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The notion of a complex of categories with abelian group structure arises 
naturally from deriving the Hattori-Villamayor-Zelinsky sequences [2,9,11], and 
is a special case of a more general concept defined in [7]. On the other hand it is also 
possible to derive the Hattori-Villamayor-Zelinsky sequences by the mapping cone 
method of MacLane [5,6] applied to appropriate group functors as was shown in [8] 
and for special cases in Hattori [3,4]. However, these group functors are not 
uniquely determined. In the special cases of Hattori [3,4] there are natural ones at 
hand, and in the case of a general extension of commutative rings the functors are 
given by a certain construction [S]. 

In this paper the mapping cone method and the method of [9] are compared in 
general and proved to be equivalent under certain commutativity conditions. In part 
one we show that the mapping cone method can be viewed as a special case of [9]; it 
corresponds to strict complexes of small categories with strict abelian group 
structure, and these categories can be identified with homomorphisms of abelian 
groups. In part two a coherence theorem for complexes of categories with abelian 
group structure is proved. We can change such a complex into a strict complex of 
small categories yielding the same cohomology sequence. In part three we prove a 
coherence theorem for semisimplicial complexes which applies especially to the 
known examples. This gives implicitly another construction of abelian group 
functors yielding the Hattori-Villamayor-Zelinsky sequences by the mapping cone 
method. 

For a category with abelian group structure v we use the additive notation 
+ : v x Y-* g, 0 : <Y-+ %, - : V-+ % for the structure functors. The structure natural 
transformations are always denoted by a, c, e, f, i, j and those of a homomorphism 
r: %‘- 9 by t, I, K [lo]; they are assumed to satisfy the coherence conditions of [lo] 
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(and [9]). We call f, or the group structure of V, strict, if the structure natural trans- 
formations are identities. By assumption, the morphisms in a category with abelian 
group structure are isomorphisms. 

Section 1 

Let Plb denote the category of small categories with strict abelian group struc- 
ture, and strict homomorphisms. Next let S% denote the category whose objects are 
the homomorphisms f : A+B of abelian groups; a morphism r of f : A +B to 
f': A'-+B' in J&J is a pair r= (y, y’) of group homomorphisms y : A+A’ and 
y’ : B-B’ with S’o y = y’o f. There exists a functor 

defined as follows. For an .&-object f : A *B define the category 3, by Ob( Y,) = B 

and 
Y”(u,o)={a~A Iu=f(a)+u}, U,UEB, 

where the composition is the addition in A, cf. [l], p. 394. YJ is an %b-object where 
the structure is defined by the group operations in B and A. An &-morphism 
f = (y, y’) : f 4 f' yields an 2fb-morphism Yf: ZQ* 3~ by Yr(u) = y’(u) and 
Y&)=y(a) for ucB,a~A. 

Theorem 1.1. The functor 9 : i;Pb-%b is an equivalence. 

Proof. First consider the functor P: 2fb-2fb where P(U), V E Ob(%b), is defined as 
follows. The objects of P(M) are the pairs (~,a) with u E: Oh(V) and I?: u-+0 a 
g-morphism, and a P(V)-morphism g : (u, a)+(~, 6) is a V-morphism g : u + IJ with 
a= bog. P(V) is an Ub-object where the structure is induced by that of V, cf. [9], 
Proposition 2.2. For any morphism r: % -+ SJ in Ilb, P(r) : P(%‘)+P(?S) is defined 
by P(T)(u,a) = (T(u),f(a)) and P(r)(g) = T(g). Then we have the commutative 
diagram 

where 17 denotes the natural projection. Now let 9: 2lb+_& be the functor which 
maps V to the group homomorphism 

n : Ob(P(%‘))*Ob(V) 

and f to (P(r), r). There is a natural isomorphism q : $0 Y + Id.,b defined for an 
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object f: A -+B in S&J as (VJ, ids) where 

II/’ : A -+Ob(P(‘$)) 

maps a~,4 to (f(a),a). To define a natural transformation ii: Y 0 9 *Idrrr,, let 

q,: FX,-, ‘V be the identity on Ob(%‘). Any y,-morphism a: K+ o has the form 
a = (x,g) with XE Oh(V) and g : x+0 a V-morphism such that 

u=n(a)+u=x+u. 

Let fl c (a) be the morphism g + 0 : x + u + 0 + u. Then rf / : Yn -+ ‘/= is an isomorphism 
in %b, and the theorem is proved. 0 

Consider now an exact sequence of complexes of abelian groups 

f 
O-X-A-B-Y-O (1.1) 

with X = ker(f), Y = coker(f), and A, = B, = 0 for n < 0. The mapping cone method 
yields an exact sequence 

. ..-H”(X)~H”(M(f))~H”_l(Y)~H”+‘(X)-... (1.2) 

where the complex M(f) is defined by M(f) = {M,, a}, 

M,,=A,,xB,_,, w y> = (-&G.m + ay>1, 

for XE A,,, YE B,_ ,, and the homomorphisms are defined by 

a(class of XEX,) = class of (x, 0), 

&class of (x, y) EM,) = class of -y, 
and 

y(class of Jo E Y,,_ I with a(y) =f(x)) = class of a(x), 

with p = y mod Im(f). From (1.1) we obtain a sequence 
a a a a 

fz~----‘*-“‘%n-~~+*-... (1.3) 

of objects and morphisms in e[b by %‘,, = Y((f,) and a = ??(a, a); then a2 is equal to the 
constant functor 0. Let C, denote the group of isomorphism classes of objects in F” 
and let F, = Aut(0,). The functors a induce two complexes 

a a 
“‘-Cn-,-Cn-Cn+,-.“, (1.4) 

a a 
. ..~F._,-F,-F,+,-..., (1.3 

of abelian groups. Their cohomology groups together with certain intermediate 
groups, H”(Q), constitute the cohomology sequence 

Q 
. ..-H”(F)+H”(‘&)~H”-‘(C)AH”+t(F)-... (1.6) 

derived in [9]. 
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Theorem 1.2. The cohomology sequences (1.2) and (1,6) are isomorphic. 

Proof. From the definition of :$(f,,) we have C,= coker(f,) = Y,, and the complex 
(1.4) coincides with Y. Furthermore, we can identify X,, with F,, and X with (1 S). So 
we have only to construct homomorphisms 

e : H”(M(f)) *If”(%) 

with 0001=a and 00/3=/I. If (a,u) in ~bf,=A,,xB,_~ is a cocycle, then 

-J(a) = 0 and fn(a) + t?(u) = 0. 

Thus we have a ?(f,)-morphism a : a(-~) -0, and (-u, a) is an object of the 
category .P - ’ defined in [9], p. 13 1. The condition a(a) =0 says that 

a(a) : a2( - U) + a(O) 

equals the identity of a2(-u) =a(O)=O. Therefore we have a homomorphism 
Z”(M(f))*N”(%), (a, u)*class of (-~,a), which induces the desired 8 as is easily 
seen. 0 

The statement of Theorem 1.2 is also true if we start with an arbitrary sequence 
(1.3) in %b with 13’= 0 and define (1.1) by setting f, : A,+B, equal to $(vn). 

Remark 1.3. There is another proof of Theorem 1.2 by using the concept of V-Z 
systems [S]. Let 

resp. 
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be the V-Z system associated with (l.l), resp. (1.3). In view of [8], Proposition 
2.16, we have only to show both V-Z systems are isomorphic to each other. As 
shown above, the complexes X and Y are identified with F and C respectively. 
Recall that P” is the group of isomorphism classes of objects in .L?“, where (P,g) is 
an object in .y” if and only if (P,g) E B, _ , x A, with a(P) =f,(g). Two objects (P, g) 
and (P’,g’) in .y” are isomorphic if and only if there is an element c in A,_, with 
(P, g) = (P’, g’) + (f,- t(c), a(c)). Thus P” is precisely J,, the center of the square 

a 
A,_, -A n 

It is easy to check that the above identifications give rise to the desired 
isomorphisms of V-Z systems. 

Section 2 

Consider a sequence of homomorphisms of categories with abelian group 
structure 

a a a a 
‘y()-w,-~~* ‘gn-%“+l---+*.. (2.1) 

and suppose we have natural transformations 

x:aoa-0 

such that for all objects P, Q in F’= the diagrams (D. 1) and (D.2) 

a(x) I ! id P.1) 

a2P + Q) ’ a(W) + a(Q)> 

X I I I 
0 -f--o+0 E a2(P) + d’(Q) 

CD.3 

are commutative. As a consequence of [IO], part II, x: a2+0 is a morphism of 
homomorphisms in the terminology of [9]. We shall prove in this section: 
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Theorem 2.1. There exists a sequence of objects and morphisms 

in 8b with a2 = 0 whose derived cohomology sequence is isomorphic to that of (2.1). 

The crucial point is to prove that the sequence (2.1) is coherent in a certain sense. 
To this end, we choose a system (IJnro of nonempty disjoint sets I,, and arbitrary 
maps 

c:I,+Ob(‘g,,), n?O. 

Define a system (F(f,)),,,e of sets of words over the alphabet 

{( 9 >,+9-1 a} U U (I,U {On}) (disjoint) (2.2) n 
inductively by: 

(2) u E RI,) = 8(u) E Wrl + IL 

(3) U,UEF(I,) = (u+u), -UEF(I,). 
F(f,) is a free group-like set [8] over 1, and F(f,,+i) is a free group-like set over 
I,,, 1 U a(F(I,,)). The maps E : I,,-+Ob(VJ can be uniquely extended to maps of group- 
like sets 

E : F(l,)-+Ob(%‘,,) (2.3) 

in such a way that &(a(~)) = 8(&(u)) holds for all u E F(I,,). Now let g,, be the category 
defined by 

Ob(@J =F(Z,,), q&J, u) = VA&(U), E(U)), 

u, u E F(Z,), with composition induced by that of V,,. There are natural extensions of 
(2.3) to fully faithful functors 

& : ‘d’,-+ ‘e,. 

Moreover, %‘,, induces an abelian group structure on @,,, and E becomes a strict 
homomorphism. By construction, we have a functor 

which maps u E Ob(@“) to a(u) and a @,,-morphism g: u * u to a(g): a(u) -+ a(u). It is 
a homomorphism by means of the natural transformation t of 8 : %,,+ V,, + , , and we 
have the commutative diagram (2.4). 

(2.4) 
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D sefine now subcategories X,, of @,, with Ob(X,) = Ob(PR) inductively by: 

(1) a ,,, u. ,,,, c,,, o, e,, i,, id, E Jv, for u, u, w E Ob($,,), 

(2) tu.u: a(u + u)+d(u) + d(o) in X,, , for u, u E Ob(gJ, 
(3) x,:~?~(u)+O in X,,+2 for u~Ob(g,,), 

(4) gexn = %?EG.l, 
(5) g,hcX, = g+h,-g,goh (if defined), g-‘EX,,. 

Theorem 2.2. The categories ;V,, n L 0, are atomic (i.e. for every two objects u, u in 
X,,, there is at most one &-morphism u + u). 

Proof. By (I) and (5) above, X” is a subcategory with abelian group structure and 
by(2)and(4),a:@“+@n+l can be restricted to a homomorphism a : A’,, -+J/,_ , . It is 
now convenient, using an idea of M. Laplaza, to change the ‘monoidal’ arrows 
of Y* into identities. For this we define the subcategories & of .n/, with 
Ob(YJ = Ob(.&) inductively by: 

(1) a u.v.wre,, f,,id,E2n for u, 0, ~EOW,A 
(2) g-5 =. am-%+,, 
(3) g, h E 2,, = g + h, -g, g 0 h (if defined), g-i E &. 

Applying the theorem on the coherence of a, e, f, it is not difficult to see that .Yn is 
atomic. Thus we can define the factor category 

cf. [8, lo]. Y, induces an abelian group structure on &, which is now strictly 
associative and unital. Ob(&) may be identified with W,,U {0,}, where the system 
( W’Jnro of sets of words over (2.2) is defined by: 

(1) l,c W”, --O,E WI?, WJ,)E WnClV 
(2) DE cv, = d(u)e WI+,, 
(3) u, UE W” * u + u, -(u) E w,. 

It suffices to show that J?,, is atomic because the projection X=-+.9,, is an 
equivalence. Since a : jv, -zfn + , maps 2” into .X” + , we obtain the induced sequence 

a a a a 
&&--+jl; ---+..._?r”-+jlnC, - . ..* 

For this we have the natural transformation x : a2 “0, x =x mod &, and (D.l), 
(D.2) are commutative for the objects of &. In the following we use the 
2”-morphisms 

e o:-(-u)-+u, k,,“:-(u+u)-+-u+(--U) 

as defined in [lo]. Let T, denote the set of &-morphisms 

with u, u E Ob(&,), x, y E Ob(&_ I), z E Ob(Y”_ 2) subject to the following restric- 
tions: 
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(1) for cu.,, we assume u, IJ are in X,,U(-X,), u # u, u # -u, -u# U, with 

&=I”Ua(r,-,), 
(2) for k, o and tzy we assume x, y, u, v * 0. 

Of course .#,, and I,, are meant to be empty for n < 0. Note in (1) that a ya-morphism 
c : LV(.Z) + u + u + d2(z) is equal to the composition 

X+id 
a2(z) + u - 0 

id+X-’ 
’ u + L+(z). 

For g E Mor(YJ define the set E(g) c Mor(Jv,) of expansions of g as in [IO] by: 

(1) & -L?, -(-A% a*. EJW!), 

(2) hEE(g) = h + id,, id, + h EE(g) for u E Ob(.;t’,). Then define 

EV,,) = ,IJ, E(g) and E(T;‘) = gvrn E(g-I). (2.5) 

Our next aim is to show, that each morphism in .Yn can be written as a composition 
of elements of E(T,)UE(T;‘). 

First observe that any _?,,-morphism of the form a2(g) : i32(u)-d2(u) with g: u-‘u 
in z&-z may be written as 

S(u) -5 0 
X 

-I 

- aZ(u), 

and is clearly contained in the set Y,, of all compositions of elements of 
E( T,,) U E( 7-i’). From this one can deduce, cf. [ 10)) that each morphism in G?,, is a 
composition of elements of E( T,,) U E( T;‘) with 

F,,_ , the set of the .L?,, _ t-morphisms t x,y, A, K,, xr in T, _ , . But a(t,,) and 13(x,) are in 
Y,, since (D.l) and (D.2) are commutative. Moreover, (D.3) and (D.4) are 
commutative as can be seen as follows. 

(D.3) 

a2(-u) ’ a-a(u)> 

(D.4) 

& 

0 i-o- i 
-x 

-a2(u) 

We can view a2 as a homomorphism where t(#),, is defined as 

a(r) 
a+4 + 0) - ataw + am -2 at(u) + a2(0). 
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From this definition one can deduce 

A($) = i 3 a(A) and ~(a~) = K 0 a(~). 

Observe now that the commutativity of (D.2) says that x: a2-+0 is a coherent 

natural transformation. Thus (D.3) and (D.4) must be commutative because they 

correspond to (D.lO) and (D.ll) in [IO], part II. But this means that a(J.) and J(K) 

are in U, and Y~=?vlor(.~$) is proved. 

Now choose on each Z,, a linear ordering < and extend it to a linear ordering on 

the disjoint union U,, I, by defining u < u for u E I,, u E I,, if m c n. Using such an 

ordering we can define maps 

as in [lo] with the following properties: 

(2.6) if a .9,,-morphism h : u-+ u is an expansion of an element g# c~,~ of T,,, then 

and equality holds if and only if g = id, 

(2.7) if h : u + u is an expansion of cxev E T, then rg,(u) >rg,(o) if and only if 

rg&) > rg,(u), 
(2.8) if 

h0 h, 
u-u-w 

are elements of E(T,,) with rg,(u) <rg,(u) and rg,(w)<rg,(u), then h, 0 hi’ can be 

written as 

go gl gtfl 
u-u -“‘u,- w 1 

with g,EE(T,,)UE(T[‘) and rg,(u,)<rg,(u), P= l,...,m. 
In (2.8) we can restrict our attention to the case that ho or ht is an expansion of x 

because all other cases have already been considered in [lo]. But this case is trivial as 

is easily checked. 

Now let h=h,oh,_,o... 0 h, be an automorphism in 2,, with h, : up -, u,, , in 

E(T,,)UE(T,-‘), p= 1 , . . . , m. Because of Aut(u) s Aut(0,) for all u E Ob(.&) we may 

suppose that h is an automorphism of the neutral object 0,. Then it is clear from 

(2.8) that h = id follows by induction on rg,(h, h,, . . . , h,) = max, (rg,(o,)). 0 

Now we are ready to prove Theorem 2.1. We choose Z,, and E : I,+Ob(YJ in such 

a way that each object of Y,, is isomorphic to an object in @(I,,)). The strict homo- 

morphism E : @,, -+ vn is then an equivalence and the commutative diagram (2.4) 

induces an isomorphism between the derived cohomology sequences. Knowing that 

Y” is atomic, we can proceed to 

which are objects in !Xb. The homomorphism ~3: qn -* ??,,+ , induces a strict homo- 



70 M. Takeuchi, K.-H. Ulbrich 

morphism a : @,, -* Q onc1 and we get a2 = 0 since x is in & + 2. We have the commuta- 
tive diagram (2.9) where II denotes the projection. 

(2.9) 

But the x’s are equivalences and strict homomorphisms. Thus the derived 
cohomology sequences are isomorphic and the theorem is proved. 

Section 3 

Let there be given a semisimplicial complex 

of categories with abelian group structure V,,; this means we have homomorphisms 

do,dl, . . . . d,: Vn’,- %“+,, tl20, 

and natural transformations 

Ct;,j:d;odj *dj+lOdi, isj. 

Suppose the a = ai*j are coherent in the sense of [IO] where we view the composition 
didj as a homomorphism by t od((t). Furthermore, assume that for isjc k the 
diagram (3.2) is commutative. 

didjdk a-d’ d.d 
dj+ I (a) 

/+I I k -dj+ldk+ldi 

d,(a) a 
(3.2) 

1 1 
dd 

a 
d,-d 

4 + da) 
t k+l J d.d.-d k+2 I , d. d, k+2 /+I r 

In the following we prove a coherence theorem for the above complex which enables 
us to construct a complex (2.1) satisfying (D.l) and (D.2) by the usual formula for 
the coboundary operator a. 

As before, choose a system (I,JnzO of non-empty disjoint sets I,, and maps 
E : I,, -+ Ob(‘VJ. Let the sets F(I,,) of words over the alphabet 

{(I ),+,-,do,d I,... ) Uu (1,U {On)) (disjoint) (3.3) R 

be defined by: 
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(1) ~nzw,), OnEN,), 

(2) 0 E WJ = do(u), . . . , d,(u) E FU” + I), 

(3) u, 0 E W”) 9 (u+tJ), -UEF(I,). 
There are unique extensions of E: I,,-Ob(‘6,) to maps of 

E : F(f,) + Ob(V,,) with 

&(d;(U)) = d;(&(U)), 0 I isn, 

u EF(I,). Define the categories e,, and homomorphisms 

71 

group-like sets 

di:@n;,-+gn+l, Osi~ n, as in Section 2 so that we have a commutative diagram 

Now define subcategories X,, of V& with Ob(Y,,) = Ob(@,,) = F(I,) inductively by: 

(1) a ,,u, ,,,, cueo, e,, i,, id, are in X” for u, u, w E Ob(‘?,J, 

(2) t x,v:di(~+~)+di(~)+di(u) is in X’,,+l for u,~~Ob(‘t’,), O~irn, 

(3) a:didj(u)+dj+Id;(u) is in ;Y,+zfor UEO~(&), O~i’j~n, 

(4) gey,, * do(gX...,d,(g)E~“+,, 
(5) g,hEX, = gi-h, -h,goh (if defined), ~-‘EJ’~. 

Theorem 3.1. The categories X,, n 2 0, are atomic. 

Proof. To simplify the categories we proceed to G#~=;V,/Y,, where the atomic 
subcategory .& of LX;, with Ob(&) = Ob(X,,) is defined by 

(1) a,,,, e,, f,, id, E Y,, for u, u, w E Ob(Yn), 

(2) gE& =) do(g),...,d,(g)E~~+,, 
(3) &hE%l q g+h, -h, g 0 h (if defined), h-’ E_?,,. 

z&=X,,/.& is a category with abelian group structure where the product is now 
strictly associative and unital. Ob(&) can be identified with W,,U {O,,} where the 
sets W,,, n 2r 0, of words over the alphabet (3.3) are defined by: 

(1) I,C w,, -0°C W”, ~O(O,)9...,~“(W~ Wn+l, 
(2) DE w, = do(U)....,&(~)E Wn+l, 
(3) U,UE w, * u+u, -(U)E w,. 

The homomorphisms di:%-rK+l, Olirn, induce homomorphisms 
di : .x!” -.Y,,+ 1 and the acj of the original complex define natural transformations 
ai,j:didj+dj+ldi, isj, for the di:;l;,*2n+,. Now let A,, n 20, be the set of 
&morphisms 

c u, 0 9 L jot e,, k,,, id,, 

u, u E Ob(.Y,,) with the following restrictions: 
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(1) for c,.u, u,u are in X,,U(-X,,), ufu, uf-u, -rc#u, where thesets X,are the 
smallest subsets of Ob(Jx’,,) such that I,, c X,, and IJ E X,, = d&o), . . . , d,(u) E X, _ r, 

(2) for k,.,, u, u are not equal to 0. 
Next define the subsets d, of Mor(.iv,) inductively by: 

(1) t:di(u+U)~d,(~)+di(U),~:d,(O)~O,andK:d,(-~)--d,(~)areind,,,for 
u, u E Ob(_?,,), 0 s i 5 n, where u, u # 0 for t,, y, 

(2) a:d~~,(u)+di+tdi(o) is indn+2 for u,uEOb(.YJ, isj, 

(3) k!Ed, = do(g)....,d,(g)Ed,+,. 
Note that 6, is empty. Let 

T,=d,UJ,, n>O, 

and define E(T,,) and E(TJ’) as in (2.5). Then every .$,,-morphism is a composition 
of elements of E(T,,)UE(T;‘). This can be seen by the same method as before. Now 
define maps 

rg, : Ob(i,) * h\l 

with the properties (2.6)-(2.8). Concerning (2.8), the only new diagram is (3.2); all 
other diagrams have already been considered in [lo]. Then the same induction 
method clearly yields h = id for all automorphisms in &. 0 

From the semisimplicial complex (3.1) we can form a complex (2.1) defining 
a : fvn 4 r ,,+ , by the usual formula 

a(p) = p((dop) + (--d,(p))) + d2p)) + 4 + (td,(~)). 

The natural transformations x : 8 **O can be constructed from the oj,j and clearly 
the commutativity conditions will be satisfied by Theorem 3.1. Observe that the 
same construction for the dj : @,, * @,, + I defined above yields a complex 

a a 
. . . - y In_,. ‘~~---+f~~+,--+~*~ (3.4) 

and a commutative diagram (2.4). Assuming then that the E: e,,;,- Vn are equi- 
valences, the derived cohomology sequences are isomorphic. Furthermore, it is now 
possible by Theorem 3.1 to define @“= @,,/;U,,. Then we get the semisimplicial 
complex 

.- 
%a--+ ‘k,: V*z a.* 

with didj equal to dj+,d;, i~j, since the a;,j are in _Yn. The derived cohomology 
sequence is then isomorphic to that of (3.4) via the projections rr : ‘?,, -) en”,. 
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