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Identification, Review, and Systematic
Cross-Validation of microRNA Prognostic
Signatures in Metastatic Melanoma

Kaushala Jayawardana1,7, Sarah-Jane Schramm2,3,7, Varsha Tembe2,3,7, Samuel Mueller1,
John F. Thompson3,4, Richard A. Scolyer3,5,6, Graham J. Mann2,3 and Jean Yang1
In metastatic melanoma, it is vital to identify and validate biomarkers of prognosis. Previous studies have
systematically evaluated protein biomarkers or mRNA-based expression signatures. No such analyses have
been applied to microRNA (miRNA)-based prognostic signatures. As a first step, we identified two prognostic
miRNA signatures from publicly available data sets (Gene Expression Omnibus/The Cancer Genome Atlas) of
global miRNA expression profiling information. A 12-miRNA signature predicted longer survival after surgery
for resection of American Joint Committee on Cancer stage III disease (>4 years, no sign of relapse) and
outperformed American Joint Committee on Cancer standard-of-care prognostic markers in leave-one-out
cross-validation analysis (error rates 34% and 38%, respectively). A similar 15-miRNA biomarker derived from
The Cancer Genome Atlas miRNA-seq data performed slightly worse (39%) than these current biomarkers. Both
signatures were then assessed for replication in two independent data sets and subjected to systematic cross-
validation together with the three other miRNA-based prognostic signatures proposed in the literature to date.
Five miRNAs (miR-142-5p, miR-150-5p, miR-342-3p, miR-155-5p, and miR-146b-5p) were reproducibly associated
with patient outcome and have the greatest potential for application in the clinic. Our extensive validation
approach highlighted among multiple independent cohorts the translational potential and limitations of
miRNA signatures, and pointed to future directions in the analysis of this emerging class of markers.
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INTRODUCTION
The deadliest form of skin cancer, melanoma, is a major
health problem in many countries and accounts for approx-
imately 50,000 deaths annually worldwide (Slipicevic and
Herlyn, 2012). In recent years, therapies that target acti-
vating mitogen-activated protein kinase pathway mutations
and immune checkpoints such as PD1 and CTLA4 have
begun to extend the overall survival of a subset of eligible
(suitably targetable) patients (Menzies and Long, 2013).
However, a series of studies by Balch et al. (2001, 2009)
continues to provide the primary basis of evidence for the
current melanoma patient staging system, defined by the
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American Joint Committee on Cancer (AJCC). According to
this consensus, patients with melanoma likely to progress to
nodal metastatic disease (AJCC stage III) are principally
indicated by the number of metastatic nodes, the tumor
burden at the time of staging, and the ulceration and thick-
ness of the primary melanoma. In this setting, 5-year survival
estimates range from 29% to 81.5% (Balch et al., 2009).
Patients with a worse prognosis would potentially have a net
benefit from even toxic effective adjuvant therapies, if they
could be accurately identified. Balancing the competing risks
of prognosis and surgical and/or systemic treatment needs to
be informed by more accurate, biomarker-driven assessment
of both patient clinical outcome and predicted treatment
response. The ongoing analysis and validation of molecular
biomarkers proposed in the literature so far is, therefore, an
essential area of research.

To date, a number of studies have systematically reviewed
and/or cross-validated protein biomarkers (as assessed by
immunohistochemistry) and/or gene expression signatures
derived from global mRNA profiling (Gould Rothberg and
Rimm, 2010; Gould Rothberg et al., 2009; Mandalà and
Massi, 2014; Schramm and Mann, 2011; Schramm et al.,
2013). These studies have summarized a vast body of work
and provided insights into the translational potential of these
biomarkers. In recent years, a third class of molecule—
expressed microRNA (miRNA)—has emerged as having
prognostic potential. The earliest study of this class of markers
in metastatic melanoma (Segura et al., 2010) identified, from
formalin-fixed paraffin-embedded tissue, 18 miRNAs
showing significant overexpression in patients with longer
estigative Dermatology. www.jidonline.org 245
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survival (>18 months). A subsequent analysis showed that a
six-miRNA subset (miR-150, miR-342, miR-455-3p, miR-
145, miR155, and miR497) could predict post-recurrence
survival with accuracy at 80.2%. A study soon after
(Caramuta et al., 2010) proposed another six miRNAs (miR-
191, miR-193b, miR-365, miR-338, miR-193a, and let-7i) in
association with shorter survival (1e12 months, fresh frozen
regional lymph node metastases, 15 patients).

The recent release of miRNA expression profiling in meta-
static melanomas from The Cancer Genome Atlas (TCGA;
Akbani et al., 2015) as well as our own group (GSE59334;
Tembe et al., 2014) provided an unprecedented opportunity to
propose signatures and validate their performance together with
the above-mentioned biomarkers. We have, therefore, con-
ducted a multistaged analysis and systematic cross-validation of
Figure 1. Methods schematic.We proposed two prognostic signatures from publi

in metastatic melanomas. Signatures were evaluated for accuracy in predicting p

prognostic factors (Balch et al., 2009), assessed by logistic regression. Signatures

et al., 2010). This analysis was extended to encompass an extensive (three-part)

metastatic melanoma proposed to date. For comparability among results, LOOCV

GEO, Gene Expression Omnibus; LOOCV, leave-one-out cross-validation; NSC,

MARKer prognostic studies; SKM, Skin Cutaneous Melanomas; TCGA, The Canc
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all tissue-based miRNA prognostic signatures in metastatic
melanomas proposed in the literature to date (Figure 1),
yielding insights into the translational potential of this class of
markers as well as future research directions in the field.

RESULTS
Identification of microRNA prognostic signatures using
publicly available data

We used global miRNA expression profiles from AJCC stage
III lymph node disease (Tembe et al., 2014) to identify a
signature (Table 1, Supplementary Figures S1 and S2 online)
indicative of good prognosis, previously defined (Mann et al.,
2013) as the time from surgery to death from melanoma
greater than 4 years with no sign of relapse. The 12-miRNA
signature produced a mean error rate of 33% under leave-
cly available data sets (GEO/TCGA) of miRNA expression profiling information

atient survival (NSC classification) and compared with AJCC standard-of-care

were tested in two previously reported cohorts (Caramuta et al., 2010; Segura

and systematic cross-validation of all miRNA-based signatures of prognosis in

error rates were used in all tests. AJCC, American Joint Committee on Cancer;

nearest shrunken centroids; REMARK, REporting recommendations for tumor

er Genome Atlas.
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one-out cross-validation (LOOCV) that was lower (38%) than
our estimate obtained using the four most statistically sig-
nificant clinicopathologic prognostic parameters in stage III
melanomas as described above (Balch et al., 2009). The
combined error rate of the 12-miRNA signature, modeled as
a prevalidated vector (Tibshirani and Efron, 2002), and the
clinicopathologic variables was 41%.

We repeated the analysis using AJCC stage III lymph node
disease samples from TCGA Skin Cutaneous Melanoma
consortium (Supplementary Figures S2 and S3, Table S3 on-
line). Because the number of samples falling into the survival
classes used in the analysis described above was small
(Supplementary Table S3), we redefined “better” prognosis as
the time from surgery to death due to melanoma greater than
3 years (no sign of relapse) and “worse” prognosis as patients
surviving for less than 2 years after the same. The LOOCV
error rate of this 15-miRNA signature (39%) was higher than
the accuracy (37%) of the four standard-of-care clinicopath-
ologic variables. The combined error rate was 42% (Table 2).

Evaluation of direct overlap among independent prognostic
signatures

No miRNAs were common to all biomarkers. The following
intersections were observed: miR-142-5p, miR-150-5p,
miR-342-3p, miR-155-5p, and miR-146b-5p (Segura et al.,
2010; Tembe et al., 2014), and miR-193a-3p and miR-
193b-3p (Caramuta et al., 2010; Segura et al., 2010)
(Figure 2, Supplementary Table S4 online).

The examination of intersections among signatures using
the raw expression values showed that at least some lack of
overlap could be attributed to the absence of any measure-
ment for a particular miRNA within a given data set. Alter-
natively, the test-set miRNA was not detected or was filtered
out during data preprocessing in the validation expression
profiling studies (Figure 2, Supplementary Table S4,
Figure S7, results and discussion online).

Systematic cross-validation of microRNA-based prognostic
signatures in metastatic melanoma

Part 1—Validation of each signature and its classes (Table 3A,

Supplementary Figure S8 online). The six miRNAs proposed
by Caramuta et al. (2010) produced the lowest error rate
observed (13%) from among all the estimates in this study.
However, this finding did not validate (48%) when we
examined the larger, independent sample size of 40 from
Tembe, and was not evaluable in the remaining validation
data sets.

The 18-miRNA signature (Segura et al., 2010) achieved an
estimated error rate of 22% in its own data. Error rates were
higher in independent validation, ranging between 27%
(Caramuta data) and 42% (TCGA data). The six-miRNA
signature (Segura et al., 2010) performed similarly, produc-
ing an error rate of 27% in its own data. Again, values were
higher in independent data sets: 31% (Tembe data) and 33%
(TCGA data). Only one miRNA was available for validation
via the Caramuta data (40%).

Our 12-miRNA signature (Tembe et al., 2014) performed
best (33%) among its own 45 samples but increased (38%)
when examined using the 13 eligible samples from TCGA
data. The signature did not validate (54%) via the data from
Caramuta although the sample size was, once again, small
(13) and the number of miRNAs able to be evaluated was
limited to 7 (of 12).

The 15-miRNA TCGA signature performed poorly (39%) in
analysis using its own data (Table 3A, diagonal). Additionally,
it could not be validated using the Tembe (52%) or Caramuta
data (62%) although a critical caveat was that only five and
three, respectively, of the miRNAs in the 15-miRNA signature
were evaluable in those data sets.

Part 2—Validation of the test-set feature only (Table 3B,

Supplementary Figure S8). The validation of the 18-miRNA
signature (Segura et al., 2010) produced error rate estimates
of 27% (Caramuta data, 7 of 11 miRNAs assessed), 31%
(Tembe data, 16 of 18 miRNAs assessed), and 43% (TCGA,
all miRNAs evaluated). The six-miRNA signature (Segura
et al., 2010) performed similarly. Notably, for both signa-
tures, the error rate estimates in the Tembe data validation
experiments were identical to the results produced in Part 1
because of patient samples being apportioned to better and
worse survival classes in the same manner, despite the
different follow-up definitions used.

The six-miRNA signature (Caramuta et al., 2010) produced
mixed results in the Part 2 validation setting: 51% (Tembe
data, five of six miRNAs assessed) and, using all miRNAs,
31% and 35% in the Segura and TCGA data sets,
respectively.

The 12-miRNA signature (Tembe et al., 2014) performed
well when examined via the Segura expression data (29%, 11
of 12 miRNAs examined). However, the feature did not
validate in the other independent data sets: 53% (Caramuta,
seven evaluable miRNAs) and 52% (TCGA, all miRNAs
evaluated).

The 15-miRNA signature (TCGA) validated using data
from Segura (39%, 10 of 15 miRNAs assessed). However,
the error rate could not be observed elsewhere, possibly
because of the small number of miRNAs able to be eval-
uated in those tests: 53% in the Caramuta data set (three
evaluable miRNAs) and 52% using the Tembe data (five
miRNAs evaluated). Indeed, several miRNAs from TCGA
signature were either removed from validation expression
data during normalization or else were not assayed to
begin with (Supplementary Figure S8 and Table S4).

Part 3—Evaluation of prognostic miRNA signatures relative to

equivalent random gene sets (Figure 3, Table 3B, bold). In
most cases, the proposed signatures showed improved ac-
curacy [range 8e45%] over random gene sets (Table 3B). In
the three instances where signature accuracy did not show a
relative increase, the signature had not itself validated (error
rates approximately 50%) in those data to begin with. For
signatures that were validated using the Tembe and Caramuta
data sets, random gene sets produced the expected error rates
of approximately 50%. The same observation could not be
made for signature assessments using the Segura data where
random gene sets predicted accuracy better than would be
expected by chance (range 40e41%). The opposite obser-
vation was made for TCGA validation (range 61e66%).

To enable more detailed consideration of improvements in
the accuracy of the five signatures relative to random gene
www.jidonline.org 247
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Table 1. Summary of features of microRNA-based prognostic signatures reviewed and cross-validated in this study

Expression
data source Biomarker miRNAs

Sample
size

Sample
characteristics Platform Classes compared

Performance in a
multivariate setting Data link

Caramuta

et al. (2010)1
Six mRNAs predictive

of short survival after

diagnosis of regional

lymph node metastases

miR-338, let-7, miR-365,

miR-191, miR-193b-3p,

miR-193a-3p

16 FF Agilent-016436 Human

miRNA Microarray 1.0

G4472A (470 miRNAs),

miRBase release 9.1

<13 mo, cf. >60 mo survival

from metastasis detection

Differentially expressed miRNAs

were not significantly associated

with age at diagnosis, gender, or

Breslow tumor thickness of the

primary tumors

GEO Accession

Number:

GSE19387

Segura et al.

(2010)1
18 miRNAs predictive of

longer post-recurrence

survival in metastatic

patients

miR-214-3p, miR-126-3p,

miR-143-5p, miR-28-5p,

miR-342-5p, miR-10b-5p,

miR-28-3p, miR-143-3p,

miR-145-5p, miR-497-5p,

miR-455-3p, miR-146b-5p,

miR-155-5p, miR-342-3p,

miR-150-5p, miR-142-5p,

miR-193b-3p, miR-193a-3p

59 FFPE Rosetta Genomics

custom microarrays

(911 miRNAs)

Longer survival (those who

survived 18 mo or more from

the date of resection of the

metastatic tumor), cf. shorter

survival (patients who survived

less than 18 mo after same)

When the six-miRNA signature

and AJCC stage were included

in the model, other variables

such as age, sex, or time to

first recurrence were not

significant. Some miRNAs

from the signature were

related to stage and site

of metastasis

Data generously

provided directly

by Segura et al.

(2010)

Segura et al.

(2010)1
Six-miRNA predictor of

longer post-recurrence

survival in metastatic

patients

miR-145-5p, miR-497-5p,

miR-455-3p, miR-155-5p,

miR-342-3p, miR-150-5p

59

Tembe et al.

(2014)2
12-miRNA predictor of

good prognosis, relapse-

free survival after resection

of metastatic lymph node

disease

miR-509-3p, miR-363-3p,

miR-125b-5p, miR-514a-3p,

miR-223-5p, miR-211-5p,

miR-142-3p, miR-146b-5p,

miR-155-5p, miR-342-3p,

miR-150-5p, miR-142-5p

45 FF Agilent Human miRNA

Microarray Release 16.0,

8x60K

Good prognosis, defined as

time from surgery to death from

melanoma > 4 y with no sign of

relapse, cf. poor prognosis

(patients surviving < 1 y after

same)

The 12-miRNA signature

performed better (lower error

rate) compared with the four

dominant standard-of-care

clinicopathologic variables3

GEO Accession

Number:

GSE59334

TCGA2 15-miRNA predictor of

better prognosis, relapse-

free survival after resection

of metastatic lymph node

disease

hsa-miR-105-5p4, hsa-miR-

105-5p4, hsa-miR-1250-5p,

hsa-miR-146a-3p, hsa-miR-

155-3p, hsa-miR-181a-5p,

hsa-miR-204-5p, hsa-miR-

362-5p, hsa-miR-3655,

hsa-miR-3679-3p, hsa-

miR-411-3p, hsa-miR-452-3p,

hsa-miR-541-3p, hsa-miR-

767-5p,hsa-miR-767-3p

23 FF BSGSC

IlluminaHiSeq_mRNASeq

Better prognosis, defined as

time from surgery to death from

melanoma > 3 y with no sign of

relapse, cf. worse prognosis

(patients surviving < 2 y after

same)

The 15-miRNA signature

performed slightly worse

(higher error rate) compared

with the four dominant

standard-of-care

clinicopathologic variables3

TCGA data

portal, SKCM

Abbreviations: FF, fresh frozen; FFPE, formalin-fixed paraffin-embedded; GEO, Gene Expression Omnibus; GSE, Gene Expression Omnibus series; SKCM, Skin Cutaneous Melanoma; TCGA, The Cancer Genome
Atlas; TNM, tumor-node-metastasis.
1Biomarker identified in a previous study.
2Signature identified in this study.
3The four variables are tumor-positive lymph nodes, tumor burden at the time of staging (microscopic vs. macroscopic), presence or absence of primary tumor ulceration, and thickness of the primary melanoma
(Balch et al., 2009).
4Refers to hsa-miR-105-1_mature (MIMAT0000102) and hsa-miR-105-2_mature (MIMAT0000102): identical miRNA sequence, different genomic loci.
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Table 2. Summary of error rates (estimated via LOOCV) for the miRNA prognostic signatures identified in this
study using publicly available data

LOOCV error rate Method of assessment

Tembe et al. (2014)1

12-miRNA prognostic signature 33% NSC

Standard-of-care variables2 36% Logistic regression

Standard-of-care variables2 and 12-miRNA signature combined 41% Prevalidated vector in a logistic regression framework

TCGA SKCM

15-miRNA prognostic signature 39% NSC

Standard-of-care variables2 37% Logistic regression

Standard-of-care variables2 and 15-miRNA signature combined 42% Prevalidated vector in a logistic regression framework

Abbreviations: GEO, Gene Expression Omnibus; LOOCV, leave-one-out cross-validation; NSC, nearest shrunken centroids; SKCM, Skin Cutaneous
Melanoma; TCGA, The Cancer Genome Atlas.
1Data publicly available via GEO GSE Accession Number: GSE59334.
2Number of tumor-positive lymph nodes, tumor burden at the time of staging (microscopic vs. macroscopic), presence or absence of primary tumor
ulceration, and thickness of the primary melanoma (Balch et al., 2009).
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sets, we computed an “improvement over random signature”
score (Figure 3, Supplementary Materials and Methods,
Table S6 online). We found that all but one signature—the
six-miRNA signature (Segura et al., 2010)—showed the
largest gains in accuracy over random equivalent gene sets
when assessed via their own expression data. In contrast, the
six-miRNA signature (Segura et al., 2010) displayed greater
gains in accuracy over random sets when evaluated using the
data from Tembe. In terms of validation in independent data
sets overall, the two signatures from Segura et al. (2010)
showed the largest improvement over random gene sets,
whereas the smallest gains were observed for TCGA-derived
signature.

Signature evaluation using the concordance index (C-index)

The signatures showing the highest concordance between the
predicted and actual patient survival times (integrated C-in-
dex score ¼ 0.83; weighted average of the C-index in each
independent validation data set) were the 12-miRNA signa-
ture (Tembe et al., 2014) and the 18-miRNA signature (Segura
et al., 2010) (Supplementary results and discussion, Table S5
online).

DISCUSSION
In melanoma, as with other cancers, accurate prognostic
information is essential for clinicians to be able to reliably
stratify patients for a comparative assessment of therapeutic
interventions. In this study, we identified two miRNA-based
prognostic signatures and, for compliance with the REport-
ing recommendations for tumor MARKer prognostic studies
criteria (McShane et al., 2005), compared the performance of
these signatures with the prognostic accuracy of standard-of-
care clinicopathologic markers (Balch et al., 2009). We then
undertook a systematic meta-analysis of all tissue-based
prognostic biomarkers derived from the studies of miRNA
expression profiling in metastatic melanoma reported in the
literature so far.

Our identification of a prognostic signature in the data
from Tembe et al. (2014) had a number of advantages
compared with previous studies (Caramuta et al., 2010;
Segura et al., 2010). To begin with, it involved the largest
sample size involving fresh frozen tissue to be analyzed in
that setting to date (45 vs. 15). Our signature analysis was
also restricted to the evaluation of AJCC stage III regional
lymph node metastases, whereas the study from Segura et al.
(2010) included both stage III and stage IV samples from
different tissue sites (brain, distant skin, local recurrence,
regional lymph node, visceral, and regional skin). The more
restrictive approach we used likely reduced the potential for
confounding effects because of sample heterogeneity. Even
so, the overlap of five miRNAs (miR-142-5p, miR-150-5p,
miR-342-3p, miR-155-5p, and miR-146b-5p) among the
signatures from these two studies (the two most statistically
powered in the field so far) was encouraging from a repro-
ducibility perspective. That these same miRNAs were
observable in independent expression profiling experiments
suggests that they should be immediately prioritized for
further biomarker validation and functional analyses,
including consideration as potential therapeutic targets.
Moreover, the identification of these miRNAs in both fresh
frozen and formalin-fixed paraffin-embedded tissue suggests
that a protocol leveraging biobanks of the latter specimen
type would be suitable for ongoing work.

The recently available data from TCGA Skin Cutaneous
Melanoma study offered the opportunity to explore miRNA-
based prognostic biomarkers via a different platform in
miRNA-seq. However, it is interesting that this analysis did
not produce a signature of high accuracy, nor was that
signature validated in the independent data. Small sample
size seems a probable explanation, supported by similar re-
sults in a lack of validation for the signature obtained in the
other small cohort (Caramuta et al., 2010). It is also possible
that as yet obscure features of TCGA data set per se may have
contributed to the result. For example, the survival data from
TCGA were less mature than the data from Tembe et al.
(2014), reflected in differences in the overall distribution of
survival times between them.

In spite of these hurdles, our study revealed that the two
signatures from Segura et al. (2010) and the 12-miRNA
signature from the data set from Tembe et al. (2014) could
indeed be validated in independent data. Notably, and
consistent with prior observations, the latter signature was
more accurate when compared with the top-ranking
www.jidonline.org 249
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Figure 2. Overlap among the miRNA-

based signatures. (a) Venn diagram for

the overlap among the miRNA-based

signatures evaluated in this study.

Circle sizes represent the actual

relative size of each signature. The six-

miRNA signature from Segura et al.

(2010) is shown in bold. (b) Scatter

plots of the union of all miRNAs

present in at least one of the signatures

among the four validation data sets.

Expression values are the raw values

of the miRNA expression data in each

data set, transformed for ease of

comparison (Supplementary Table S4).

Colors represent miRNAs common

between signatures and the value of

�2 was used to represent miRNAs that

were not present in the raw data, even

before any filtering was done. SKCM,

Skin Cutaneous Melanoma; TCGA,

The Cancer Genome Atlas.
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standard-of-care biomarkers (Balch et al., 2009) that were
previously shown to yield an error rate of 52% (mean fivefold
CV error rates) (Jayawardana et al., 2014). The improvement
in the classification error rate that we observed in some of the
signatures evaluated herein, therefore, indicates the urgent
need for further examination in larger cohorts—including
Journal of Investigative Dermatology (2016), Volume 136
formalin-fixed paraffin-embedded tissue—as they become
available. Prior reports (Jayawardana et al., 2014) have also
clearly demonstrated in independent cohorts that despite
similar estimated error rates observed between biomarkers
derived from mRNA and miRNA platforms, different subsets
of patients could be correctly classified by the different data



Table 3. Summary of results, reported as LOOCV error rates, for independent validation of miRNA prognostic
signatures in metastatic melanoma

(A) Validation of the test set feature1 (microRNA set) and classes (survival endpoints).4

Biomarker Y

Data /

Tembe et al. (2014)2 Segura et al. (2010) Caramuta et al. (2010) TCGA

Tembe et al. (2014)2 (12 miRNAs) 33% [12] Not evaluable3 54% [7] 38% [12]

(23:22) (1:1) (6:7) (5:8)

Segura et al. (2010) (18 miRNAs) 31% [16] 22% [18] 27% [7] 42% [18]

(23:22) (36:23) (8:7) (25:11)

Segura et al. (2010) (6 miRNAs) 31% [6] 27% [6] 40% [1] 33% [6]

(23:22) (36:23) (8:7) (25:11)

Caramuta et al. (2010) (6 miRNAs) 48% [5] Not evaluable3 13% [6] Not evaluable3

(18:22) (1:2) (8:7) (2:8)

TCGA (15 miRNAs) 53% [5] Not evaluable3 62% [3] 39% [15]

(23:22) (1:7) (6:7) (11:12)

(B) Validation of the test set feature1 (microRNA set) only, i.e. using survival classes of the validation data set).4

Biomarker Y

Data /

Tembe et al. 20142 (45) Segura et al. 2010 (59) Caramuta et al. 2010 (15) TCGA (23)

Tembe et al. 20142 (12 miRNAs) 33% [12] 29% [11] 53% [7] 52% [12]

53% 41% 51% 62%

Segura et al. 2010 (18 miRNAs) 31% [16] 22% [18] 27% [7] 43% [18]

51% 40% 44% 61%

Segura et al. 2010 (6 miRNAs) 31% [6] 27% [6] 40% [1] 39% [6]

59% 40% 58% 66%

Caramuta et al. 2010 (6 miRNAs) 51% [5] 31% [6] 13% [6] 35% [6]

59% 40% 58% 66%

TCGA (15 miRNAs) 53% [5] 39% [10] 53% [3] 39% [15]

52% 40% 47% 61%

Abbreviations: LOOCV, leave-one-out cross-validation; GEO: Gene Expression Omnibus; GSE, Gene Expression Omnibus Series.
1Number of miRNAs able to be assessed in each validation data set is indicated in square brackets. Number of samples assessed in each class (longer
survival-to-shorter survival) is given in parentheses.
2Data publicly available via GEO GSE Accession Number: GSE59334.
3Insufficient sample size for analysis.
4Feature performance is also measured by its improvement over the accuracy of equivalent random signatures (shown in bold). See also Figure S8.
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sources, which was another key for the motivation behind
this meta-analysis.

The methodological framework used in our study is pro-
spectively applicable to the upcoming signatures of interest
and/or other emerging potential validation data sets. More-
over, our comparison of signatures with equivalent random
gene sets from the same expression data shows that not all
evaluations produced the expected random set error rate of
50%. In the case of the Segura expression data, where
random sets of miRNAs achieved the error rates of 40%,
cohort heterogeneity (a mixture of samples of patients with
stage III and IV disease as well as several tissue types) may
have been responsible. Also of note, the large range of
improvement scores observed using the biomarker from
Caramuta et al. (2010), as assessed in its own data, shows that
there are random gene sets with predictive power similar to
the signature itself.

One obvious limitation of this work is the small sample
size of the cohorts currently available for analysis, particu-
larly when split on patient outcome. Thus, despite enormous
efforts to address the issue of tissue shortage through con-
sortia such as TCGA, our study has further demonstrated
(Schramm et al., 2012, 2013; Scolyer and Thompson, 2012)
the ongoing issues in the dearth of independent cohorts
available for testing and validation of prognostic biomarkers.
In melanoma, generally, this situation continues to hamper
the relevance of such markers to the clinic (Tremante et al.,
2012). This challenge is precisely the reason that we have
used a multifaceted meta-analysis approach. In it, we have
trained the data on one data set and tested the effect on
another independent cohort. This testing across different
combinations of training and validation sets gives, in essence,
the most unbiased picture in the literature to date of the utility
of each biomarker proposed.

A recent review (Segura et al., 2012) compiles the evi-
dence of the functional roles of miRNAs in melanomagenesis
and progression, and of their clinical utility as biomarkers,
prognostic tools, and potential therapeutic targets. These
authors highlighted several “Clinical Next Directions and
Future Perspectives,” notably the need for accurate and easily
standardized progression risk biomarkers that determine
disease burden or predict its outcome, as well as the impor-
tance of leveraging data from burgeoning resources such as
TCGA. As we (Schramm and Mann, 2011; Schramm et al.,
www.jidonline.org 251
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Figure 3. Comparison of miRNA-

based prognostic signatures with

equivalent random gene sets.

Assessment of the performance of

miRNA-based prognostic signatures

relative to equivalent random gene

sets: we considered the improvement

in the prediction error of the

signatures relative to the prediction

errors of equivalently sized random

miRNA sets. The improvement score

was calculated as the CV error of

the random signature/CV error of the

signature of interest, for each set of the

100 random gene sets generated,

producing 100 such improvement

scores in each of the four validation

data sets (section “Materials and

Methods”; Supplementary Materials

and Methods). These scores are

represented in boxplots to reflect the

actual values as well as their

variability. (a) Improvement scores

ordered by signature. (b) Improvement

scores ordered by validation data set.

CV, cross-validation; SKCM, Skin

Cutaneous Melanoma; TCGA, The

Cancer Genome Atlas.
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2012, 2013), and others (Gould Rothberg et al., 2009;
McShane et al., 2005), have previously stated, for ideal
clinical relevance, molecular signatures should be readily
and reproducibly identifiable, show clear and independent
Journal of Investigative Dermatology (2016), Volume 136
relationships with specific survival outcomes, and do so with
added or greater sensitivity than the current set of biomarkers.
The significance of this work is in its comprehensive assess-
ment of the potential of miRNA signatures, from the
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information available to date to guide clinical decisions. Via
several approaches, we have shown that there is a potential
translational value in the biomarkers identified in the study by
Segura et al. (2010) as well as the signature identified herein
using the data from Tembe et al. (2014).

MATERIALS AND METHODS
Melanoma specimens, and clinical and pathologic data

Melanoma specimens, clinicopathologic data, and miRNA data sets

(Table 1) are described in the Supplementary Materials and Methods,

along with the steps for preprocessing and the normalization of all

miRNA expression data (Supplementary Figures S1, S2, and S4eS6;

Tables S1eS3 online).

Identification of survival-associated signatures via publicly
available data sets and comparison with AJCC standard-of-
care prognostic factors

Wedefined the standard-of-care variables as the fourmost statistically

significant clinicopathologic prognostic parameters in stage III

melanomas (Balch et al., 2009): the number of tumor-positive

lymph nodes, tumor burden at the time of staging (microscopic vs.

macroscopic), presence or absence of primary tumor ulceration,

and thickness of the primary melanoma. The signature identifica-

tion protocol is detailed in the Supplementary information

(Supplementary Figure S3). In sum, feature selection was defined

by the median expression difference (median robust) of survival

groups: good versus poor (Tembe data, Supplementary Figure S1,

Tables S4eS6, Supplementary Appendix 1 online) and better versus

worse (TCGA data, Supplementary Figure S2, Supplementary

Appendix 2 online). Classification was performed using nearest

shrunken centroids, default parameters (Tibshirani et al., 2002). A

logistic regression model was used to classify the standard-of-care

variables. We examined the performance of the signatures (assessed

as prevalidated vectors; Tibshirani and Efron, 2002) together with

standard-of-care variables under LOOCV using logistic regression.

Evaluation of overlap among signatures

We examined the direct overlap of miRNAs and also considered the

raw expression values in each of the four data sets for the miRNAs

present in at least one of the four signatures.

Cross-validation of signature accuracy among independent
data sets

The accuracy of each signature in predicting patient clinical

outcome was measured in each of the other expression data sets

using LOOCV error rates. It proceeded in three parts described

below. As reported in the section above, not all miRNAs of a given

signature were present in processed and normalized independent

expression data because of them being either not detected, not

measured, or below filtering limits (Supplementary Table S4). In

these instances, the assessment proceeded using the smaller number

of miRNAs actually available for analysis (Table 3, square brackets).

To improve readability, we refer to expression data sets by the first

author of study in which they were originally published, that is,

“Tembe” for the expression data from Tembe et al. (2014), and so

forth. Signatures are referred to by the number of miRNAs they

contained (Table 1) and the study from which they were extracted if

not this work. Nearest shrunken centroids and LOOCV were used to

assess all cases (Supplementary Materials and Methods).

In Part 1 of our validation approach, each of the five signatures

was examined together with its associated classes (survival end-

points), in each of the remaining available cohorts (Table 3a).
In Part 2 of validation, we considered each signature without re-

gard to its associated classes (Table 3B). This is because the exami-

nation of signatures and their associated classes, as we performed

above, often leads to ineffectual sample size because of differences

among cohorts in survival distribution, tissue type, and/or other

factors. In Part 2, we instead used the survival endpoints associated

with the validation expression data set. In this way, the sample size

available for analysis was increased relative to the tests described

above (Table 3, parentheses), whereas the prognostic utility of the

signature per se was examined in relatable, although not identical,

survival classes.

In Part 3, we assessed the prognostic value of signatures relative to

random gene sets. The tendency to interpret signatures that are

significantly associated with survival as having biological and/or

clinical relevance has been challenged in recent years by findings in

breast cancer data sets that “random” gene sets also tend to cluster

patients into prognostically different subgroups (Beck et al., 2013;

Venet et al., 2011). To deal with this issue, we therefore compared

the predictive power of each signature with that of 100 random gene

sets of the same size, and produced 100 corresponding LOOCV

error rates. The improvement over the random signature was defined

as “Improvement over random signature ¼ CV error of the random

signature/CV error of the signature of interest.” For each set of the

100 random signatures, we calculated 100 such improvement scores

(Supplementary Materials and Methods).

Signature assessment using Uno’s concordance index
(C-index)

All signatures were assessed using Uno’s C-index (Uno et al., 2011),

an approach routinely used in the medical literature to quantify the

capacity of a given biomarker to discriminate among subjects with

different event times (Uno, 2013) (Supplementary Materials and

Methods).
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