
e

ly

the

arding

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 565 (2003) 107–115

www.elsevier.com/locate/np

Simple solutions of relativistic hydrodynamics for longitudinal
and cylindrically expanding systems

T. Csörg̋oa,b, F. Grassib, Y. Hamab, T. Kodamac

a MTA KFKI RMKI, H-1525 Budapest 114, P.O. Box 49, Hungary
b IF-USP, C.P. 66318, 05315-970 São Paulo, SP, Brazil

c IF-UFRJ, C.P. 68528, 21945-970 Rio de Janeiro, RJ, Brazil

Received 8 February 2003; accepted 13 May 2003

Editor: J.-P. Blaizot

Abstract

Simple, self-similar, analytic solutions of(1 + 1)-dimensional relativistic hydrodynamics are presented, generalizing
Hwa–Bjorken boost-invariant solution to inhomogeneous rapidity distributions. These solutions are generalized also to(1+ 3)-
dimensional, cylindrically symmetric firetubes, corresponding to central collisions of heavy ions at relativistic bomb
energies.
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1. Introduction

Analytic solution of the equations of relativist
hydrodynamics is a difficult task because the equat
are non-linear partial differential equations, that
rather complicated to handle not only analytically b
also numerically. However, relativistic hydrodynam
has various applications, including the calculations
single-particle spectra and two-particle correlation
relativistic heavy ion collisions, see Ref. [1]. Mo
recently, there has been an increasing interes
applications of relativistic hydrodynamics in Au+ Au
collisions at RHIC both at

√
s = 130AGeV and

√
s =
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200 AGeV bombarding energies, predictions we
made for the coming LHC experiments [2–4]. T
hydrodynamical analysis can also be extended to
study of these processes on event-by-event basis [
However, most works in hydrodynamics are numer
so not always transparent.

In this sense, exact solutions would be useful,
are rarely found due to the highly non-linear n
ture of relativistic hydrodynamics. Khalatnikov’s on
dimensional analytical solution [7] to Landau’s hydr
dynamic model [8] gave rise to a new approach
high energy physics. The boost-invariant solution
was found later by R.C. Hwa and other authors. It
been frequently utilized as the basis for estimati
of initial energy densities in ultra-relativistic nucleu
nucleus collisions [10]. Due to this famous applic
tion this boost-invariant solution is frequently called
se.
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Bjorken’s solution, although as far as we know it w
first described by Hwa in Ref. [9]. Perhaps it shou
be called the Hwa–Bjorken solution, which name
shall use hereafter.

Recently, Biró has found self-similar exact so
tions of relativistic hydrodynamics for cylindricall
expanding systems [11,12]. However, his solutions
valid only when the pressure is independent of sp
and time, as, e.g., in the case of a rehadroniza
phase transition in the middle of a relativistic hea
ion collision.

Here we present an analytic approach, which g
back to the data-motivated exact analytic solut
of non-relativistic hydrodynamics found by Zimány
Bondorf and Garpman (ZBG) in 1978 for low ener
heavy ion collisions with spherical symmetry [13
This solution has been extended to the case of elli
symmetry by Zimányi and collaborators in Ref. [14
In [15,16] a Gaussian parameterization has been
troduced to describe the mass dependence of the e
tive temperature and the radius parameters of the
particle Bose–Einstein correlation functions in hi
energy heavy ion collisions. Later it has been re
ized that this phenomenologicalparameterizationof
data corresponds to an exact, Gaussiansolution of
non-relativistic hydrodynamics with spherical symm
try [17]. The spherically symmetric self-similar sol
tions of non-relativistic hydrodynamics were obtain
in a general manner in [18], that included an arbitr
scaling function for the temperature profile, and
pressed the density distribution in terms of the te
perature profile function. The ZBG solution and t
Gaussian solution of [17] are recovered from the g
eral solution of [18] as special cases, correspond
to different scaling functions of the temperature p
file. The Gaussian solution has been generalize
ellipsoidal expansions in [19], that provides analy
insight into the physics of non-central heavy ion co
sions [20].

Our approach corresponds to a generalization
these recently obtained analytic solutions [17,18
21] of non-relativistic fireball hydrodynamics to th
case of relativistic longitudinal and transverse flow
In particular, an analytic approach, the Buda–Lu
(BL) model has been developed toparameterizethe
single particle spectra and the two-particle Bos
Einstein correlations in high-energy heavy-ion phys
in terms of hydrodynamically expanding, cylindrica
-

symmetric sources [22]. Here we attempt to find
family of exact solutionsof relativistic hydrodynamics
that may include the BL model as a particular limiti
case. It turns out that in the simplest case our re
corresponds to the Cracow hydrodynamic paramet
tion, which is successfull in describing single par
cle spectra of Au+ Au collisions at

√
s = 130 and

200AGeV at RHIC [23–25].

2. The equations of relativistic hydrodynamics

We solve the relativistic continuity and energ
momentum conservation equation:

(1)∂µ
(
nuµ

) = 0,

(2)∂νT
µν = 0.

Here n ≡ n(t, r) is the number density, the fou
velocity is denoted byuµ ≡ uµ(t, r) = γ (1,v), nor-
malized touµuµ = γ 2(1 − v2) = 1, and the energy
momentum tensor is denoted byT µν . We assume per
fect fluid,

(3)T µν = (ε + p)uµuν − pgµν,

whereε stands for the relativistic energy density a
p denotes the pressure.

We close this set of relativistic hydrodynamic
equations with the equations of state. We assume a
containing massive conserved quanta,

(4)ε =mn+ κp ,

(5)p = nT .

The equations of state have two free paramet
m and κ . Non-relativistic hydrodynamics of idea
gases corresponds to the limiting case ofm � T ,
v2 � 1 andκ = 3/2 . Relativistic hydrodynamics fo
massless particles and a constant speed of sounc2

s

corresponds to the case ofm= 0 andc2
s = 1/κ .

The energy–momentumconservation equations
be projected into a component parallel touµ and
components orthogonal touµ, which are, respectively
the relativistic energy and Euler equations:

(6)uµ∂µε + (ε +p)∂µu
µ = 0,

(7)uνu
µ∂µp+ (ε + p)uµ∂µuν − ∂νp = 0.
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Based on general thermodynamical considerati
one can show that the expansion is adiabatic:

(8)∂µ
(
σuµ

) = 0,

whereσ is the entropy density. This relation holds f
perfect fluids, independently of the equations of sta

With the help of the equations of state and the c
tinuity equation, the energy equation can be rewrit
as an equation for the temperature,

(9)uµ∂µT + 1

κ
T ∂µu

µ = 0 .

We solve 5 independent equations, the continu
the (3 spatial components of ) relativistic Euler, a
the temperature equation, Eqs. (1), (7) and (9).
equations of state, Eqs. (4) and (5) close this sys
of equations in terms of 5 variables,n, T and v =
(vx, vy, vz).

3. Self-similarity

We look for solutions which generalize the usu
similarity flow, in which the flow pattern is unchange
with time if the scales of lengthX(t), Y (t),Z(t)
along three orthogonal directions vary appropriat
namely, we consider

(10)v =
(
Ẋ(t)

X(t)
rx,

Ẏ (t)

Y (t)
ry,

Ż(t)

Z(t)
rz

)
,

where xµ ≡ (t, rx, ry, rz) and the dot indicates th
time derivative. As for the thermodynamic quantiti
such asn(xµ), T (xµ),p(xµ), . . . ,we search solution
of the form

(11)f
(
xµ

) = f0

(
V0

V

)a

F (s),

where the volume parameterV = XYZ, a is an
appropriate exponent andF(s) is an arbitrary function
of the scaling variable defined by

(12)s = r2
x

X2
+ r2

y

Y 2
+ r2

z

Z2
.

These are Hubble type of flows, but the thermo
namic quantities may contain arbitrary functions d
pending on the scale parameters and also, at leas
in principle, the scale parametersX(t), Y (t) andZ(t)
may be different in the principal directions. The
derivatives,Ẋ(t), Ẏ (t) and Ż(t) correspond to (di-
rection and time dependent, generalized) Hubble c
stants.

In heavy-ion collisions, the well known boos
invariant solution [9] is often utilized to discuss seve
properties of data. However, this solution has so
shortcomings: (i) it is scale invariant, having a flat
pidity distribution, corresponding to the extreme r
ativistic collisions; (ii) it contains no transverse flo
In the present Letter, we apply the strategy descri
above first to(1+1)-dimensional (time+ longitudinal
coordinate) case and obtain a class of solutions w
are able to describe inhomogeneous rapidity dist
utions, overcoming the first shortcoming mention
above. Then, in Section 5, we consider the case
cylindrically symmetric case, trying to overcome t
second shortcoming.

4. Simple (1 + 1)-dimensional solutions

In this section, we solve the(1 + 1)-dimensional
problem. Hencexµ = (t, rz), kµ = (E, kz) through-
out this section. The metric tensor isgµν = gµν =
diag(1,−1) andxµ = (t,−rz). We solve 3 indepen
dent equations, the continuity, the temperature eq
tion and thez component of the Euler equations (1
(7), (9). Eqs. (4) and (5) close this system of equati
in terms of 3 variables,n, T andvz.

We look for flows that scale in thez direction. The
scaling variable, Eq. (12), in this case is defined as

(13)s = r2
z

Z(t)2
,

and the longitudinal velocity

(14)vz(t, rz)= Ż(t)

Z(t)
rz,

whereŻ = dZ(t)/dt . In the relativistic notation, this
form is equivalent to

(15)uµ = (coshζ,sinhζ ),

(16)

tanhζ = Ż(t)

Z(t)
rz or coshζ = 1√

1− Ż2s
≡ γ.

Note that from Eq. (16) it is obvious that this soluti
can be defined only in a bounded longitudinal coor
nate region, because at any time|rz| � Z(t)/Ż(t) has
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to be satisfied. Using this ansatz, we find that the c
tinuity equation is solved by the form

(17)n(t, rz)= n0
Z0

Z

1

coshζ
G(s),

whereG(s) is an arbitrary non-negative function of th
scaling variables and n0 andZ0 are normalization
constants. We use the conventionZ0 = Z(t0) and
n0 = n(t0,0) which implies thatG(s = 0) = 1. The
temperature equation (9) is solved by the followi
form:

(18)T (t, rz)= T0

(
Z0

Z

1

coshζ

)1/κ

F(s).

The constants of normalization are chosen such
T0 = T (t0,0) and F(0) = 1. Here again, we find
that the solution is independent of the form of t
functionF(s). From the positivity of the temperatu
distribution it follows thatF(s)� 0.

Using the ansatz for the flow profile and t
solution for the density and the temperature,
relativistic Euler equation reduces to a complica
non-linear equation that containsZ, Ż and Z̈ and s.
Taking this equation ats = 0 we expressZ̈ as a
function of Z and Ż. Substituting this back to th
Euler equation we obtain an equation forŻ,Z ands.
In particular, for them = 0 case,Z cancels out and
this reduces to a second order polynomial equa
for Ż2, which has only one positive root. The for
of the solution in this case (m = 0) is Ż2(t) = F(s).
Observing that the functionF depends only on th
scaling variables, while Ż depends only on th
time variablet , we conclude that the only solutio
of this equation should be a constantŻ = Ż0. Now
we choose the origin of the time axis such th
Z(t = 0)= 0 without loss of generality. The solution
can be cast in a relatively simple form by introduci
the longitudinal proper timeτ and the space–tim
rapidityη,

(19)τ =
√
t2 − r2

z ,

(20)η = 1

2
log

(
t + rz

t − rz

)
.

This implies thatZ(t) = Ż0t , vz = rz/t = tanhη and
ζ = η. Thus the solution for the flow velocity fiel
corresponds to the flow field of the boost-invaria
solution. However, in the boost-invariant soluti
the temperature distribution was independent of
η variable, while in our case the density and
temperature distributions can be bothη dependent
or in other words, our solutions are scale depend
The scale is defined by the parameterŻ0, in the
longitudinal direction.

This special form of the solution for the flow velo
ity field implies thatZ̈ = 0. This equation implies tha
there is no pressure gradient and there is no acce
tion in this class of self-similar solutions, similarly
the case of boost-invariant solution. The Euler eq
tion is reduced to the following requirement:(
∂z + rz

t
∂t

)

(21)

×
[(

t0

τ

)(1+1/κ)(
1− Ż2

0s
)(1+1/κ)G(s)F(s)

]
= 0.

This equation is solved by the trivialG(s)F(s)= 0 as
well as by the non-trivial solution of

(22)G(s)F(s)= (
1− Ż2

0s
)−(1+1/κ)

,

which is indeed only a function ofs asŻ0 is a constan
of time. With this form, the Euler equation is satisfie
This solution implies that the scaling profile functio
for the temperature and the density distribution are
independent. As the constraint is given only for th
product, one of them can be still chosen in an arbitr
manner.

It is worthwhile to introduce new forms of th
scaling functions. Let us define

(23)T (s)=F(s)
(
1− Ż2

0s
)1/κ

,

(24)V(s)= G(s)
(
1− Ż2

0s
)
.

Then the constraint Eq. (22) can be cast to the simp
form of

(25)V(s)T (s)= 1.

Let us summarize our new family of solutions
the(1+ 1)-dimensional relativistic hydrodynamics b
substituting the results in the density, temperature
pressure profiles. We obtain

(26)vz = rz

t
= tanhη,

(27)s = r2
z

Ż2
0t

2
= tanh2η

Ż2
0

,
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(28)n= n0
t0

τ
V(s),

(29)p = p0

(
t0

τ

)1+1/κ

,

(30)T = T0

(
t0

τ

)1/κ 1

V(s) ,

wherep0 = n0T0. Thus we have generated a new fa
ily of exact solutions of relativistic hydrodynamic
a new hydrodynamical solution is assigned to e
non-negative functionV(s). It can be checked that th
above solutions are valid also for massive partic
the form of the solution is independent of the value
the massm. The form of solutions depends parame
cally onκ , that characterizes the equation of state.

4.1. Analysis of the solutions

The pressure and the flow profiles of the abo
(1 + 1)-dimensional relativistic hydrosolution are th
same as in the boost-invariant solution. In the c
of V(s) = 1, we recover the Hwa–Bjorken boos
invariant solution of Refs. [9,10]. In this limiting cas
the pressure, the density and the temperature pro
depend only on the longitudinal proper timeτ .

In the general case, our solution contains a ch
acteristic scale defining parameter in the longitudi
direction,Ż0, and an arbitrary scaling functionV(s).
Thus we have an infinitely rich new family of solu
tions. Let us try to determine the physical meaning
the scaling functionV(s).

In order to do this we evaluate the single parti
spectra corresponding to the new solutions. Here
neglect any possible dynamics in the transverse di
tions, as usual in case of applications of the boo
invariant solution. The four-velocity field of our so
lutions thus becomesuµ = (coshη,0,0,sinhη). The
four-momentum of the observed particles with m
m is denoted bykµ = (mt coshy, kx, ky,mt sinh y).
Let us assume that particles freeze out at a cons
longitudinal proper-timeτf , for the sake of simplicity
This implies freeze-out at a constant pressure, bu
a space–time rapidity dependent temperature and
sity, and makes it possible to continue the calculat
analytically. The source function of locally therma
ized relativistically flowing particles in a Boltzman
t

-

approximation can be written as

S(x,k)=C(η)mt cosh(η− y)n(x)

(31)× exp
(−kµuµ/T )

δ(τ − τf ),

where C(η) is an η dependent normalization fac
tor, given by the condition that

∫
dk/ES(x,k) =

n(x)δ(τ − τf ), which implies that

(32)C(η)= {
4πm2T (τf , η)K2

[
m/T (τf , η)

]}−1
,

whereKν(z) = ∫ ∞
0 dzexp(−zcosht)cosh(νt) is the

modified Bessel function of the second kind.
The single particle spectrum can be calculated fr

the emission function as

(33)E
d3N

dk
=

∫
τ dτ dηS(x,k).

Substituting our family of new solutions, and usi
T (x)= 1/V(x), we obtain

(34)S(x,k)= C(η)mt cosh(η− y)n(x)fB(x,k),

(35)

fB(x,k)= exp

[
−mt cosh(η− y)

T0

(
τ

t0

)1/κ

× V
(

tanh2η

Ż2
0

)]
δ(τ − τf ).

We are interested in the coupling between the m
surable rapidity distribution and the rapidity depe
dence of the effective temperature in the transve
directions as obtained from our new family of so
tions. We assume thatV(s) is a slowly varying func-
tion, i.e.,d logV(s)/ds � 1 in the region of interest
This assumption implies that the point of maxim
emissivity is located atη = y with correction terms
of O(d logV(s)/ds) The measurable single-partic
spectra can be written as

(36)

E
d3N

dk
= 2C(y)n0t0V

(
tanh2y

Ż2
0

)
K1

[
mt/Teff(y)

]
,

(37)
dN

dy
= n0t0V

(
tanh2y

Ż2
0

)
,

where

(38)Teff(y)= 1

V
( tanh2 y

Ż2
0

)T0

(
t0

τf

)1/κ

.
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Note that theV function is a free fit function that de
scribes the measurable rapidity distribution, includ
characteristic scales of the size ofŻ0.

We see that the slope parameter for transverse m
distributionTeff is related to the rapidity distributio
as

(39)Teff(y)= T0

(
t0

τf

)1/κ
dN/dy (y = 0)

dN/dy
.

Figs. 1 and 2 illustrate the calculated behavior
the effective temperature distribution as a funct
of rapidity for a single Gaussian-like and a doub

Fig. 1. Rapidity distribution dN/dy and effective tempera
ture distribution Teff(y) as a function of rapidityy, as ob-
tained from a new family of solutions of(1 + 1)-dimensional
relativistic hydrodynamics. Here we use the scaling funct
V(s) = (1 − s)(1/4), using a scale parameteṙZ0 = tanh(4),
n0t0 = 900 andT0(t0/τf )

1/κ = 200 MeV, corresponding to a singl
maximum in the rapidity distributiondN/dy. The analytic expres
sions are given by Eqs. (58), (60), (37) and (38).

Fig. 2. Same as Fig. 1 but utilizing a different form of the scal

function, V(s) =
√

1+ 1.6s4 − 2.6s8, using a scale paramete
Ż2

0 = 1, n0t0 = 800 andT0(t0/τf )
1/κ = 200 MeV, corresponding

to a two-peaked rapidity distribution.
s

Gaussian-like ansatz for the measurable rapidity
tribution.

An interesting aspect of this new(1+ 1)-dimensio-
nal solution is that the shapes of the rapidity distrib
tion dN/dy and temperature distribution are couple
the larger the rapidity density, the smaller the eff
tive temperature. Choosing the effective tempera
distribution Teff(y) to be flat, we recover the Hwa
Bjorken(1+ 1)-dimensional solution, and thedN/dy
rapidity distribution also becomes flat, rapidity ind
pendent. This behavior is expected to appear in h
energy heavy-ion collisions in the infinite bombardi
energy limit.

5. Cylindrically symmetric solutions

In this section, we describe a new family of exa
analytic solutions of relativistic hydrodynamics, wi
cylindrically symmetric flow, overcoming the secon
of shortcoming of the well known boost-invaria
Hwa–Bjorken solution [9,10]. However, we do n
address both shortcomings simultaneously yet.
physical motivation for this study is to consider t
time evolution of central collisions in ultra-relativist
heavy-ion physics within the framework of an analy
approach. From now on,xµ = (t, rx, ry, rz) ≡ (t, r)
andkµ = (E, kx, ky, kz)≡ (E,k) with E2 − k2 =m2.

As we are primarily interested in the effects of fin
transverse size and the development of transverse
we assume that the longitudinal flow componen
boost-invariant,

(40)vz(t, rz)= rz

t
.

We search for self-similar solutions, that are sc
dependent in the transverse directions, and dep

only on the transverse radius variablert =
√
r2
x + r2

y

through the scaling variable

(41)s = r2
x + r2

y

R2 ,

and the longitudinal proper timeτz =
√
t2 − r2

z and
assume that, in the frame wherevz = 0 (longitudinal
proper frame), the transverse motion corresponds
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Hubble type of self-similar transverse expansion,

v∗
x (τz, rz)= Ṙ(τz)

R(τz)
rx,

(42)v∗
y (τz, rz)= Ṙ(τz)

R(τz)
ry,

whereṘ = dR(τz)/dτz and hereafter we will desig
nate by starred symbols the variables in the longitu
nal proper frame. We assume that the scaleR depends
on time only through the longitudinal proper time,τz.

In a relativistic notation, the above form may
parametrized as

uµ =
(

coshζ coshξ,sinhξ
rx

rt
,sinhξ

ry

rt
,

(43)sinhζ coshξ

)
,

tanhξ = Ṙ(τz)

R(τz)
rt = v∗

t = γlvt or

(44)coshξ = 1√
1− Ṙ2s

≡ γ ∗
t ,

(45)coshζ = t

τz
≡ γl.

The space–time rapidityη is still defined by Eq. (20)
For a scaling longitudinal flow we obtainζ = η. Using
the above ansatz for the flow velocity distribution, w
find that the continuity equation is solved by the for

(46)n(t, rx, ry, rz)= n0

(
τz0R

2
0

τzR2

)
1

coshξ
G(s),

whereG(s) is an arbitrary non-negative function of th
scaling variables andn0, τz0 andR0 are normalization
constants. We use the conventionn0 = n(t0,0,0,0),
τz0 = τz(t0, rz0) andR0 = R(τz0), whererz0 is such
that, together witht0, satisfies Eq. (40). This implie
thatG(s = 0)= 1. The temperature equation, Eq. (
is solved by

(47)T (t, rx, ry, rz)= T0

(
τz0R

2
0

τzR2

1

coshξ

)1/κ

F(s).

The constants of normalization areT0 = T (t0,0,0,0)
andF(0)= 1. We find that the solution is independe
of the form of the functionF(s), provided that
F(s) > 0.
Using a similar technique as in Section 3, we obt
a transcendental equation forṘ2, ands. This equation
has a particular solution if

(48)Ṙ = Ṙ0 = const.

In this case, the acceleration of the radius param
vanishes,R̈ = 0, and the solution isR =R0 + Ṙ0(τz−
τz0). The relativistic Euler equation reduces to
(

1+ 1

κ

)(
RṘ

τz
+ 3Ṙ2

)

(49)= 2
(
1− sṘ2)[logG(s)F(s)

]′
,

where the l.h.s. depends only onτz while the r.h.s.
is only a function of the variables, hence both side
are constant. This implies thatR/τz = Ṙ0, thusR0 =
Ṙ0τz0. Thus the origin of the time axis (fixed by th
assumption of the scaling longitudinal flow profil
coincides with the vanishing value of the transve
radius parameters.

The solutions can be casted in a relatively sim
form by introducing the proper timeτ ,

(50)τ =
√
τ2
z − r2

t =
√
t2 − r2

x − r2
y − r2

z .

Using this natural variable we find that

(51)v = r
t

or uµ = xµ

τ
.

Thus the velocity field of our solution correspon
to the flow field of the spherically symmetric scalin
solution and to the Hubble flow of the Univers
However, in the scaling solution the temperature a
the pressure distributions are dependent only on
proper timeτ , while in our case both the density an
the temperature distributions are generally depen
on the scale variables in the transverse direction.

As the solution is relativistic, and it is defined
the positive light-cone, given byτ � 0, we obtain a
constraint for the transverse coordinate,rt � τz. This
together with the solution for the scaleR, implies
that the scaling variable has to satisfy the constr
sṘ2

0 � 1, which corresponds to the limitation that t
velocity of the fluid cannot exceed the speed of ligh

By substitutingR = Ṙ0τz into the Euler equation
Eq. (49), one obtains

(52)
d

ds
log

[(
1− sṘ2

0

)2(1+1/κ)G(s)F(s)
] = 0,
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which gives, together with the conditionG(0)F(0)= 1,

(53)G(s)F(s)= (
1− Ṙ2

0s
)−2(1+1/κ)

.

In this family of solutions, the scaling functions fo
the temperature and the density distribution are t
not independent. However, a constraint is given
their product, hence one of them can be chosen a
arbitrary positive function. For clarity, let us introdu
new forms of the scaling functions as

(54)T (s)=F(s)
(
1− Ṙ2

0s
)2/κ

,

(55)V(s)= G(s)
(
1− Ṙ2

0s
)2
.

Then the constraint can be casted to the simple f
of V(s)T (s) = 1. This construction for the scalin
functions of the transverse density and tempera
profiles coincides with the method, that we develop
for the solution of the relativistic hydrodynamic
equations in the(1+1)-dimensional problem, but her
the transverse flow has a two-dimensional distribut
so the exponents and the scaling variables had to b
defined accordingly.

Let us summarize our new family of solutions
the (1 + 3)-dimensional relativistic hydrodynamic
for cylindrically symmetric systems by substitutin
the results to the density, temperature and pres
profiles.

We obtain

(56)v = r
t
, for |r| � t,

(57)s = r2
t

Ṙ2
0τ

2
z

, for rt � τz,

(58)n(t, r)= n0

(
τz0

τ

)3

V(s),

(59)p(t, r)= p0

(
τz0

τ

)3+3/κ

,

(60)T (t, r)= T0

(
τz0

τ

)3/κ 1

V(s) ,

wherep0 = n0T0. Note that the scaling variables is
invariant for boosts in the longitudinal direction, a
it is rotation-invariant in the transverse direction,but
s is not boost-invariant in the transverse direction.
Hence we have generated cylindrically symmet
longitudinally boost invariant solutions of relativist
hydrodynamics. In the longitudinal direction, the
-

solutions are homogeneous, boost-invariant and
scale-invariant. Due to this reason, the observa
rapidity distribution is

(61)
dN

dy
= const,

a flat distribution, corresponding to the ultra-relativis
nature of the solution in the longitudinal directio
(wherey = 0.5 log[(E + kz)/(E − kz)] is the rapidity
of a particle with four-momentum(E,k) anddn/dy
is the rapidity distribution of particle density).

A new hydrodynamical solution is assigned
each non-negative functionV(s), similarly to the
cases of the non-relativistic solutions of Ref. [1
and the(1 + 1)-dimensional relativistic solution o
the previous section. Note that the solutions are v
also for massive particles, the form of the soluti
is independent of the value of the massm. The
form of solutions depends parametrically onκ , that
characterizes the equation of state.

We have obtained new solutions of the(1 + 3)-
dimensional relativistic hydrodynamical equatio
which describe a self-similar, streaming flow. In t
case ofṘ = 1 andV(s) = 1 we recover the spher
cally symmetric scale-invariant solution. This mea
that, in this limiting case, the pressure, the den
and the temperature profiles depend only on the pro
timeτ . In general case, however, our solution depe
not only on the characteristic scaleR but also on the
arbitrary scaling functionV(s).

6. Summary

We have found a new family of both(1 + 1)-
dimensional, longitudinally expanding, and(1 + 3)-
dimensional, cylindrically symmetric, adiabatic so
tions of relativistic hydrodynamics with conserv
particle number. These families of solutions solv
the continuity equation and the conservation of
energy–momentum tensor of a perfect fluid, assum
simple equations of state, given by Eqs. (4) and
The mass of the particlesm andκ = ∂ε/∂p = 1/c2

s are
free parameters of the solution. The well-known sca
invariant solution, has been obtained in them = 0
approximation. Interestingly, our generalizations
sulted inadditional freedomin the solution.
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In the new(1 + 1)-dimensional hydro solutions
the flow field coincides with that of the Hwa–Bjorke
solution. In principle, the shape of the measura
rapidity distribution, dN/dy plays the role of an
arbitrary scaling function in our solution, and w
obtain that the effective temperature of the transve
momentum distribution becomes rapidity depend
Assuming thatdN/dy is a slowly varying function of
the rapidityy, we find that the effective temperature
proportional to the inverse of the rapidity distributio
Teff(y)∝ (dN/dy)−1.

In 1 + 3 dimensions, even the flow velocity fie
deviates from Hwa–Bjorken solution. We find that t
onlyexact solution in the considered class correspo
to a scaling 3-dimensional flow, similar to the Hubb
flow of the Universe. Although the pressure distrib
tion is only proper-time dependent, this pressure
product of the local number density and the local te
perature, hence one of these can be chosen in an
trary manner.

The essential result of our Letter is that we fou
a rich family of exact analytic solutions of relativist
hydrodynamics that contain both a longitudinal Hw
Bjorken flow (that is frequently utilized in estimation
of observables in high energy heavy ion collision
and a relativistic transverse flow (whose existenc
evident from the analysis of the single particle spec
at RHIC and SPS energies [23–26]).
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