o A (T 1 w E A”.“M, c~ E A”.“M}. 

A;,““M := {u E A”,qM I T A u = 0). 

h‘ow. let us extend the Levi form of (M. Tlo, Q) to TM” by 

L& v, := L@(U, V) = LH(V, I/). L#(U, V) := 0. LH(T, .) := 0. 

where U. V E Tlo. 
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Proposition 11. Let Lo : TM” x TM’ + @I be the Levi form of (M, T,o, 19) and let T be 

the characteristic vector$eld of 0. Then 

[T, Zl E r(Tlo ~3 TIO> if Z E rV10) 0~ Z E ~VIO), (17) 

Le([T, Ul, V> + Lo(u, [T, VI> = T(Lo(U, VI) Vu, V E ~U’IO), (18) 

LetIT, ul> V> = LOW, VI, u> vu, v E rvlo), (19) 

&UT, Ul, v> = LOUT, VI, 0) vu, v E T(T,a). (20) 

If we consider the Levi form LQ as a bilinear form on the real tangent bundle, we obtain a 

symmetric bilinear form on TM which is non-degenerate on H. 

Proposition 12. Let (M *I+’ T,o 0) be a non-degenerate pseudo-hermitian manifold and 

(H, J) the real CR-structure,’ dejked by TIO. Let X and Y be two vector fields in H. Then 

the Levi form Lo : TM x TM --+ II% satisfies 

LQ(X, Y) = dQ(X, JY), (21) 

Le(JX, JY) = LQ(X, Y) and Lo(JX, Y) + LQ(X, JY) = 0, (22) 

Le([T, Xl, Y> - LOW’, Yl, X> = Lo([T, J-U, Jr> - LOW”, JYI, JX>. (23) 

On non-degenerate pseudo-hermitian manifolds there exists a special covariant derivative, 

the so-called Webster connection, which was introduced by Tanaka [35] and by Webster [37]. 

Proposition 13. Let (M, TAO, 0) be a non-degenerate pseudo-hermitian manifold and let T be 

the characteristic vectorjield of 0. Then there exists a uniquely determined covariant derivative 

VW : T(T,o) --+ r(T*M’ @ Tlo) on TAO such that 

1. V w is metric with respect to LQ: 

X(LH(U, V)) = Le(V,wU, V) + LtI(U, v;v>, U, V E r(Tlo), X E QTM”) (24) 

2. VFU = pr,,]T, Ul, (25) 

3. V,WU = prto[V, U], (26) 

where pr,, denotes the projection on Tlo. Furthermore, VW satis$es 

vrv - v,wu = [U, V], U, V E r(Tlo). (27) 

Now, we extend the Webster connection to TM@ by V w U : = V w U and V w T : = 0. 

Proposition 14. The torsion TorWofthe Webster connection r(TM”) VW\ r(T*M”@TM”) 

satisJes 

TorW(U, V) = TorW(U, v) = 0, (28) 

TorW(U, v) = iLH(U, V) T, (29) 

TorW(T, U) = -proi[T, U], (30) 

Tor 
w - 

(T, U) = -prio]T, Ul, (31) 

where pro, denotes the projection onto Tlo, plo the projection onto T,o and U, V E T(T,o). 



Let (M, T,o. Q) be a non-degenerate pseudo-hermitian manifold and let (p. 4) be the signa- 

ture of (Tlo, ,!$I). Then go := Lo + 8 o 8 defines a metric of signature (2~. 2y + 1) on M. 

Proposition 15. Let (M. T 10, 0) be a non-degenerate pseudo-hermitian manifi)ld. Therl the 

Webster connection V w : I- (T M) + r (T * M @ TM j considered 011 the real tmgerlt hundir 
is metric with respect to gfi and the torsion ?f’V w is given by 

TorW(X, Y) = &(JX, Y) . T ,fi)r X, Y E T(H). 

Tor”(T. X) = -${[T. Xl + J[T. JX]} fi)r X E T(H). 

Furthermore, on r ( H) 

(311) 

(33) 

v I+ oJ=JoV”. (34) 

Now. let RVM E T(A?M” @I End(TMC, TM”)) be the curvature operator of V” 

I?“‘+ (X. Y) = [V,w, Vyw] - v,!& 

Then the (4, 0)-curvature tensor x2” 

??(X. Y, z, V) := g&F(X, Y)Z, W). X. Y. Z. W E TM” 

has the following symmetry properties: 

Proposition 16. Let X, Y. Z, V E TM”, A. B, C, D E TIO. Then 

P(X. Y, z. V) = -P(Y, x, z, V) = -ERW(X. Y. v. Z). 

P(X. Y. z. V) = zRW(X. r, 2. v,, 

5?(A. B, C. 0, = FRw(C, B. A, 6,. 

%“(A. B. . .) = 0. 

Let w E A’M’ be a complex 2-form and G : TIo -+ TIo the uniquely determined C- 

linear map with w(U, v) = Lo(GU, V), I/, V E T 10. Then the d-trace of w is defined by 

Tr,, (r) := Tr(&). If (Z,, . . . . Z,,) is an unitary basis of (Tlo, Lti), E:X = Le(Zk. Z,). then 

Tre w = c F, w(Z,, ?I,). 
u-1 

The (2, O)-tensor field 

RicW := Trj:.“’ zw = 2 ~~z~(. . . . .zx, ZJ 
ol=l 

is called the Webster-Ricci tensor, the function R w := TrH Ric w is the Webstersc,alarcur~latL~r~. 

Proposition 16 shows that RicW E A’,‘M, RicW(X, Y) E iIw for all X, Y E TM and that RW 

is a real function. 
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5. Fefferman spaces 

Let (A42ni’, Tte) be a CR-manifold. The complex line bundle K := Anfl,oM of (n + l,O)- 

forms is called the canonical bundle of (M 2nf’ Tro). lRf acts on K * = K \ {0} by multiplication. 

Let F := K*lR+. Then (F, IT, M) is the S’-principal bundle over M associated to K. We call 

(F, J-C, M) the canonical S’-bundle of (M, Ttc). Now, let (M, Tta, Q) be a non-degenerate 

pseudo-hermitian manifold and VW : r(T,o) + r (T*M” ~3 Tlo) its Webster connection. 

V w allows us to define a connection A w on the canonical S’-bundle F in the following way: 

Lets = (Zt,..., Z,) be a local unitary basis of (Tto, Lo) over U c M and let us denote by 

w, := (was) the matrix of connection forms of VW with respect to s 

vwz, = CWaBZg. 
fi 

(Zl, . f. 9 z,, 5,. . . , Z,,T)isalocalbasisofTM’overU.Let(Q’,..., Qn,Q’ ,..., &,Q) 

be the corresponding dual basis. Then 

i=, :=Qr\Qt A...AQ~: U + K 

is a local section in K. We denote by r, := [tJ] the corresponding local section in F = K*/R+. 

The Webster connection VW defines in the standard way a covariant derivative V K in the 

canonical line bundle K such that 

VK?, = -Ew~,.?,$ = -Trw,?.?,. 
01 

Since VW is metric with respect to Lo, the trace Tr o, is purely imaginary. Hence VK is 

induced by a connection A w on the associated St-principal bundle (F, n, M; S’) with the local 

connection forms 

7,*AW = - Trw,. 

Let G w be the curvature form of the connection A w on F. Since n w is tensionell and right- 

invariant, it can be considered as 2-form on M with values in I’IK. Over U c M 

Qw = dArs = -Trdo,. (35) 

holds. On the other hand, 

Hence, Ric w = Tr dwy - Tr(w, A w,) = Tr dw, . From (35) it follows 

Qw = -RicW. (36) 

The connection AW on the canonical St-bundle (F, n, M) is called the Webster connection 

on F. Two connections on an S’ -principal bundle over M differ by an 1 -form on A4 with values 



in iiw. The connection 

XI 

W 
i 

A,,:=A - R”Q 
201 + 1) 

on the canonical S’-bundle (F, r. M) is called the Fqfernmz connection on F 

Let us consider the following right-invariant metric on t;: 

4 
hti := 37*Lg - ip 

17 + 2 
rr*$ o Atr. 

where 3 denotes the symmetric tensor product; 120 is called the Fefernzan metric on F. If 

(Tjo, L~)isofsignature(p, y),thenhH hassignature(2p+l, 2y+l).Inparticular,if(M. Tl,j, H) 

is strictly pseudoconvex, ho is a Lorentzian metric. The semi-Riemannian manifold (F. hi, 1 

is called the F$erman space of (M, Tlo. 62). The fibres of the canonical S’-bundle F arc 

isotropic submanifolds of (F. ho). From the special chaise of the Fefferman connection A,, 

in the definition of hH results that the conformal class [ho] of the metric ho is an invariant of 

the oriented CR-manifold (M. T,“), e.g., if 6 = f 8, ,f > 0, is a further pseudo-hermitian 

structure on (M, Tlo), then h,- = ,f he (see 12.5, Th. 5.17.1). We remark that Fefferman spaces 

arc never Einsteinian. 

In the following we always assume that (M. T I(). 0) is strictly pseudoconvex. In order to 

find global solutions of the Lorentzian twistor equation on Fefferman spaces it is necessary to 

change the topological type of the canonical S’-bundle. 

Proof. Let U(/z) cf SO(2n) -+ SO(2n + 1) be the canonical embedding of U(n) in 

So(2rl + 1). 

fH := ((Xl, JX,. . . X,,, JX,,. T) 1 (Xl, ./XI. . . . . X,,, JX,,) ON-basis of (H, L,,)} 

is an lJ(/l)-reduction of the bundle PM of SO(2n + 1)-frames of (M. gH). Let (QM, .j’,,,) be a 

spin structure of (M. go) and let us denote by (&. ,fH) the reduced spin structure 

G)H := .f,‘(PH). .fH := .f,dQH 

Now. the proof of Proposition 17 is a repetition of Hitchin’s proof of the fact that each spin 

structure on a Ktihler manifold defines a square root of the canonical bundle (see [ 161). Since 

we need some notation later on, we repeat the idea of the proof. 

Let e : U(n) + Spin(2n)’ = Spin(2n) xx1 S’ be defined by 

i37) 
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where t.f~, . . . , .f,d is an unitary basis of C’” such that A,fk = eiH” fk and Jo : C2” + @” is the 

standard complex structure of C”. Then we have the following commutative diagram: 

sl jlc Spin(2n)C L Spin(2n) 

I 
-1 “? c 

t] A\ Ji 

s’ - 
det 

U(n) 7 SO(212) 

where i, jt , jz denote the canonical embeddings and h : Spin(2n) + SO(2n) is the universal 

covering of SO(2n). Hence, for each A E U(n) and each square root of det(A) one has 

h-‘(A) := jlh-‘(i(A)) = *l(A) Del(A))“*. 

Now, let ((Ump7 gap : U,p + A-‘(U(n)))},,, are the cocycles defining the reduced spin 

structure ( QH, ,fH). Then on lJryb we choose a square root h,, : U,p -+ S’ of the determinant 

of h(g,p)-’ such that 

hip = Det(~(s&Y’ and g,~ = ~KY,B)) . hap- (38) 

((U,p, h,~)}~p are cocyles defining a square root (fi, n, M) of the canonical S’-bundle 

(F,n, M). 0 

Let (v’?. n, M) be the square root of the canonical S’-bundle defined by the spin structure 

of (M, go). Then the Webster connection A w on F defines a corresponding connection Afi on 

@: Let {s(y : U, + QH) be a covering of QH by local sections with the transition functions 
. - 

&/?I &z = L f3 i: . gap. Let s, = f~ (S,) E PH and denote by & : 17, + fl the local sections 

in fi with transition functions holy, 

defined by (38). Then the local connection forms of Aa are given by 

&*A& = i rtAW = -iTro,Yo 

and the curvature of Afi is 

~~=~~“=-~Ric” 

The connection A$ on fi defined by 

Ai := An - 4(n: I) RW. 19 

is called the Feflerman connection on fi and the Lorentzian metric 

8 
he := n*Le - ip 

n+2 
n*0 o AJ 

(39) 

(40) 

is the Fefferman metric on fi. As we will see in the next section, the spin structure ( QM, f~) 

of (M, ge) defines a canonical spin structure on (fi, he). 



Definition 4. The Lorentzian spin manifold (@. he) is called the Fcfferman spucr of the 

strictly pseudoconvex spin manifold (M, Tlo, H. (Q,M. .f~)). 

6. Spinor calculus for S’-bundles with isotropic fibre over strictly pseudoconvex spin 
manifolds 

Let ( MZ”+’ . TIC). 0) be a strictly pseudoconvex manifold and let ( QM. ,f~) be a spin structure 

of‘ (M. g,,). Furthermore, consider an S’-principle bundle (B. r. M: S’) over M. a connection 

A on H and a constant c E IR\(O]. Then 

II := hA.< := x*Le - icn*0 o A 

is ;I Lorentzian metric on B. In this section we want to derive a suitable spinor calculus for the 

Lorentzian manifold (B, h). 

Let N E T(T B) be the fundamental vector tield on B defined by the element 2i/(, E iiw of 

the Lie algebra iR of 5” 

Denote by T* E r(T B) the A-horizontal lift of the characteristic vector field T of H. Then N 

and T” are global isotropic vector fields on B such that h (N. T*) = I. Consider the global 

vector fields 

sI = &N - T*) 
43 

and sz = &(N + T*). (41) 

Then 

h(s,,s,) = -1. h(s?. a) = 1, 12(s,. 0) = 0. 

Let the time orientation of (B, h) be given by sI and the space orientation by the vectors 

(s;. XT. ./xi;. . . , X,:. JX,:)), where (X,, JX,, . . . , X,,. JX,,) E PH. and X* denotes the A- 

horizontal lift of a vector field X on M. Now, let ( QH. fH) be the reduced spin structure of 

(hf. gij ) defined in the previous section. Denote by 

SH := QH xi. l(u(rr)) AMI 

the corresponding spinor bundle of (H, Lo). Obviously, the bundle 

pH := ((~1. ~2. XT, JXT. . . . . X,T, JX,T) / (X,, JX,, . . X,,. JX,,) on-basis of (H. L,,)} 

is an U(rl)-reduction of the frame bundle PB of (B, h) with respect to the embedding U(H) q 

SO~~(2rz + 2, 1). Since eH % n*PH we have Pu % ,x*PH XU(,,) S00(2n + 2. 1). Therefore, 

QK := n*QH xi ‘(U(R)) Spino(2n + 2, I). .fB := [hi. Al 

is a spin structure of the Lorentzian manifold (B. 11). The corresponding spinor bundle S on 

(B. h) is given by 

5’ = n*eH Xi '(u(rl)) A2,1+2.1. (42) 
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Proposition 18. Let Sn be the spinor bundle of (H, Lo) over M. Then the spinor bundle S of 

(B, h) can be identijed with the sum 

where the Clifford multiplication is given by 

s1 . (cpt $1 = (-1cI, -PO>, (43) 

s2. (40,$) = (-ti,40), (44) 

x* . (40, ti) = (-X .q, X . ti), X E H. (45) 

In particular, 

N . (403 e> = w%k 01, (46) 

T* . (40, ti) = (0,1/z,). (47) 

Furthermore, the positive and negative parts qf S are 

s+ = 2&S; @ n*s,, s- = l&S, @ n*s;. (48) 

The indefinite scalar product (., .) in S is given by 

((P? $), (@? $), = -(ti, $)s, - (V, $)s,, (49) 

where (. , .)s, is the usual positive dejinite scalar product in Sn. 

Proof. By definition of the spinor bundle S (see (42)) we have only to check, how the Spin(2n)- 

modul Az~,+~.I decomposes into Spin(2n)-representations. Let the embedding i : Et’” + 

R2”+2.’ be given by i(x) = (0, 0, x) and let Spin(2n) q Spino(2n +2, 1) be the corresponding 

embedding of the spin groups. Consider the following isomorphisms of the representation spaces 

x : A2n+2,1 - A2n.o CB A2n,o, 

u 63 u(l) + u @ u(-1) H (u, u), 

where we use the notation of Section 2. Then formula (1) shows that 

x(et . (u 63 u(l) + u 63 ~(-1))) = (-u, -v), 

x(e2 . (u @ u(l) + u @ ~(-1))) = (u, -v), 

x(ek . (u @u(l) + u @ ~(-1))) = (-ek_2. u, ek_2. v), k > 2. 

Therefore, x is an isomorphism of the Spin(2n)-representations and (43)-(45) and because of 

(41) also the formulas (46) (47) are valid. Let 02,~+2 = et . . . ezn+2 be the volume element 
of Cliff2,+2,t and 0.12~ = et . . . ezn the volume element of Cliff ~~,a. Then using the identification 

x weobtainW2n+2.(U, u) = (-w~~.u, o.Q~~.u). According to thedefinitionof S* this shows (48). 
Because of (5) the scalar product satisfies 

((V, ti), (@Y $)) = (Sl . (V> @>, ($, IN,, 

= ((-$I) -PO>, (@3 !b>>.,, 

= -(lb3 as, - (PO, ~>s,. 0 
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In order to describe the spinor derivative in the spinor bundle S of B we need the connection 

forms of the Levi-Civita connection of (B, h). Let X, Y, Z be local vector fields on (B. h) of 

constant length and constant scalar products with each other. Then the Levi-Civita connection 

P of (B, h) satisfies 

h(VxY, Z) = ;{h(lX. Yl, Z) + h([Z. Yl, X) + h(lZ. Xl. Y)}. (50) 

For a vector Z E 7j,B we denote by Zh the projection on the horizontal tangent space and by 

2” the projection on the vertical tangent space. If X E K7(h,M, then X* E T,,B denotes the 

horizontal lift of X. Let QA E Q’(M; iIR) be the curvature form of the connection A. From the 

connection theory in principle bundles follows for vector fields X, Y on M 

[x*, N] = 0, (51) 

[x*. Y*]” = ; ic QA(X, Y) . N, (52) 

Lx*. ,*I” = [X, Y]*. (53) 

Now. let X. Y E r(H). Since [T, X] E T(H) and 

[X, Y] = pr,[X, Y] + Q([X. Y]) . T = pr,[X, Y] - dQ(X, Y) T 

we obtain from (52) and (53) 

(T*, X*] = [T, X]* -t ; ic C?‘(T, X) N, (54) 

[X*, Y*] = pr”[X, Y]* - dB(X, Y) . T* + i ic QA(X, Y) . N. (55) 

Proposition 19. Let X, Y. Z E I’(H) be vectorjields of constant lenght and constant L,, -.sccrl~cr 

products Mlith each other Then 

h(Vx*Y*. Z*) = LH(VFY. Z), 

h(VNY*. Z”) = ;dQ(Y. Z), 

h(VT*Y*. Z*) = ;{L&[T, Y], Z) - LH([T, Zl, Y) - ; icQA(Y. Z,), 

h(Vx*Y*, N) = -;dQ(X, Y), 

h(Vx-Y*. T*) = ~{LQ([T, X], Y) + Le([T, Y]. X) + $ icfi’(X. Y)}. 

h(VpT*. Z*) = -i icSl’(T, Z). 

h(VN. T*) = h(VT*, T*) = h(VN*, N*) = 0, 

h(V,,,N, Z*) = h(VNT*, Z*) = h(VT*N, Z*) = 0. 

Proof. From (SO) and (5.5) it follows 

2h(Vx1 Y*, Z*) = h(pr,[X, Y]*, Z*) + h(pr,[Z, Y]*. X*) + h(pr”[Z. X]*. Y*) 

= LH([X. Yl, z> + LH([Z, Yl, XJ + Ln([Z. Xl, Y). 

According to (32) TorW(X. Y) = Lo(JX, Y) . T. Hence, 

LH([X, Y], Z) = LQ(VFY - VFX - TorW(X. Y). Z) 

= L*(V,WY - vyx. Z). 
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Therefore, using that V w is metric with respect to Lo we obtain h( VX* Y *, Z*) = Lo (VF Y, Z). 

The other formulas follow immediately from the definition of h and (50), (51), (54) and (55). 

0 

By definition the spinor derivative on S is given by the following formula: 

Let S : U + QH be a local section in QH and s = (X 1, . . . , Xzn) = fH (S) E PH the 

corresponding orthonormal basis in (H, Lo). Consider a local spinor field q?~ = [S, u] in S. 

Then 
2n 

OS@ = [i, du] - 4 h(Vs,, S2)Sl . s2 . cp - ; Ch(Vs,, Xk*)Sl 
k=l 

2n 

+ 4 c h(VS2, XC) s2 . x; . q5 + ; c h(VX,*, x;> x; 

k=l k<l 

Xl .4 

x; .cp. 

Using the definition of SI and sz (see (41)) and Proposition 19 we obtain h (Vs, , ~2) = 0. 

Furthermore, if we denote by ak(Z) the vector field 

ak(z) := Wzs2, Xl) ~2 - h(Vzsl, Xl) SI, 

from Proposition 19 results 

ak(N) = 0, 

ak(T*) = -; ic QA(T, xk) . N, 

&(x5) = 4 dt?(Xj, &)T* - ${&([T, xj], &) 

+ LB([T, Xkl, Xj) + $ icQ’(X,j, Xk)}N. 

These formulas and Proposition 19 give the following formulas for the spinor derivative in the 

spinor bundle S of (B, h): 

Proposition 20. Let s” : U + QH be a local section in QH, s = f~(s) = (Xl, . . . , X2,?) 

and let 4 = [S, u] be a local section in S. Then for the spinor derivative of C$ we have 

V&~J = [S, N(u)] + + de* .4, 

$4 = [S, T*(u)] + ; ic(T A aA)* . N . Q, - $ ic(s2,A)* .$ 

+ ; c {M[T, xklt x,) - Le([T, xl], Xk)}X: . x;. 4, 
kil 

Vi*@ = [S, X*(u)] - i(X A de)* . T* .@ + $ ic(X _I 52”); . IV. t$ 

+ ; 2 { Le([T, xl, xk) + Le([T, x,1, x)}x; . N. 4 
k=I 

+ ; c LO(v,wxk, Xl) x,* ’ x; ’ 4, 
kd 

where 00 denotes the projection of a form cs E APM onto Ai M, a$ is its horizontal lift on B 
and the vectorfield X belongs to the set {Xl, . . . , Xzn}. 
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Proposition 21. Let (XI, . . . , X2,) be a local orthonormal basis (f (H, LH) with Xzcy == 

.I ( X2, ~, ). Denote by o ’ . . . . , g2n the dual basis of (Xl , . . . X2,!) and by ,E = (Z,, . . , Z,, I. 

/Ly = &(XzIx_l - ix?,), the corresponding local unitary basis of (TIC), LO). Consider the 

2 y0rm.Y 

b, := c { LH(IT, x,1, X,) - LH(lT, XII, xx,} oi, A o’. 
x-r/ 

d,(X) := c LN(V;Xk, X,)a” A cr’, X E H. 
!,<I 

I. b, E A:.‘(M) a/zclTr(-i b,s = 2Trw,s(T): 

2. n’,(X) E A:;‘(M) lu7dTrod.c(X) = Trw,(X). 
\!thrr-e w, is the matrix of connection forms of the Webster connection V” tisith respect 10 

, = (%I, . . . Z,,). 

Proof. A 2-form (T belongs to A’*‘M iff a(JX, JY) = a(X, Y) for all X, Y E H. From 

I‘ormula (23) of Proposition I2 follows for X. Y E (X 1, . . . . XZ,~ ) 

b,(.lX. JY) = L+([T, JX], JY) - Lo([T. JYI. JX) 

(%H([T, X], Y) - L#([T, Y], X) 

= b,s(X, Y). 

‘Therefore, 6, E AA.’ M. Furthermore, 

‘~{LII([T. X2,-11.&,) -- b~UT.Xzul> Xzu-~d}. =/ 

Inserting X2o-I = (Z, + &)/2/z, XZ~ = i(Z, -- ?I,)/& one obtains 

TrH b,, = 2 (Ln(lT, .&I. Z,) - Lti([T. .%I, 2,)) 
LI=l 

= 2i Aim { Le(prlOIT, Z,,l, Z,)} 
u=l 

,I 
= 2i 

c ImL0(VFZ,, Z,)) 
lY=l 

= 2i Im(Trw,v(T)). 

Since 0” is metric with respect to Lg, we have L~,B + tij(y = 0. Hence, w,,(T) is imaginary. 
Therefore, Tru b, = 2Trw,(T). 
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According to formula (34) of Proposition 15 and formula (22) of Proposition 12 we have for 

Y,ZE{X ,,..., Xzn) andX E H 

d,(X)(JY, JZ) = Le(V,WJY, JZ) = L&JV;Y, JZ) = Le(V,WY, Z) 

= d,(X)(Y, Z). 

This shows that d,(X) E Aa,’ (M). Furthermore, 

_ 2 {wTZa~ zY> - LH(Vg,, 2,)) 1 
=;i 

a=1 

= i ImTrw,(X) 

= Trw,(X). 0 

Next we proof a property of the spinor bundle SH of (H, Lo), which is very similar to the 

properties of the spinor bundle of Kahler manifolds (see [IS]). 

Proposition 22. Let (M 2n+’ , TIO, (3) be a strictly pseudoconvex spin manifold and (fi, he) 

its Feflerman space. Then the spinor bundle Sn of (H, LB) has the following properties: 

1. SN decomposes into n + 1 subbundles 

II 

SH = @ S(-n+2r)i3 
r=O 

where Ski is the eigenspace of the endomorphism dQ. : Sn -+ Sn to the eigenvalue ki. The 

dimension of Ski is ( Cn+:j,2). In particular, there are two 1 -dimensional subbundles SEni, F = 

fl, ofS, satisfying do . Js,,~, = eni . Ids8fl,. 

2. If (T E AA”M, then 

0 . Is,,, = E . Trg(a) . IdsFnl. 

3. The induced bundles 1S*SnBi on the Fefferman space fl are trivial. A global section 

q!rE E r(n*Sn,i) is given in the following way: 

Lets” : U -+ Qn be a local section in Qn. s the local unitary basis in (Tlo, LO), corresponding 

to fn(:) : u 4 P H. Furthermore, let fi : U -+ fi be the local section in fi defined 

by s” and let qs : flit, --+ S’ be given by p = Jmj. q~~(p>. Then 

@E(P) := [SeoN, %(P)-EU(&t.. .> El] 

defines a global section in r(n*Sn,t). 

Proof. Atj.o is a U(n)-representation, where U(n) acts by 

U(n) -% Spin”(2n) 2 GL(A;j,,). 



The element QO = Ed . e2 + . . + e2+l ez,, E Cliff;,,,, acts on A;,,,, by 

Q,. 14(FI,. . .F,,) = i( ~Ea)u(P,. . . . . &,,). 

k=l 

Hence, A* ?,,.,, decomposes into U(n)-invariant eigenspaces E,,, (Qo) of Ql to the eigenvalues 

,u, = (--II + 2r)i, r = 0, . . II. In particular, the eigenspace to the eigenvalue sni, P = 5 I, 

is I -dimensional and given by Ej,,(S&) = (E . U(E. . . . , e). By definition of l (see (37)) we 
obtain for A = diag(r”‘l . . . . r’““’ 

Cr(A)u(c, . . . , F) = 
14(&, . . . E), F = -1; 

DetA .LI(E, . . . . ~1. E = 1. 

(56) 

Hence. E,,; is the trivial U(/z)-representation and E,,; is isomorphic to the U(rz)-representation 

A”(@” ). Since the subspaces E,,, (!&) of A* 2,,,. are Invariant under the action of h-’ (U(n)) we 
obtain the decomposition 

SH = (j) s,,, . 
I-=o 

where S,,, := QH xi. ~(u(rl)) E,,, (G). 

If.? : (J - QH is a local section in QH, dH acts on SH by 

Therefore, S,,j is the eigenspace of df9. to the eigenvalue pu,. 

Now, let ‘1 = [y , LI(E. . . . ~11 E SEn;, F = fl. Denote f”(q) = (Xl.. . , X2,,) E P[,. 
X1,,, = JXluPI and s = (Z,. . . , Z,,) the corresponding unitary basis in (Tlo, ,!+,) with Z, = 

&IXS__~ - iJX2w-~). Let (Q’, . . . , Q”) be the dual basis of (Z,, . . . . Z,,) and (a’. . . . . oLJi) 

the dual basis of (Xi, . . . . Xzrr). If CJ E A;;‘M is a form of type (I. I), then 

Hence. 

“.‘I=[~.:Crr,ii(C2v-,.Clii-I+Plll.e2P).14(i. ,.... t‘) 

u#B 

I- eZcv- U(E, . . . , E) . 1 
where oulj = (T (Z, , zp ). Using formula ( 1) we obtain 

(rz,_ 1 . +_I + ezu . ezb) . ~(8. . . . , e) = 0 a # B. 

(& q-1 - ezu_j . e&3) . Lf(E. . . ‘5) = 0 a # B. 

(ezu . e2u_l - f?Za_I . ezLy) u(E, . . . . e) = -2Ei u(~. , F). 
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Therefore, 

a.rj= q,& 
[ c 

a(Z,, 2,) . U(&, . , .) E) 1 a 
Now, let us consider the section i,kE E I(n*S,,,i) defined by 

@F(P) := [s(n(p)), %(P)-EU(s, . . .? 41. 

Let S, i : I/ -+ QH be two local sections, s” = 5 g and let h : U - S’ be the function 

defined by (38): 

-e@(g)) . h = g, h2 = Det(h(g))-’ . (57) 

Then G(P) = R(P). h(~(p)) and 

1cIFCP) = G .g, cps(p)-‘u(&t.. f? &)I 

= G, q?&vg . UC&, . . .1 &)I 

= [i, p,;(p)-“h&g . U(E, . . . , &)I 

(2’ [i, cp:(p)-‘h”+‘kY(A(g)) u(E, . . . , E)] 

(56!z7) [i, c&(p)-“u(e, . . .) &)]. 

Hence, $rc is a global section in the bundle rr*S,,i on @. Cl 

7. Twistor spinors on Fefferman spaces 

Let (44 2n+‘, TIO, 0) be a strictly pseudoconvex spin manifold, (fi, rr, 44) the square root 

of the canonical S’-bundle corresponding to the spin structure of (M, ge) and ho the Fefferman 

metric on fi. Denote by $E E r(n*S~) the global sections in the bundles n*S,,i over fi 
defined in Proposition 22. Now, we are able to solve the twistor equation on the Lorentzian 

spin manifold (fi, ho). 

Theorem 1. Let S := BUSH @BUSH be the spinor bundle of (fi, he). Then the spinor$elds 

& := (+?, 0) E r(S), E = f 1, are solutions of the twistor equation on (@, he) with the 
following properties: 

1. The canonical vectorjeld V#> of c,& is a regular isotropic Killing vectorjeld. 

2. V& . & = 0. 

3. V& C& = -1 Ei &. 

4. llG& = 1. 
A 

Remark. If n is even, then 41 and 4-t are linearly independent spinor fields in S+. If n is odd 

then $1 E P(S’) and +_I E P(S-) (see Proposition 18). The second property of Theorem 1 
shows that & is a pure or partially pure spinor field (see [36]). A vector field is called regular, 

if all of its integral curves are closed and of the same shortest period. 



Proof of Theorem 1. We use the formulas for the spinor derivative in S given in Proposition 20 

for the Fefferman connection A = Ai and the constant c = 8/(n + 2). Let S : U --f Q be 

a local section and cpv : @Iv ---+ S’ the corresponding transition function in fi (see 

Proposition 22). Then for the fundamental vector field N on fi 

N(cp,) = $12 + 2)icp,, (5%) 

holds. If Y* is an Ai-horizontal lift of a vector field Y on M. we obtain using standard formula:\ 

from connection theory 

Y*(G) = -cp, ,/‘K*&‘) 

Trw,(Y) + L- 
2(n + 1) 

(59) 

where U, is the matrix of connection forms of the Webster connection with respect to the unitar!, 

basis .Y in (TIC), LH) corresponding to ,f~(?). According to Proposition 18 we have N q$ = 0. 

Therefore, from Proposition 20 and (58). (59) result 

V;& = (-; T F rW.Y(X)$p+ id,(X).+,. 0) - i(X _I dH)*.T*.qb,. 

where h, and d,,(X) are the A”‘-forms defined in Proposition 21. Since I+!J* is a section in 

7.l ks>,ii> h, and d,(X) act on $f by multiplication with R TrH h, and P Trir rf, (X). respectiveI) 

(Proposition 22). Hence, according to Proposition 2 1, 

V;,q$ = -$(X _I dQ)* . T* . &. 

Furthermore, tiIF is an eigenspinor of the action of dN on SH to the eigenvalue ~ni. Therefore, 

Vi,& = -iFi&. (601 

Because of 

Q?; =-LRicy_ ’ 
4(n + 1) 

d(R”o),, E -$ Ricf - I-- R’VdH. 
3(rl + 1) 

the curvature C$‘; of the Fefferman connection is a form of type ( 1, I). Hence, 
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Therefore, we obtain 

V&p6 = 0. (61) 

According to Proposition 18, T* . & = (O,&%/J~). If X E {Xl, . . . , X2,}, the l-form X _I d6’ 
acts on the spinor bundle by Clifford multiplication with J(X). Hence, we have 

v;*& = (0, -+5J(X). &). (62) 

Now, using si = &(N - T*), s2 = &(N + T*), we obtain 

-si . V,,“;& = s2. V,f& = X* . V&& = (0, -& Ei+,), 

whereX E {Xl,..., XZ,~). This shows, that & is a twistor spinor (see Proposition 1). 
From Proposition 18 it follows 

Furthermore, we obtain for the canonical vector field V,* 

V,* = (31 . $F, 4%) .Tl - ($2 . #Et 4%) s2 - 5 cx,* .4F, $F)Xk* 

=sifs2=1/ZN. 
k=l 

Therefore, V4P is regular and isotropic and satisfies V #5 . & = 0. Because of (60) we have 

Vc4, & = -( l/&)&i&.. It remains to show, that the vertical vector field N is a Killing vector 

field. This follows directly from the formulas of Proposition 19: 

L,vk/(Y, Z) = &(VyN, Z) + he(Y, VzN) = 0 

for all vector fields Y and Z on a. 0 

Conversely, we have 

Theorem 2. Let (B 2nf2 h) be a Lorentzian spin manifold and let cp E r(S) be a nontrivial 

twistor spinor on (B, h) iuch that 

1. The canonical vectorjeld V, of cp is a regular isotropic Killing vectorjeld. 

2. v, . cp = 0. 

3. V$?(p = iccp, c = const E lR\{O). 

Then B is an S’-principal bundle over a strictly pseudoconvex spin manifold (M2”+‘, TIo, Q) 

and (B, h) is locally isometric to the Fefferman space (fi, ho) of (M, T,o, 0). 

Proof. Since V, is regular, it defines an S’-action on B 

B x S’ + B, 

(P, eif> - Y&(P) 

where v,“(p) is the integral curve of V = V, through p and L is the period of the integral 

curves. Then M := B/S’ is an 2n + l-dimensional manifold and V is the fundamental vector 



field defined by the element 2rri/L of the Lie algebra iIR of S’ in the S’ -principal bundle 

( R, TT. M; S’ ). Now we use Sparling’s characterization of Fefferman spaces, proved by Graham 

in [I?]. Let W denote the (4, 0)-Weyl tensor, C the (3. O)-Schouten-Weyl tensor and K the 

(2, O-Schouten tensor of (B, h). Graham proved: 

If V is an isotropic Killing vector field such that 

VJW =o. (63) 

VJC =o. (64) 

K (V. V) = const < 0. (65) 

then there exists a pseudo-hermitian structure (T lo, H) on M such that (B. h) is locally isometric 

to the Fefferman space (F, ho) of (M. Tlo. 0). The local isometry is given by S’-equivariant 

bundle maps f$(, : !!I[.! - Flu. 

We first prove that V = VP satisfies (63)-(65). Property (64) is valid for each twistor spinot 
(\ee Proposition 10). Using W(X A Y) cp = 0 (see (1 1) of Proposition 5) and the assumption 

\‘, . (/-’ = 0 we obtain 

0 = { W(X A Y) v - v . W(X A Y)} cp 

= 2(V A W(X A Y)} .q 

= 2W(X. Y. V) . cp 

for all vector fields X and Y on B. Since VP is a nontrivial isotropic Killing field, it has no 
ycros. Hence, by Proposition 6. the twistor spinor cp has no zeros and therefore, the vector field 

\\‘(X. Y. V) must be isotropic for all vector fields X. Y on B. Because of 

W(X. Y. v. V) = h(W(X, Y, V). V) = 0. 

II’(X. Y, V) is orthogonal to the isotropic vector field V. Since (B. h) has Lorentzian signature. 

il follows that there is a 2-form h on B such that 

W(X. Y, V) = h(X. Y) V for all X. Y E T(TB). (66, 

Now. we use formula ( 12) of Proposition 5 to obtain 

0 = V W(X A Y) . Dq - n(V . C(X. Y) + C(X. Y) . V} cp 

= V W(X A Y) . Dcp + 21zC(V. X. Y) cp. 

Because of V _I C = 0 it results 

V W(X A Y) Dcp = 0. 

From the twistor equation (6) and the assumption V;(p = icy it follows 

W(X A Y) . V Dq = -nW(X A Y) . V;(P 

= -nicW(X A Y) . (0 

(11) 
= 0. 

(67) 

(68) 
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Then (66), (67) and (68) give 

o=w(xAY)~v~D~-v~w(xAY)~D~ 

= 2W(X, Y, V) . Dfp 

= 2h(X, Y)V . DqJ 

‘“’ -2lZh(X, r>v;cp 

= -2ncih(X, Y)q. 

Therefore, h E 0 and V _I W = 0. Using formula (10) of Proposition 5 we obtain 

V . V;Dp = ;n{V . K(V) + K(V). V) . q = -n K(V, V)cp. 

Since V is an isotropic Killing field, it satisfies Vv V = 0. It follows 

V;(V. Dp) = V”V. Dcp + V . V;Dp = -n K(V, V)q 

and from the twistor equation 

V;V;p = K(V, V)q. 

Using V$(p = icrp we obtain K(V, V) = -c2. Therefore, the canonical vector field V, of the 

twistor spinor p satisfies the conditions of Sparling’s characterization theorem for Fefferman 

metrics. Now, we proceed as in Graham’s proof of that theorem. Since V,, = l~1~V, we can 
normalize lp in such a way that K (V,, VP) = - $. Then, let f be the vector field on B defined 

bY 
h(?, X) = -4K(X, V,), X E 1-(TB). 

f is isotropic and h( ?, Vv) = 1. Then we can use V, and ? to reduce the spin structure of 

the Lorentzian manifold (B, h) to the group Spin(2n). This reduced spin structure projects to 

a spin structure of (H, Lo), where 8 is the projection of the l-form 8 E Q’ (B) dual to V, and 

H c TM is the projection of the subbundle !? = span(?, Vq)l c TB onto M. J : H --+ H 

is given by projection of the map 

J”:TB+TB, x H 2vxv,, 

which acts on fi with _?* = - id. Then in [12] is proved that (M, H, J, 0) in fact is a strictly 

pseudoconvex manifold which we equip with the spin structure arising from that of (H, Lo) 

by enlarging the structure group. In the same way as in [ 121 it follows that (B, h) is locally 

isometric to the Fefferman space (fi, he), where the isometries are given by S’-bundle maps 

@lu - Blu. 0 

Remark. Jerison and Lee studied the Yamabe problem on CR-manifolds (see [17]). They 

proved that there is a numerical CR-invariant h(M) associated with every compact oriented 

strictly pseudoconvex manifold M2n+‘, which is always less than or equal to the value cor- 
responding to the sphere S 2n+’ in @” with its standard CR-structure. If h(M) is strictly less 
than h(S2”+’ ), then M admits a pseudo-hermitian structure Q with constant Webster scalar 
curvature R w = h(M). Furthermore, one knows that the scalar curvature R of the Fefferman 



metric hH is a constant positive multiple of the lift of the Webster scalar curvature RI’ to the 

Fefferman space (see [25]). Now, let (IV’“+‘, T,“) be a compact strictly pseudoconvex spin 
manifold with 0 f h(M) < h(S*“+’ ). Choose a pseudo-hermitian structure 6’ on (M, Tlo) such 

that the Webster scalar curvature RW is constant (and non-zero since h(M) # 0). 

Let @*, F = & 1. be the twistor spinors on (2/F;. hi,), defined in Theorem 1. Then according 

to the remark following Proposition 5 the spinor fields 

;4% f 2n + 1 
‘1r.i := 

(212 + 2)R 
048 

are oigenspinors of the Dirac operator of the Lorentzian spin manifold ( fi, 1~~) to the eigen- 

value +$J(2n + 2)R/(212 + I). The length the spinor fields q,‘.+ is constant with respect to 

the indefinite scalar product (. . .) as well as to the positive definite scalar product (. . ‘):. 
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