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Abstract

We propose a general framework for applying the pp-wave approximation to holographic calculation in the AdS/CFT correspondence. By
assuming the existence and some properties of string field theory (SFT) on the AdS5 ×S5 background, we extend the holographic ansatz proposed
by Gubser, Klebanov, Polyakov and by Witten to the SFT level. We extract relevant information about assumed SFT on AdS5 × S5 from its
approximation, pp-wave SFT. As an explicit example, we study conformal three point functions of BMN operators. We find a new formula which
expresses a three point function as an infinite series of matrix elements of the SFT vertex. We identify a broad class of field redefinitions which
do not affect the final observable. Known ambiguity in the pp-wave SFT vertex is due to a particular redefinition in this class. Under these
redefinitions, matrix elements themselves change, but the sum of the series is invariant due to a non-trivial cancellation. The result agrees with
that previously calculated in gauge theory.
© 2007 Elsevier B.V.

1. Introduction

The AdS/CFT correspondence conjecture [1], which states that string theory on AdS5 × S5 is equivalent to N = 4 supersym-
metric Yang–Mills theory, is one of the most explicit proposal of equivalence between string theory and large N gauge theory. An
important theme is to understand the fundamental mechanism of the correspondence, in other words, to understand how degrees of
freedom of closed strings arise from those of gauge theory. Solving this problem will considerably improve our understanding of
string theory itself.

As a first step, it will be useful to calculate corresponding observables in both string theory and gauge theory independently and
check the mutual agreement. However, it is difficult to carry out such comparison in general. On the string theory side quantum
string theory on AdS5 × S5 is not defined, and we cannot treat non-zero modes of closed strings. On the gauge theory side we have
no general methods of computation; perturbative methods do not work since the expansion parameter g2

YMN is large.
A breakthrough has been made in [4]. On the string theory side the pp-wave approximation is found, which is applicable to

states with large orbital angular momentum J on S5. Quantum theory is well-defined under this approximation, so that one can in
particular treat non-zero modes of closed strings. On the gauge theory side, the operators (BMN operators) corresponding to these
states are proposed. The expansion parameter becomes g2

YMN/J 2 for them and hence perturbative calculations are valid in the
regime g2

YMN/J 2 � 1. Using these methods many tests have been performed based on the postulated equivalence between energy
in string theory and the dilatation operator in gauge theory.

However, for the holographic aspects [2,3] (in the sense that observables in gauge theory are related to behaviour of strings at the
boundary of AdS space), there remains much to be uncovered. Since holography is the most characteristic feature of the AdS/CFT
correspondence, it is important to apply the pp-wave approximation to study these holographic aspects. A step has been made by
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Dobashi, Yoneya, and the author [5]; in order to directly apply the pp-wave approximation to holography, one should think that
closed strings are in tunnelling states under the barrier of the gravitational potential in the AdS background.

In this Letter we further propose, under the tunnelling picture, a general framework for applying the pp-wave approximation
to holographic evaluation of conformal n-point correlation functions of BMN operators. In particular, we perform an explicit
calculation (on the string theory side) of three point functions of scalar BMN operators. An important problem here is known
ambiguity in the three string vertex of the pp-wave string field theory (SFT) [7,8]. Our solution to this problem is as follows. In
our approach a three point function is expressed as an infinite series of matrix elements of the string vertex. Although the matrix
elements themselves are ambiguous, the result of the summation is unambiguous due to a non-trivial cancellation. We further
identify a broad class of field redefinitions (including the known ambiguity) which does not affect the physical observables in this
way. Our results are thus unambiguous, and agree with those previously calculated on the gauge theory side up to an overall factor.

Our basic strategy is as follows. We begin by assuming the existence of SFT on the AdS5 × S5 background. We then show that
there is a very straightforward extension of the holographic ansatz [2,3], from the supergravity level to the SFT level. Although full
construction of SFT on AdS5 × S5 would be a hard task, we can extract relevant information about it from pp-wave SFT, which can
be considered as an approximation of its near BPS sector. To facilitate extraction of information, we introduce new coordinates (5)
and basis functions (13), (14). By expanding usual bulk-boundary propagators in this basis we obtain the representation (21), (23)
of the final observable as an infinite series of SFT matrix elements.

2. Extension of holographic ansatz

Let us start by making minimum assumptions on the nature of SFT on AdS5 ×S5. Firstly, we assume that the string field consists
of infinitely many fields φL defined on AdS5. The SFT action is then a functional of the fields φL. Secondly, we assume that the free
part of the action is made up by usual Klein–Gordon operators (with masses mL) on AdS5, at least for those φL which transform as
scalar on AdS5.

These two assumptions enable us to propose an extension of the original holographic ansatz. We work with Euclideanised AdS5
given in Poincaré coordinates, ds2 = R2(dz2 + (dxμ)2)/z2, where the radius R is given by R4/α′2 ∼ g2

YMN and μ runs through
0 to 3. Originally the correspondence are made between supergravity fields and BPS operators in gauge theory. Under the first
assumption, we first extend the original correspondence to the correspondence between general fields φL in the string field and

non-BPS operators OL (with definite conformal dimensions ΔL = 2 +
√

4 + m2
L ). Then we simply extrapolate the original ansatz

[2,3] to the SFT level,1

(1)
〈
e− ∫

JL(x)·OL(x)d4x
〉 = e−S[φcl ].

Here S is the SFT action and its classical solution φcl is fixed by its asymptotic behaviour near the boundary, φL ≈ z4−ΔLJL(x) at
z ≈ 0. This asymptotic behaviour solves the Klein–Gordon equation and hence, by our second assumption, is consistent with the
free equation of motion of SFT. The important advantage of the original ansatz is that the resulting n-point functions automatically
satisfy the correct conformal transformation law. This property still holds for our extended ansatz, because it follows from the
asymptotic behaviour of the fields and the conformal symmetry of the action. We believe this to be an important justification for
our extension.

3. Extraction of information; free part and interaction part of SFT

To use the extended ansatz for actual calculations, we need relevant information about SFT on AdS5 × S5. The only information
of the free part of the SFT action is the masses mL. For fields φL corresponding to BMN operators, the BMN formula [4]

(2)Δ − J =
∑
m

Nm

√
1 + R4m2

J 2α′2

determines ΔL hence mL.
Extraction of the information of the interaction part requires much more work, partly due to its strong non-locality; we cannot

assume the local interaction form contrary to the supergravity case (for example in [6]). Therefore we will employ below a more
direct method based on expansion by appropriate basis functions.

We concentrate on three point functions of scalar BMN operators Or (r = 1,2,3). Corresponding to Or , we have three scalar
fields φr on AdS5. The holographic ansatz (1) reads, for three point functions,

(3)
〈
O1(x1)O2(x2)O3(x3)

〉 = Sint[φ1, φ2, φ3]|φr (z,x)=Kr(z,x;xr ).

1 The right-hand side actually should be considered as a tree level approximation (in string theory) of the path integral of e−S .
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Here Sint is the cubic interaction part of the SFT action, which can be considered as a functional of the three fields φr for our
purpose. The boundary-bulk propagators Kr for the fields φr are given by2

(4)Kr(z, x;xr) = �(Δr)√
π

4
�(Δr − 2)

(
z

z2 + (x − xr)2

)Δr

.

Thus what we want is the value of the interaction action evaluated at the propagators.
Now, what we have instead is the three string vertex, which expresses the joining (or splitting) amplitudes of strings; it gives

the coefficients before A†AA (or A†A†A) terms in the interaction Hamiltonian, where A,A† respectively are annihilation, creation
operators of closed strings (in the second-quantised sense). The interaction action is given by time integral of the interaction
Lagrangian, which in turn is given by the Legendre transformation of the interaction Hamiltonian. In this way we should be able to
calculate the right-hand side of (3) from the string vertex.

We should, however, clarify some points. We have to understand what is meant by ‘time’ in our case. We should also decide
appropriate annihilation and creation operators (or basis functions for the positive and negative energy solutions to Klein–Gordon
equations). In order to extract information from pp-wave SFT, we should choose the basis and the time coordinate which reduce,
under the pp-wave approximation, to those used in pp-wave SFT.

4. Basis expansion

In flat space, the natural basis consists of functions like eikx . Now we are working in AdS space, so there is an external potential.
Since it has the harmonic oscillator form under the pp-wave approximation, the natural basis functions chosen in pp-wave SFT
are the wavefunctions for the harmonic oscillator: a Gaussian (the ground state) and Gaussian multiplied by Hermite polynomi-
als (excited states). We shall seek the exact basis in AdS space which reduce to those Gaussian wavefunctions in the pp-wave
approximation. The necessity of the exact basis will become clear later.

To find the exact basis we introduce new coordinates ỹ, x̃μ on AdS5,

(5)ỹ = log
√

z2 + (xμ)2, x̃μ = xμ

z
.

The metric becomes

(6)ds2 = dz2 + (dxμ)2

z2
= (

1 + x̃2)dỹ2 + (
dx̃μ

)2 − (x̃μdx̃μ)2

1 + x̃2
,

hence this coordinates capture qualitative features of the pp-wave background. We have only made a coordinate transformation in (5)
and there are no approximations involved; we are still quantitatively working in AdS5. The isometry z′ = αz, x′ = αx corresponding
to a dilatation transformation in gauge theory is realised as a translation of ỹ, ỹ ′ = ỹ + logα. Also the isometry corresponding to
inversion,

(7)z′ = z

z2 + x2
, x′μ = xμ

z2 + x2
,

is realised as the ỹ-reversal, ỹ′ = −ỹ. We therefore consider ỹ as Euclidean time. This identification is natural in the tunnelling
picture of [5], and further enables us to directly identify energy in string theory and the dilatation operator in gauge theory.

Let us then rewrite in this coordinates a well-known solution zΔ to the Klein–Gordon equation,

(8)zΔ =
(

1√
1 + x̃2

)Δ

eΔỹ.

For large Δ the Lorentzian in the above expression can be approximated by a Gaussian,

(9)

(
1√

1 + x̃2

)Δ

≈ e− Δ
2 x̃2

.

Thus we have found the exact solution which reduces under the pp-wave approximation to the ground state wavefunction, large J

implying large Δ.3 From the dependence on ỹ we see that it is the negative energy solution (in the sense of Euclidean field theory)
of energy Δ. We get, by using inversion (7), the corresponding positive energy solution

(10)(z′)Δ =
(

z

z2 + x2

)Δ

=
(

1√
1 + x̃2

)Δ

e−Δỹ.

2 The prefactor depending only on Δr will be neglected in this Letter.
3 Another well-known solution z4−Δ corresponds to a non-normalisable wavefunction, e

+ Δ
2 x̃2

e−Δỹ .
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We next seek solutions which reduce to wavefunctions given by Gaussian multiplied by Hermite polynomials. To this end we
consider the Killing vector field

(11)

(
∂

∂x′μ

)
z′

= e+ỹ

(√
1 + x̃2 ∂

∂x̃μ
− x̃μ

√
1 + x̃2

∂

∂ỹ

)
,

which corresponds to the special conformal transformation in gauge theory. Being a Killing vector field, it generates a new solution

when it acts on a solution to the Klein–Gordon equation. Since wavefunctions have essentially the Gaussian form e− Δ
2 x̃2

, x̃ should
be considered as a small quantity of order 1√

Δ
. Also we have ∂

∂ỹ
≈ ∓Δ, the sign reflecting whether we apply the operator to positive

or negative frequency solutions. Under these approximations we get

(12)

(
∂

∂x′μ

)
z′

≈ e+ỹ
√

2Δ

(√
1

2Δ

∂

∂x̃μ
±

√
Δ

2
x̃μ

)
.

Upper (lower) sign refers to positive (negative) solutions. The right-hand side is, apart from the factor
√

2Δ, the ladder operator
(or the annihilation, creation operator in the first quantised sense) for closed string zero modes in pp-wave.4 Therefore, the desired
wavefunctions are constructed by applying (11) several times to the ground state wavefunction (8). There is also the inverted version
( ∂
∂xμ )z which corresponds to the translational symmetry in gauge theory.

Thus we have obtained the basis of negative and positive energy solutions

(13)

(
∂

∂x′μ1

)
z′

. . .

(
∂

∂x′μn

)
z′
zΔ = Ψμ1...μn(x̃)e(Δ+n)ỹ ,

(14)

(
∂

∂xμ1

)
z

. . .

(
∂

∂xμn

)
z

(z′)Δ = Ψμ1...μn(x̃)e−(Δ+n)ỹ

respectively where

(15)Ψμ1...μn(x̃) ≈ √
2Δ

n
a

μ1†
0 . . . a

μn†
0 e− Δ

2 x̃2
.

Here a
μ†
0 denotes a creation operator for a closed string zero mode. It has polarisation, labelled by μ, corresponding to insertion of

a vector impurity to BMN operators.
Our next task is to expand the boundary-bulk propagator (4) by the basis. It is readily seen that the expansion of (4) in xr gives

precisely the expansion in the basis (14),

(16)Kr =
(

z

z2 + (x − xr)2

)Δr

=
∑
n

1

n!
(−xμ1

r

) · · · (−xμn
r

)( ∂

∂xμn

)
z

. . .

(
∂

∂xμ1

)
z

(
z

z2 + x2

)Δr

.

In this expansion only positive energy solutions appear, which are exponentially decreasing (see (14)). Hence, the propagator is
well-behaved for ỹ → +∞, but it seems to be singular, for ỹ → −∞. Actually, this is not the case. The expansion above converges
only in certain region, namely ỹ > log |xr |, and interestingly the propagator has another complimentary expansion for ỹ < log |xr |.
To obtain this expansion, we first write down the propagator in the inverted frame (7) and then perform a similar expansion, this
time in the basis (13)

(17)Kr = 1

|xr |2Δr

∑
n

1

n!
(

− x
μ1
r

|xr |2
)

. . .

(
− x

μn
r

|xr |2
)(

∂

∂x′μn

)
z′

. . .

(
∂

∂x′μ1

)
z′
zΔr .

Here only exponentially increasing solutions appear. Thus the expansion of the propagator actually works quite well. The existence
of the critical time log |xr |, or the natural switching between the positive and negative energy basis, is essential to the following
calculations. Note that we could see the existence of the critical time only because we use the exact basis instead of the approximate
Gaussian form.

5. Calculation of the holographic observable

Now we calculate Sint[K1,K2,K3] in (3). We first define the matrix elements L between three members in the basis (13), (14),
by considering the value of the cubic interaction Lagrangian (with ỹ as time)

(18)Lint
[
Ψλ1...λl

e±1(Δ1+l)ỹ ,Ψμ1...μme±2(Δ2+m)ỹ,Ψν1...νne
±3(Δ3+n)ỹ

] = L
±1±2±3
λ1...λl :μ1...μm:ν1...νn

e(±1(Δ1+l)±2(Δ2+m)±3(Δ3+n))ỹ .

4 The factor e+ỹ arises because the operator is represented in the Heisenberg picture.



H. Shimada / Physics Letters B 647 (2007) 211–218 215
Signs (±)r for fields φr reflect whether negative or positive energy solutions are considered. Dependence of the right-hand side on
ỹ follows from linearity of Lint in each field φr . The matrix elements L carry the same amount of information as the functional Sint.

We then rewrite Sint[K1,K2,K3] in terms of these matrix elements using expansions (16), (17). Corresponding to three propa-
gators, there are three critical times log |x1|, log |x2|, log |x3|. We hereafter fix their radial order to be |x1| < |x2| < |x3|. In each of
four regions, −∞ < ỹ < log |x1|, log |x1| < ỹ < log |x2|, log |x2| < ỹ < log |x3|, log |x3| < ỹ < ∞, we have an expansion labelled
by three integers corresponding to Kr . By performing ỹ-integral in each region we obtain〈

O1(x1)O2(x2)O3(x3)
〉 = Sint[K1,K2,K3]

≡
∞∑

l,m,n=0

(−1)l+m+n

l!m!n!
(

x
λ1
1

|x1| . . .
x

λl

1

|x1|
)(

x
μ1
2

|x2| . . .
x

μm

2

|x2|
)(

x
ν1
3

|x3| . . .
x

νn

3

|x3|
)

×
[(−M−−−

λ:μ:ν + M−−+
λ:μ:ν

)|x3|−Δ1−Δ2−Δ3

( |x1|
|x2|

)l( |x2|
|x3|

)l+m

+ (−M−−+
λ:μ:ν + M−++

λ:μ:ν
)|x2|−Δ1−Δ2+Δ3 |x3|−2Δ3

( |x1|
|x2|

)l( |x2|
|x3|

)n

(19)+ (−M−++
λ:μ:ν + M+++

λ:μ:ν
)|x1|−Δ1+Δ2+Δ3 |x2|−2Δ2 |x3|−2Δ3

( |x1|
|x2|

)m+n( |x2|
|x3|

)n]
,

where we have introduced an abbreviation

L
±1±2±3
λ1...λl :μ1...μm:ν1...νn

±1(Δ1 + l) ±2 (Δ2 + m) ±3 (Δ3 + n)
= M

±1±2±3
λ:μ:ν .

We have used the symbol ≡ to signify that the equality holds up to a Δ-dependent overall factor. Three terms in (19) come from
critical time log |x3|, log |x2|, log |x1|, respectively. They do not mix in general since differences of Δr are non-integral for generic
operators.

Now let us recall that the dependence of the three point function on xr is fixed by conformal symmetry to be,

(20)
C

|x1 − x2|Δ1+Δ2−Δ3 |x2 − x3|Δ2+Δ3−Δ1 |x3 − x1|Δ3+Δ1−Δ2
,

where C is a constant. Provided that the conformal symmetry is properly realised in Sint, or the matrix elements L, (19) should
agree with the expansion of (20) in the two parameters |x1|/|x2| < 1 and |x2|/|x3| < 1. We can read off many identities between
the matrix elements, imposed by the conformal symmetry, by fully comparing the two expansions. In particular, only the second
term in (19) should be non-vanishing. Further study of these identities may give us important insights on SFT on AdS5 × S5. Here,
we shall instead concentrate on deriving the factor C. By comparing the leading term in the expansion of (20) and the l = 0, n = 0
part of the second term in (19), we obtain

(21)C ≡
∞∑

m=0

(−1)m

m!
x

μ1
2

|x2| . . .
x

μm

2

|x2|
(

− L−−+:μ1...μm:
−Δ1 − (Δ2 + m) + Δ3

+ L−++:μ1...μm:
−Δ1 + (Δ2 + m) + Δ3

)
.

This formula is one of our main results. It is interesting that the simple observable C is written as an infinite series of the matrix
elements with excited zero-modes. This is in contrast with other approaches [12–14] in which a gauge theory observable is compared
to a single matrix element. As we will see, this feature is essential for the invariance of C under field redefinitions. We also remark
that no approximations (such as the pp-wave approximation) are involved in this expression.

A couple of comments are in order. Firstly, we have performed consistency checks for this expression using toy models with
local interactions such as Sint ∼ ∫

φ1φ2φ3 d4x dz. For these models matrix elements L−±+:μ1...μm: can be computed in terms of Euler
�-functions. Summation of the infinite series (21) then exactly yields the standard result [6] obtained by direct integration over z, x.
Secondly, we see that BPS operators are rather singular (compared to general non BPS ones) since the denominators in (21) may
vanish for some m due to integral Δr .

6. Application of pp-wave approximation

To be specific, we present our calculation for the BMN operators5 OI,OII,OIII corresponding to the states in string theory
(satisfying level matching conditions),

(22)|OI〉 = a
αI†
I mI

a
βI†
I−mI

|0;JI〉, |OII〉 = |0;JII〉, |OIII〉 = a
αIII†
IIImIII

a
βIII†
III−mIII

|0;JIII〉,

5 We refer to BMN operators which are mixed with appropriate double trace operators; this mixing is necessary in order that the BMN operators have definite
conformal dimensions.
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respectively. Here |0;Jr〉 (r = I, II, III) denote the first-quantised vacuum states of the closed strings with angular momentum Jr > 0
satisfying JI + JII = JIII. We denote by a

†
rm a creation operator of the mth mode of the r th string. Indices α and β take one of the

four values corresponding to insertion of scalar impurities and we take mI,mIII > 0. We put operators OI,OII, ŌIII respectively at
the points x1, x2, x3 (satisfying |x1| < |x2| < |x3|).6

Because of angular momentum conservation, the second term of (21) involves particles with negative J . We neglect its contri-
bution, as is usual in the physics of the infinite momentum frame. Since we have chosen the basis which reduces to that used in
pp-wave SFT, it should be possible to replace matrix elements L in the first term of (21) by corresponding matrix elements of the
pp-wave SFT, for the near BPS sector.7 Then (21) becomes

(23)C ≡
∞∑

n=0

(−1)n

n!
x

μ1
2

|x2| . . .
x

μn

2

|x2|
〈OI,OII, ŌIII|(2ΔII)

n/2a
μ1
II0 . . . a

μn

II0 |V 〉
ΔI + (ΔII + n) − ΔIII

,

where |V 〉 denotes the three string vertex. The factor (2ΔII)
n/2 follows from (15).

For the class of interaction vertices with prefactors quadratic in a†, such as those given in [7] or [8], the matrix elements in (23)
can be manipulated as follows,

(24)
〈
OI,OII, ŌIII|aμ1

II0 . . . a
μn

II0 |V 〉 = 〈
0|aμ1

II0 . . . a
μn

II0

(
E + FN IIII

00 a
μ†
II0 a

μ†
II0

)
e

1
2 a

ν†
II0N II II

00 a
ν†
II0 |0〉

.

Here N IIII
00 is a Neumann coefficient, and we have introduced quantities E and F : E is the matrix element without any zero mode

insertions, while F comes from zero modes in the prefactor. Substituting into (23), we get

(25)C ≡
∑

n/2=0,1,...

1
n
2 !

E

ΔI + (ΔII + n) − ΔIII

(
ΔIIN

IIII
00

)n/2 +
∑

n/2=1,2,...

1
n
2 !

nF

ΔI + (ΔII + n) − ΔIII

(
ΔIIN

IIII
00

)n/2
.

The validity of the pp-wave approximation made in the above series should be examined carefully. The approximation is valid
when the fluctuation 〈x〉 of the oscillator is sufficiently small compared to the radius, 〈x〉 � R. In terms of the excitation number
n in (25) this condition reads n � J . Therefore, what we should check is whether the leading contribution to the series comes
from the terms satisfying n � J . We shall work in the regime g2

YMN/J 2 � 1, since we wish to compare the results to perturbative

calculations in gauge theory. Since N IIII
00 is then of the order

√
g2

YMN/J 2 8 [9], we have ΔIIN
IIII
00 ∼

√
g2

YMN 
 1. Now, the leading

contribution will come from terms for which the factors (ΔIIN
IIII
00 )n/2 and n

2 ! are comparable, that is, terms with n ∼
√

g2
YMN .

Although
√

g2
YMN is large, it is much smaller than J in our regime. Thus the use of pp-wave approximation is correct.

The summation in (25) presents interesting features. Firstly, n/2 = 0 in the first term seems, at first sight, to make the only
leading contribution because of the small denominator ΔI + ΔII − ΔIII ∼ O(g2

YMN/J 2). However the numerator E is of the same
order by non-trivial cancellation, hence the contribution from the second term cannot be neglected. (Other contributions from the
first term are sub-leading.) Then the series adds up to an exponential function minus the missing n

2 = 0 term, FeΔIIN
II II
00 − F . Now

the exponent is a large quantity (∼
√

g2
YMN ) with negative sign.9 Therefore the first term in this expression is extremely small and

should be neglected in our approximation. Thus we have

(26)C ≡ E

ΔI + ΔII − ΔIII
− F.

7. Comparison to gauge theory

For the vertex in [7], we obtain

E = R4

J 2
IIIα

′ 2

(sinmIIIπy)2

π2y

(
−2δ(αIαIIIδβI)βIII + 1

2
δαIβIδαIIIβIII

)
,

6 There are six possibilities regarding the radial order of the insertion points of the operators. Discussions below work the same if we put (OI,OII, ŌIII) on
(x3, x2, x1), (x2, x1, x3), (x3, x1, x2). However, if we put them on (x1, x3, x2), (x2, x3, x1) both terms in (21) involve particles with negative J . In order to treat
these cases it would be necessary to carefully work out the transformation law between matrix elements in light cone frame and those in ordinary temporal frame.

7 Matrix elements L are defined via the Lagrangian (in (18)) while matrix elements in pp-wave SFT are those of the Hamiltonian. This difference causes no
trouble, since the Legendre transformation between them involves only an overall factor.

8 This fact signifies the strong non-locality of the interaction. For local interactions, we would have Neumann coefficients (for zero modes) of order 1.
9 We have N IIII

00 < 0, which differs from the literature since our convention (12) of a† includes a factor of i.
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(27)

F = (sinmIIIπy)2

π2y

( −4mIII(mI/y)

(m2
III − (mI/y)2)2

δ[αIαIIIδβI]βIII − 2
m2

III + (mI/y)2

(m2
III − (mI/y)2)2

δ(αIαIIIδβI)βIII

− 1

2

m2
III + (mI/y)2

(m2
III − (mI/y)2)2

δαIβIδαIIIβIII

)

with y = JI/JIII. Here we have used the asymptotic form of Neumann coefficients [9]. Anti-symmetric and traceless symmetric
pieces are respectively given by

δ[αIαIIIδβI]βIII = 1

2

(
δαIαIIIδβIβIII − δβIαIIIδαIβIII

)
,

δ(αIαIIIδβI)βIII = 1

2

(
δαIαIIIδβIβIII + δβIαIIIδαIβIII

) − 1

4
δαIβIδαIIIβIII .

Substituting (27) into (26), it is easy to see that the gauge theory results [10,11] are reproduced.

8. Invariance under field redefinitions

Now we clarify the issue of ambiguity in the three string vertex. We consider a unitary transformation Hfree + H ′
int + · · · =

(1 + D + · · ·)−1(Hfree + Hint + · · ·)(1 + D + · · ·), or,

(28)H ′
int = Hint + [Hfree,D].

Here we have expanded in the string coupling constant and retained terms of the first order, Hint, H ′
int and D. The transformed

Hamiltonian H ′
int has by construction the same symmetry, in particular supersymmetry, as the original one Hint. This transformation

can be considered as a field redefinition, of which D is the generator. In usual field theory it is guaranteed that physical observables
do not change under these redefinitions, provided that the transformations are local. The situation is the same here. The observable
C is invariant under the transformation (28) for a broad class of D. Indeed, for any D given by the overlap part with a polynomial

prefactor, |D〉 = P(a†)e
1
2 a†Na† |0〉, we get from (23)

(29)C′ = C + 〈
0|e−√

2ΔII
x
μ
2|x2| aμ |D〉 = C + P

(
−√

2ΔII
x

μ
2

|x2|
)

eΔIIN
II II
00 .

Thus we find that C does not change, in the regime g2
YMN 
 1, up to an exponentially negligible term. Thus our method does not

suffer from these ambiguity and gives unique results.10 The form of D given above closely resembles that of the generator of a local
field redefinition in ordinary field theory, the overlap part and the polynomial in a† respectively corresponding to the δ-function
part and the polynomial in spacetime derivatives.

The three point vertex given in [8] can be considered as a particular case of this ambiguity (28) with D the overlap part itself.
Hence it gives null contribution to C; in terms of (26), the E-term and the F -term cancel each other. Therefore our methods give
the same answer for any vertex of the form

(30)Hint = HA
int + αHB

int,

where HA
int and HB

int respectively refer to the vertices of [7] and [8].
Previously, the following relation has been proposed [12]

(31)C = E

ΔI + ΔII − ΔIII
.

The right-hand side is identical to the n = 0 term in our rule (23). Lacking contributions from n � 1 terms (the F -term in (26)),
results of (31) are affected by the ambiguity. Recently, Dobashi and Yoneya [13,14] have taken a different approach (initiated in [5])
from ours and constructed a vertex which reproduces known gauge theory results while using (31).11 Their vertex is the α = 1 case
of the linear combination (30).12 In our framework, their vertex reproduces gauge theory results with (31) since the choice α = 1
leads to F = 0 (in (26)).

The framework proposed in this Letter should provide us with many further tests of the AdS/CFT correspondence. It will be
interesting to study (a) the sub-leading order of our approximation which has rather intricate structures, (b) general BMN operators

10 This property makes it natural to call these observables on-shell, although Δ1 + Δ2 �= Δ3. This is also natural in the light of the holographic ansatz since they
are given by the path-integral with fixed asymptotic behaviour of the fields. We note that for ordinary transition amplitudes in a time-independent system, it is the
condition Δ1 + Δ2 = Δ3 which guarantees invariance under field redefinitions.
11 In [13,14], also a refinement to (31) is introduced for impurity non-conserving cases, ΔI + ΔII − ΔIII ∼ O(1), in order to reproduce the gauge theory results. It
would be interesting to consider whether our approach leads naturally to their prescription.
12 The bosonic part of this vertex (for scalar impurities) is first discussed in [15]. See also [16].
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such as those which have vector impurities, for which one should use different propagators and xr -dependences (20), (c) the four
(or more) point functions.
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