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Abstract

KLT relations almost factorize closed string amplitudes on S2 by two open string tree amplitudes which
correspond to the left- and the right-moving sectors. In this paper, we investigate string amplitudes on D2
and RP2. We find that KLT factorization relations do not hold in these two cases. The relations between
closed and open string amplitudes have new forms. On D2 and RP2, the left- and the right-moving sectors
are connected into a single sector. Then an amplitude with closed strings on D2 or RP2 can be given by one
open string tree amplitude except for a phase factor. The relations depends on the topologies of the world-
sheets. Under T-duality, the relations on D2 and RP2 give the amplitudes between closed strings scattering
from D-brane and O-plane respectively by open string partial amplitudes. In the low energy limits of these
two cases, the factorization relations for graviton amplitudes do not hold. The amplitudes for gravitons must
be given by the new relations instead.
© 2009 Elsevier B.V. All rights reserved.

PACS: 04.60.Cf; 11.25.Db
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1. Introduction

Superstring theories are theories without ultraviolet divergences. They contain both gravita-
tional and gauge interactions as low energy limits [1,2]. Thus they offer a possible solution to the
problem of unifying all of the fundamental interactions in a consistent quantum theory. In string
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theory, gravitons are massless states of closed strings and gauge particles are massless states of
open strings. To study the relations between gravity and gauge field, we should explore the rela-
tions between closed and open strings. The duality between open and closed strings [3–8] also
motivates us to explore the relations between closed and open strings.

The most simple relation is any excited mode of a free closed string |NL,NR〉 ⊗ |p〉 can be
factorized by left- and right-moving open string excited modes:

|NL〉 ⊗ |NR〉 ⊗ |p〉. (1)

However, when we consider the interactions among strings, there are nontrivial relations between
closed and open string amplitudes. The first nontrivial relation was given by Kawai, Lewellen
and Tye [9]. They express an amplitude for N closed strings on sphere (S2) by the following
equation1:

A(N)
S2

= εαβA
(N)αβ
S2

=
(

i

2

)N−3

κN−2εαβ

∑
P,P ′

M(N)α(P )M̄(N)β(P ′)eiπF(P,P ′). (2)

Here AN
S2

is the amplitude for N closed strings on S2 and A
(N)αβ
S2

is the closed string amplitude

without polarization tensors. M(N)α(P ) and M̄(N)β(P ′) are the open string partial amplitudes
on D2 corresponding to the left- and right-moving sectors respectively. They are dependent on
the orderings of the external legs. If we sum over the orderings P and P ′, we get the total
amplitudes

∑
P M(N)α(P ) and

∑
P ′ M̄(N)β(P ′) for the left- and the right-moving open strings

respectively. Then we can see, except for a phase factor, a closed string amplitude on S2 can
be factorized by two open string tree amplitudes corresponding to the left- and right-moving
sectors (see Fig. 1(a)). There is no interaction between left- and right-moving open strings. Any
closed string polarization tensor has left and right indices, they correspond to the left- and the
right-moving modes respectively. The left and right indices of polarization tensors must contract
with the indices in the amplitude for left- and right-moving open strings respectively. The phase
factor is entirely independent of which open and closed string theories we are considering. It
only depends on P and P ′. Contour deformations can be used to reduce the number of the terms
in Eq. (2). The number of the terms can be reduced to

(N − 3)!
(

1

2
(N − 3)

)
!
(

1

2
(N − 3)

)
!, N odd, (3)

and

(N − 3)!
(

1

2
(N − 2)

)
!
(

1

2
(N − 4)

)
!, N even. (4)

In the low energy limits, the massive modes decouple. Only massless states are left. Then KLT
relations can be used to factorize the amplitudes for gravitons into products of two amplitudes
for gauge particles [10]. Gauge theory has a better ultraviolet behavior than gravity. Then KLT
relations can be used to investigate the ultraviolet properties of gravity. Researches with KLT
relations support that N = 8 supergravity may be finite [11–16]. However, a question arises:
Do KLT factorization relations hold for any gravity amplitude? In string theory, to calculate

1 We use εαβ to denote all the polarization tensors for convenience. α correspond to the left indices and β correspond
to the right indices. If there are open strings on the boundary of D2, we use εαβγ to denote all the polarization tensors
for convenience. γ correspond to the indices of open strings.
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Fig. 1. (a) A closed string amplitude on S2 can be factorize by two open string tree amplitudes corresponding to the
left- and right-sectors. (b) A closed string amplitude on D2 can be given by connecting the open string world-sheets for
the two sectors with a time reverse in the right-moving sector. (c) A closed string amplitude on RP2 can be given by
connecting the open string world-sheets for the two sectors with a time reverse and a twist in the right-moving sector.

the S-matrix, we should sum over all the topologies of world-sheets. S2 is just the most simple
topology. If we consider other topologies, we should reconsider the relations between closed and
open strings. Then the question becomes: Do the factorization relations hold for any topology?

Earlier works [17,25–27] have given some insights into the relations on Disk (D2). In [17],
some examples of the relations on D2 are given. In [25–27], the most simple process of D-brane
and closed string interactions are discussed. In the paper by Garousi and Myers [25], they found
that the two-point scattering amplitudes of closed strings from a D-brane in Type II theory is
identical with the four-point open string amplitudes upon a certain identification between the
momenta and polarizations. In [26,27], the amplitude for one closed string and two open strings
attached to a D-brane are calculated. They shown that this amplitude are also identical with the
four-point open string amplitude. In these examples, the KLT factorization relations do not hold.
Then they imply the KLT factorization relations may not hold for general amplitudes on D2.
The amplitudes on real projective plane (RP2) have similar structures with open string ampli-
tudes [30]. In fact, both D2 and RP2 can be obtained by a sphere with a Z2 identification. Then
the KLT factorization relations may also not hold in the RP2 case.

In this paper, we consider the general amplitudes on D2 and RP2. These two cases contribute
to the higher-order tree amplitude [1] for closed strings. We find that the factorization relations (2)
do not hold on D2 and RP2. The amplitudes with closed strings on D2 and RP2 cannot be
factorized by the left- and the right-moving open string amplitudes. The amplitudes satisfy new
relations. Particularly, an amplitude for N closed strings on D2 can be given by an amplitude for
2N open strings:

A(N)
D2

= εαβA
(N)αβ
D2

=
(

i

4

)N−1

κN−1εαβ

∑
M(2N)αβ(P )eiπΘ(P ). (5)
P
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In this equation, M(2N)αβ(P ) is the tree amplitude for 2N open strings. N open strings come
from the left-moving sector and the other N open strings come from the right-moving sector.
The left- and the right-moving sectors are not independent of each other. The two sectors are
connected into a single sector. Then the left indices contract with the right indices. The reason
is that the left- (right-)moving waves must be reflected at the boundary of D2 and then become
right- (left-)moving waves. Then the interactions between the left- (right-)moving waves and
their reflected waves become interactions between the two sectors. If there are open strings on
the boundary of D2, the left- and the right-moving sectors of closed strings also interact with the
open strings, then an amplitude for N closed strings and M open strings on D2 can be given by
a tree amplitude for 2N + M open strings except for a phase factor:

A(N,M)
D2

= εαβγ A
(N,M)αβγ

D2
=

(
i

4

)N−1

κN−1gMεαβγ

∑
P

M(2N,M)αβγ (P )eiπΘ ′(P ). (6)

The amplitudes on RP2 can also be factorized by one amplitude for open strings:

A(N)
RP2

= εαβA
(N)αβ
RP2

= −
(

i

4

)N−1

κN−1εαβ

∑
P

M(2N)αβ(P )eiπΘ(P ). (7)

In this case, there is a crosscap but not a boundary here. However, the left- (right-)moving waves
are also reflected at the crosscap and turn into the right- (left-)moving waves. Then there are also
interactions between left- and right-moving sectors of closed strings. The two sectors are con-
nected into one single sector again. The phase factors in (6) and (7) are complicated in concrete
calculations. By considering the contour deformations, the number of the terms can be reduced
[9,29]. It is noticed that the relations on D2 are same with on RP2 except for a minus. In a theory
containing both D2 and RP2, the two amplitudes cancel out. Under a T-duality, the relation (6)
gives the amplitude for N closed strings and M open strings attached to a D-brane by pure open
string amplitudes while the relation (7) gives the amplitude for N closed strings scattering from
an O-plane by pure open string amplitudes. In this case, the amplitudes on D2 and RP2 cannot
cancel out.

An important fact will be used in our paper is that the amplitudes with closed strings are in-
variant under conformal transformations in each single sector. This allows us to transform the
form of the interactions between left- and right-moving sectors. After some appropriate transfor-
mation in one sector, the interactions between left- and the right-moving sectors have the same
form with interactions between open strings in a same sector. Then we can treat the two sectors
of N closed strings as a single sector with 2N open strings.

In the low energy limit of an unoriented open string theory, the amplitudes for N closed strings
on D2, RP2 and S2 contribute to the tree amplitudes for N gravitons. In this case, we cannot only
use KLT factorization relations on S2 but also use the relations on D2 and RP2 to calculate the tree
amplitudes for gravitons. The amplitudes for N closed strings and M open strings on D2 become
tree amplitudes for N gravitons and M gauge particles. Then the gauge-gravity interactions can
be given by pure gauge interactions.

The structure of this paper is as follows. In Section 2 we will consider the correlation functions
and the amplitudes on D2. We will show KLT factorization relations do not hold on D2. We will
give the relations between closed string amplitudes on D2 and open string tree amplitudes. We
will also give the relations in the case of N closed strings and M open strings inserted on D2.
In Section 3 we will consider RP2. We will show KLT factorization relations do not hold on
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RP2. The relations between amplitudes on RP2 and open string amplitudes will be given in this
section. Our conclusion will be given in Section 4.

2. Relations between amplitudes on D2 and open string tree amplitudes

In this section, we will show the correlation functions on D2 cannot be factorized into the
left- and the right-moving sectors. The two sectors are connected together. Then we will give the
relations between amplitudes on D2 [1,2,18,19,22] and open string tree amplitudes [1,2,22–28].

In string theory, vertex operator for any closed string can be given as

V(ω, ω̄) = VL(ω)ṼR(ω̄)V0(ω, ω̄), (8)

where ω = τ + iσ . VL and VR are nonzero modes of open string vertex operators. They corre-
spond to the left- and the right-moving sectors. V0(ω, ω̄) correspond to the zero modes. Thus,
the closed string vertex operators can be factorized by two open string vertex operators corre-
sponding to the left- and the right-moving sectors (except for the zero modes).

Now we consider the correlation function of vertex operators. On S2 the left- and the right-
moving waves are independent of each other. Then a correlation function on S2 can be factorized
by the left- and the right-moving sectors [1,2]. However, when we add a boundary to S2, we
get D2. The left- and the right-moving waves must be reflected at the boundary of D2. The
reflection waves of the left-moving waves are in the right-moving sector and the reflection waves
of the right-moving waves are in the left-moving sector. Waves must interact with their reflection
waves, then their must be interactions between the two sectors. To see this, we should use the
boundary state [20,21] to give the correlation functions on D2. The correlation function for N

closed strings on D2 is

〈0|VN(ω, ω̃) . . .V1(ω, ω̃)|B〉, (9)

where |B〉 ≡ B|0〉 is the boundary state for D2. In this paper, for convenience, we use the
bosonized vertex operators2

V(ω, ω̄) = :exp(qφ6 + q̃φ̃6)

× exp

(
iλ ◦ φ + i

m∑
i=1

εi ◦ ∂φi + iλ̃ ◦ φ̃ + i

m̃∑
i=1

ε̄i ◦ ∂̄ φ̃i

)

× exp

(
ik · X + i

n∑
i=1

εi · ∂X + i

ñ∑
j=1

ε̄j · ∂̄X

)
(ω, ω̄):

∣∣∣∣∣
multilinear

. (10)

2 Here φi(z) (i = 1 . . .5) and φ̃i (z̄) (i = 1 . . .5) are bosonic fields. They are used to bosonize holomorphic and

antiholomorphic fermionic fields and spinor fields. φ6(z) and φ̃6(z̄) are used to bosonize the holomorphic and antiholo-
morphic superconformal ghost respectively. ε and ε̄ correspond to the components of polarization tensors contracting
with bosonic fields ∂X and ∂̄X respectively. ε and ε̄ correspond to the components contracting with ∂φ and ∂̄ φ̃ respec-
tively. We pick up the pieces multilinear in ε, ε̄ and ε, ε̄, then replace these polarization vectors by the polarization tensor
of the vertex operator. λ′

i
= iλi and λ̃′

i
= iλ̃i (i = 1 . . .5) are vectors in the weight lattice [18,19] of the left- and right-

moving sectors respectively. q and q̃ are the γ ghost number in the left- and right-moving sectors respectively. We use ◦
to denote the inner product in the five-dimensional weight space and use · to denote the inner product in the space–time.

Physical vertices containing higher derivatives can be transformed into the vertices with only first derivatives. In fact
we can do partial integrals to reduce the order of the derivatives. After the integrals on the world-sheet, the surface terms
turn to zero. Redefine the polarization tensor, the vertices then turn to those only contain first derivatives.



Y.-X. Chen et al. / Nuclear Physics B 824 (2010) 314–330 319
Fig. 2. Only the annihilation modes are reflected at the boundary of D2.

With the definition of normal ordering, we have

V(ω, ω̄) = V(+)
L (ω)V(−)

L (ω)Ṽ(+)
L (ω̄)Ṽ(−)

R (ω̄)V0(ω, ω̄), (11)

where (+) and (−) correspond to the creation modes and the annihilation modes respectively.
In V0, we consider x as creation operator and p as annihilation operator. Then in the normal
ordering, x must on the left of p. The bosonized boundary operator is3

B = exp

( ∞∑
n=1

a†
n · ã†

n

)
⊗ exp

( ∞∑
n=1

b†
n ◦ b̃†

n

)
⊗ exp

( ∞∑
n=1

c†
nc̃

†
n

)
, (12)

where a† and ã† are creation modes of X, b† and b̃† are creation modes of φi and φ̃i respectively,
c† and c̃† are creation modes of φ6 and φ̃6 respectively. To get the correlation function on D2
we substitute the bosonized vertex operators and the bosonized boundary operators into (9). We
can move the boundary operator B to the left of all the vertex operators. Then use the creation
operators in B to annihilate the state 〈0|. Because B is constructed by creation operators, it com-
mutes with the creation modes and the zero modes of the vertex operators and does not commute
with the annihilation modes of the vertex operators. It means only the annihilation modes are re-
flected at the boundary (see Fig. 2). When we move B to the left of the annihilation modes of the
vertex operators V(−)

L (ω) and Ṽ(−)
R (ω̄), the “images” of the annihilation modes Ṽ(+)

L (−ω) and

V(+)
R (−ω̄) are created respectively. Though Ṽ(+)

L (−ω) is depend on ω, it is constructed by ã†,

b̃† and c̃†. It must interact with operators constructed by ã, b̃ and c̃. In a similar way, V(+)
R (−ω̄)

must interact with operators constructed by a, b and c. Then the correlation function can be
factorized as〈

V(+)
L (ωN)V(−)

L (ωN)V(+)
R (−ω̄N ) . . .V(+)

L (ω1)V
(−)
L (ω1)V

(+)
R (−ω̄1)

〉
× 〈

Ṽ(+)
R (ω̄N )Ṽ(−)

R (ω̄N)Ṽ(+)
L (−ωN) . . . Ṽ(+)

R (ω̄1)Ṽ
(−)
R (ω̄1)Ṽ

(+)
L (−ω1)

〉
× 〈

V0(ωN, ω̃N) . . .V0(ω1, ω̃1)
〉
. (13)

Here, the first correlation function only contain operators constructed by a, b, c and a†, b†,
c†, the second correlation function only contain operators constructed by ã, b̃, c̃ and ã†, b̃†,

3 Here, we only consider Neumann boundary condition for convenience. The case with Dirichlet boundary conditions
has similar relations.
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c̃†, the third correlation function only contain operators constructed by zero modes. Though the
nonzero modes are factorized into two correlation functions, both of them contain the interactions
between left- and the right-moving sectors. Actually, in the first correlation function, if we move
V(−)

L (ωi) to the right of V(+)
L (ωj ), we get the interaction in the left-moving sector and if we

move V(−)
L (ωi) to the right of V(+)

R (−ω̄j ), we get the interactions between the two sectors. In
the same way, the second correlation function contain interactions in the right-moving sector and
the interactions between left- and right-moving sectors. The interactions between the two sectors
are just the interactions between vertex operators and their images. Then the correlation function
on D2 cannot be factorized by the two sectors, interactions between the two sectors connect them
together.

To get the relations between amplitudes, we should calculate the correlation function, then
integral over the fundamental region and divide the integrals by the volume of conformal Killing
group [1,2,22,23]. For convenience, we use the z coordinate instead of ω coordinate. They are
connected by a conformal transformation:

z = eω. (14)

Then the amplitude for N closed strings on D2 becomes

A(N,0)
D2

= κN−1
∫

|z|<1

N∏
i=1

d2zi

|1 − zoz̄o|2
2πd2zo

×
∏
s>r

(zs − zr)
α′
2 kr ·ks+λr◦λs−qrqs (z̄r − z̄s )

α′
2 kr ·ks+λ̃r◦λ̃s−q̃r q̃s

×
∏
r,s

(
1 − (zr z̄s)

−1) α′
2 kr ·ks+λr◦λ̃s−qr q̃s

× exp
N∑

r=1

(
nr∑
i=1

ñs∑
j=1

(
−α′

2

)
ε(i)
r · ε̄(j)

r −
mr∑
i=1

m̃s∑
j=1

ε(i)
r ◦ ε̄

(j)
r

)(
1 − |zr |2

)−2

× exp
∑
s>r

[(
ñr∑

i=1

ns∑
j=1

(
−α′

2

)
ε̄(i)
r · ε(j)

s −
m̃r∑
i=1

ms∑
j=1

ε̄(i)
r ◦ ε

(j)
s

)
(1 − z̄r zs)

−2 + c.c.

]

× exp

[
−

∑
s>r

(
nr∑
i=1

ns∑
j=1

(
−α′

2

)
ε(i)
r · ε(j)

s −
mr∑
i=1

ms∑
j=1

ε(i)
r ◦ ε

(j)
s

)
(zs − zr )

−2 + c.c.

]

× exp
∑
r 
=s

[(
ns∑

i=1

(
−α′

2

)
kr · ε(i)

s −
ms∑
i=1

λr ◦ ε(i)
s

)(
(zr − zs)

−1

+ (
z̄−1
r − zs

)−1) + c.c.

]

× exp
N∑

r=1

[((
−α′

2

)
kr ·

nr∑
i=1

ε(i)
r − λr ◦

mr∑
i=1

ε(i)
r

)((
z̄−1
r − zr

)−1

+ zr
−1) + c.c.

]∣∣∣∣∣ , (15)

multilinear



Y.-X. Chen et al. / Nuclear Physics B 824 (2010) 314–330 321
where we have
N∑

r=1

λr =
N∑

r=1

λ̃r = 0,

N∑
r=1

kr = 0 and
N∑

r=1

(qr + q̃r ) = −2

correspond to the conservation of fermion number, the conservation of momentum and the fact

that background superghost number is −2. 2π d2zo

|1−zoz̄o|2 is the volume element of the CKG,4 it can
be used to fix one complex coordinate.

An integral over the fundamental region |z| < 1 is equal to an integral over the other funda-
mental region |z| > 1. So we can use ( 1

2 )N−1
∫

C

∏N
i=1 d2zi instead of the integrals over the unit

disk. For any zr = xr + iyr , the zr integral can be given by
∫ ∞
−∞ dxr

∫ ∞
−∞ dyr . We then follow

the same steps as in [9]. We rotate the contour of the y integrals along the real axis to pure imag-
inary axis. The fixed point should be transformed simultaneously to guarantee the conformal
invariance. Define the new variables:

ξ1 = ξo = xo + iyo, η1 = ηo = xo − iyo,

ξr ≡ xr + iyr , ηr ≡ xr − iyr (r > 1). (16)

Then the integrals become real integrals:

A(N,0)
D2

= κN−1
(

1

2

)N−1 ∫ N∏
i=1

dξi dηi

|1 − ξoηo|2
2π dξo dηo

×
∏
s>r

(ξs − ξr )
α′
2 kr ·ks+λr◦λs−qrqs (ηr − ηs)

α′
2 kr ·ks+λ̃r◦λ̃s−q̃r q̃s

×
∏
r,s

(
1 − (ξrηs)

−1) α′
2 kr ·ks+λr◦λ̃s−qr q̃s

× exp
N∑

r=1

(
nr∑

i=1

ñs∑
j=1

(
−α′

2

)
ε(i)
r · ε̄(j)

r −
mr∑
i=1

m̃s∑
j=1

ε(i)
r ◦ ε̄

(j)
r

)
(1 − ξrηr)

−2

× exp
∑
s>r

[(
ñr∑
i=1

ns∑
j=1

(
−α′

2

)
ε̄(i)
r · ε(j)

s −
m̃r∑
i=1

ms∑
j=1

ε̄(i)
r ◦ ε

(j)
s

)
(1 − ηrξs)

−2 + c.c.

]

× exp

[
−

∑
s>r

(
nr∑
i=1

ns∑
j=1

(
−α′

2

)
ε(i)
r · ε(j)

s −
mr∑
i=1

ms∑
j=1

ε(i)
r ◦ ε

(j)
s

)
(ξs − ξr)

−2 + c.c.

]

× exp
∑
r 
=s

[(
ns∑

i=1

(
−α′

2

)
kr · ε(i)

s −
ms∑
i=1

λr ◦ ε(i)
s

)

× (
(ξr − ξs)

−1 + (
η−1

r − ξs

)−1) + c.c.

]

4 To divide the amplitude by the volume of CKG, we can fix three real coordinate. We can also fix two real coordinate
or one complex coordinate, then divide the amplitude by volume of the one-parameter subgroup left. The two method
are equivalence. Here, we use the second method to fix z1 = zo .
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× exp
N∑

r=1

[((
−α′

2

)
kr ·

nr∑
i=1

ε(i)
r − λr ◦

mr∑
i=1

ε(i)
r

)

× ((
η−1

r − ξr

)−1 + ξr
−1) + c.c.

]∣∣∣∣∣
multilinear

. (17)

The real variables ξr correspond to the left-moving sector and ηr correspond to the left-moving
sector. An open string tree amplitude for M bosonized vertices has the form

M(N)
D2

= (g)M−2
∫ M∏

i=1

dxi

|xa − xb||xb − xc||xc − xa|
dxa dxb dxc

×
∏
s>r

|xs − xr |2α′kr ·ks (xs − xr)
λr◦λs−qrqs

× exp

[∑
s>r

(
nr∑
i=1

ns∑
j=1

(2α′)ε(i)
r · ε(j)

s +
mr∑
i=1

ms∑
j=1

ε(i)
r ◦ ε

(j)
s

)
(xs − xr)

−2

]

× exp

[∑
r 
=s

(
ns∑

i=1

(−2α′)kr · ε(i)
s −

ms∑
i=1

λr ◦ ε(i)
s

)
(xr − xs)

−1

]∣∣∣∣∣
multilinear

, (18)

where g is the coupling constant for open strings, it can be related with closed string coupling
constant by κ ∼ g2. By comparing (17) with the open string amplitude (18), we can see, the in-
teractions in one sector can be considered as interactions between open strings. The interactions
between left- and right-moving sectors look like those between open strings inserted at ξr and
(ηs)

−1. ηs can be considered as the coordinates of the right-moving open string. Then in the
(τ, σ ) coordinate, ηs

−1 = e−τ can be considered as a time reverse in the right-moving sector.
Thus the interactions between the two sectors can be regarded as interactions between left- and
right-moving open strings with a time reverse in the right moving sector (see Fig. 1(b)). The am-
plitude (17) then can be considered as an amplitude for 2N open strings. N of them correspond
to the left-moving sector and the other N of them correspond to the right-moving sector. In the
amplitude we have a time reverse in the right-moving sector.

From Fig. 1(b), we can see, if we reverse the time in the right-moving sector, we will get an
open string tree amplitude. In fact, we can replace all the ηr

−1 by ηr . By using the mass-shell
condition [18,19] which is determined by the conformal invariance in one sector, the interactions
between the two sectors as well as the interactions in one sector become those between open
strings. Define

ξr+N ≡ ηr , kr+N ≡ kr , λ̃r+N ≡ λr,

ε̄r+N ≡ εr , ε̄r+N ≡ εr . (19)

After the simultaneous transformations, the volume of CKG becomes 1
2π

∫
dξo dηo

|ξo−ηo|2 . The fixed
points become ξ1 = ξo and ξ1+N = ξo. The conformal Killing volume has another form∫

dxa dxb dxc|xa−xb||xb−xc||xc−xa | , it can be used to fix three real variables. We reset the fixed points at:

ξ1 = xa = 0, ξ2 = xb = 1, ξ2N = xc = ∞. (20)

The amplitude for N closed strings on D2 then becomes
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A(N,0)
D2

= κN−1
(

i

4

)N−1 ∫ 2N∏
i=1

dξi

|ξa − ξb||ξb − ξc||ξc − ξa|
dξa dξb dξc

×
∏
s>r

(ξs − ξr)
α′
2 kr ·ks (ξs − ξr)

λr◦λs−qrqs

× exp

[∑
s>r

(
nr∑
i=1

ns∑
j=1

(2α′)ε(i)
r · ε(j)

s +
mr∑
i=1

ms∑
j=1

ε(i)
r ◦ ε

(j)
s

)
(ξs − ξr )

−2

]

× exp

[∑
r 
=s

(
ns∑

i=1

(−2α′)kr · ε(i)
s −

ms∑
i=1

λr ◦ ε(i)
s

)
(ξr − ξs)

−1

]∣∣∣∣∣
multilinear

eiπΘ(P ).

(21)

After taking an appropriate phase factor out, we get

A(N,0)
D2

= κN−1
(

i

4

)N−1 ∫ 2N∏
i=1

dξi

|ξa − ξb||ξb − ξc||ξc − ξa|
dξa dξb dξc

×
∏
s>r

|ξs − ξr | α′
2 kr ·ks (ξs − ξr )

λr◦λs−qrqs

× exp

[∑
s>r

(
nr∑
i=1

ns∑
j=1

(2α′)ε(i)
r · ε(j)

s +
mr∑
i=1

ms∑
j=1

ε(i)
r ◦ ε

(j)
s

)
(ξs − ξr )

−2

]

× exp

[∑
r 
=s

(
ns∑

i=1

(−2α′)kr · ε(i)
s −

ms∑
i=1

λr ◦ ε(i)
s

)
(ξr − ξs)

−1

]∣∣∣∣∣
multilinear

eiπΘ(P ),

(22)

where we have absorbed a factor 1
2 into each ε. Θ(P ) is defined as

Θ(P ) =
∑
s>r

2α′k′
s · k′

r θ(ξs − ξr ), (23)

where k
′μ
r = 1

2k
μ
r is the momentum of the open string and

θ(ξs − ξr ) =
{

0 (ξs > ξr),

1 (ξs < ξr).
(24)

From (18) and (22) we can see amplitudes for N closed strings on D2 can be given by one open
string tree amplitude for 2N open strings except for a phase factor. The phase factor is caused

by taking absolute number of (ξs − ξr ) in (ξs − ξr )
α′
2 kr ·ks . It is used to guarantee the integrals in

the right branch cut. It only depend on the orderings of the open strings. For a certain order P ,
the phase factor decouple from the integrals. So we can break the integrals into pieces, take the
multilinear terms in ε, ε̄, ε and ε̄, replace the polarization vectors by the polarization tensors of
closed strings. Then we get the relation between closed string amplitudes and partial amplitudes
for open strings on D2:

A(N,0)
D2

= κN−1εαβA
(N)αβ
D2

=
(

i

4

)N−1

κN−1εαβ

∑
M(2N)αβ(P )eiπΘ(P ), (25)
P
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where M is the open string amplitude without the coupling constant g, and we sum over all the
orderings P of the open strings.

If there are open strings on the boundary of D2, we can insert the open string vertices into
the amplitude (22). Because (22) is already an amplitude for open strings on the real axis except
for a phase factor, we just increase the number of the open strings on the boundary of D2 and
adjust the phase factor to make the integrals in the right branch cuts. The phase factor should be
adjusted because we must consider the interactions between closed and open strings. Then we
have

A(N,M)
D2

= εαβγ A
(N,M)αβγ

D2

=
(

i

4

)N−1

κN−1gMεαβγ

∑
P

M(2N,M)αβγ (P )eiπΘ ′(P ), (26)

where we have defined the coordinates of the left-moving open strings are ξ1, . . . , ξN , those of
right-moving open strings are ξ1+N+M, . . . , ξ2N+M and the coordinates of other open strings are
ξ1+N, . . . , ξM+N .

Θ ′(P ) =
∑
s>r

2α′k′
s · k′

rθ
′(ξs − ξr ), (27)

where k′
r are the momentums of the open strings. If ξs > ξr , θ ′(ξs − ξr ) = 0, else if ξs < ξr but

N < s, r < N + M + 1, θ ′(ξs − ξr ) = 0, otherwise θ ′(ξs − ξr ) = 1. This relation can also be
derived by choosing the fundamental region as the upper half-plane, then repeat the similar steps
in the case of N closed strings on D2. We can see if M = 0, (6) gives the relation for N closed
strings on D2 (25) and if N = 0 it gives the open string tree amplitude (18).

By comparing the relations (25) with KLT factorization relations (2), we can see, in (2), the
left- and the right-moving sectors are independent of each other. In (25), they are not independent
of each other. The interactions connect the two open string amplitudes into a single one. Because
the interactions between the two sectors are just the open string interactions, the amplitudes for
N closed strings then can be given by tree amplitudes for 2N open strings.

We can consider the relations on D2 as any closed strings can be splitted into two open strings.
Each open string catch half of the momentum of the closed string. Move the open strings corre-
sponding to the two sectors of closed strings onto the boundary of D2. Then an amplitude for N

closed strings and 2M open strings on D2 is given by an amplitude for N + 2M open strings.
In (26), the D2 amplitudes have been given by the sum of open string partial amplitudes

with 2N + M external legs correspondingly. We have to sum over all the orderings of the open
strings in this relation. However, as in the case of S2 [9], the contour treatment [29] can reduce
the number of the terms in this relation. The main points of the treatment of [29] is there are
relations among open string partial amplitudes. Then any open string partial amplitudes can be
expressed in terms of a minimal basis. All the M-point open string partial amplitude can be
expressed in terms of the minimal basis of (M −3)! independent partial amplitudes. Then for the
(N,M) case, the amplitude can be given by (2N + M − 3)! open string partial amplitudes.

If we consider the interactions between open strings attached to a Dp-brane and closed strings,
we should do appropriate replacements in the right-moving sector. For example, if the external
legs are gravitons, we just need to replace the momenta 1

2k
μ
r corresponding to the right-moving

sector by 1
2D

μ
ν · kν

r and replace the polarization tensor εμν by εμλD
λ
ν in the relation (26) [25–27],

where D
μ
ν is defined as
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−1

. . .

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

Then this relation reveals the amplitudes between N closed string and M open strings on a Dp-
brane can be given by 2N + M-point open string partial amplitudes. Though in [25–27], (2,0)

amplitude and (1,2) amplitude are four-point open string amplitudes upon a certain identification
between the momenta and polarizations, in general case, there is a phase factor in the relations.

In the low energy limit of an open string theory, gravitons are closed string states and gauge
particles are open string states. Then in this case, the KLT factorization relations do not hold. We
should use one amplitude for 2N gauge particles instead of the product of two amplitudes for N

gauge particles to give an amplitude for N gravitons.

3. Relations between amplitudes on RP2 and open string tree amplitudes

In this section, we will explore the amplitudes on RP2 [1,2,28]. We first show the correlation
functions on RP2 cannot be factorized by the left- and the right-moving sectors. The two sectors
are connected together. Then we will give the relations between amplitude on RP2 and tree
amplitude for open strings.

RP2 is an unoriented surface, it can be derived by identifying the diametrically opposite points
on S2. It can be considered as a sphere with a crosscap. With this equivalence, the waves must be
reflected at the crosscap. The reflection waves of the left-moving waves are in the right-moving
sector and the reflection waves of the right-moving waves are in the left-moving sector. The
waves must interact with their reflection waves, thus the two sectors must interact with each
other. This is similar with the case of D2.

Particularly, the correlation function on RP2 is given as

〈0|VN(ω, ω̃) . . .V1(ω, ω̃)|C〉, (29)

where |C〉 = C|0〉 is the boundary sate for RP2 [20,21]. The bosonized boundary operator C is

C = exp

( ∞∑
n=1

(−1)na†
n · ã†

n

)
|0〉X ⊗ exp

( ∞∑
n=1

(−1)nb†
n ◦ b̃†

n

)
|0〉φ

⊗ exp

( ∞∑
n=1

(−1)nc†
nc̃

†
n

)
|0〉φ6 . (30)

In this case we can see, the image point of ω is −ω̄ + iπ . When we move C to the left of a
vertex operator it commute with the creation modes and the zero modes of the vertex operator.
It does not commute with the annihilation modes V(−)

L (ω) and Ṽ(−)
R (ω̄). This means only the

annihilation modes can be reflected at the crosscap (see Fig. 3). After moving the boundary
operator to the left of the annihilation modes V(−)

L (ω) and Ṽ(−)
R (ω̄), the images Ṽ(+)

L (−ω − iπ)

and V(+)
R (−ω̄ + iπ) are created respectively. We move the boundary operator to the left of all

the vertex operators. Then use the creation operators in the boundary operator to annihilate the
state 〈0|. The correlation becomes
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Fig. 3. Only the annihilation modes are reflected at the crosscap of RP2.

〈
V(+)

L (ωN)V(−)
L (ωN)V(+)

R (−ω̄N + iπ) . . .V(+)
L (ω1)V

(−)
L (ω1)V

(+)
R (−ω̄1 + iπ)

〉
× 〈

Ṽ(+)
R (ω̄N)Ṽ(−)

R (ω̄N )Ṽ(+)
L (−ωN − iπ) . . . Ṽ(+)

R (ω̄1)Ṽ
(−)
R (ω̄1)Ṽ

(+)
L (−ω1 − iπ)

〉
× 〈

V0(ωN, ω̃N) . . .V0(ω1, ω̃1)
〉
. (31)

As in the case of D2, the first correlation function in (31) only contain a, b, c and a†, b†, c†.
When we move the left-moving modes of a vertex operator V(−)

L (ωr) to the right of the operator

V(+)
L (ωs), we get the interaction in the left-moving sector. When we move V(−)

L (ωr) to the right

of V(+)
R (−ω̄s + iπ), we get the interaction between the left- and the right-moving sectors. In

the same way, the second correlation function in (31) gives the interactions in the right-moving
sector and those between the two sectors. Thus the correlation function cannot be factorized by
the two sectors. Interactions connect the two sectors together.

Now we consider the amplitude for N closed strings on RP2. We calculate the correlation
function, integral over the fundamental region and divide the integrals by the volume of the CKG
[1,2,22,23] on RP2. As we have done in the case of D2, we also extend the integral region to
the complex pane, rotate the y integrals to the real axis and redefine the integral variables. The
amplitude for N closed strings on RP2 can be given as

A(N)
RP2

= κN−1
(

1

2

)N−1 ∫ N∏
i=1

dξi dηi

|1 + ξoηo|2
2π dξo ηo

×
∏
s>r

(ξs − ξr)
α′
2 kr ·ks+λr◦λs−qrqs (ηr − ηs)

α′
2 kr ·ks+λ̃r◦λ̃s−q̃r q̃s

×
∏
r,s

(
1 + (ξrηs)

−1) α′
2 kr ·ks+λr◦λ̃s−qr q̃s

× exp
N∑

r=1

(
nr∑
i=1

ñs∑
j=1

(
−α′

2

)
εi
r · ε̄j

r −
mr∑
i=1

m̃s∑
j=1

εi
r ◦ ε̄

j
r

)
(1 + ξrηr)

−2

× exp
∑
s>r

[(
nr∑
i=1

ns∑
j=1

(
−α′

2

)
ε̄(i)
r · ε(j)

s −
m̃r∑
i=1

ms∑
j=1

ε̄(i)
r ◦ ε

(j)
s

)
(1 + ηrξs)

−2 + c.c.

]

× exp

[
−

∑
s>r

(
nr∑ ns∑(

−α′

2

)
ε(i)
r · ε(j)

s −
mr∑ ms∑

ε(i)
r ◦ ε

(j)
s

)
(ξs − ξr )

−2 + c.c.

]

i=1 j=1 i=1 j=1
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× exp
∑
r 
=s

[(
ns∑

i=1

(
−α′

2

)
kr · ε(i)

s −
ms∑
i=1

λr ◦ ε(i)
s

)

× (
(ξr − ξs)

−1 + (−η−1
r − ξs

)−1) + c.c.

]

× exp
N∑

r=1

[((
−α′

2

)
kr ·

nr∑
i=1

ε(i)
r − λr ◦

mr∑
i=1

ε(i)
r

)

× ((−η−1
r − ξr

)−1 + ξr
−1) + c.c.

]∣∣∣∣∣
multilinear

. (32)

Then the amplitude has been given by real integrals. The interactions in one sector are the open
string interactions. The interaction between left- and right-moving sectors can be considered as
interactions between open strings inserted at ξr and (−ηs)

−1. 1
−η̄s

can be considered as a time
reverse and a twist in the right-moving sector. Then the interactions between left- and right-
moving sectors can be regarded as interactions between left- and right-moving open strings with
a time reverse and a twist in the right-moving sector (see Fig. 1(c)).

From Fig. 1(c), we can see, if we twist the right-moving sector and reverse the time in the
right-moving sector, we will get an open string tree amplitude. In fact, we can replace all the ηr by
− 1

ηr
. Then by using the mass-shell condition, the interactions between the two different sectors

as well as in one sector become the interactions between open strings. Redefine the variables in
the right-moving sector by Eq. (19). The amplitude on RP2 then becomes

A(N)
RP2

= −
(

i

4

)N−1

κN−1
∫ 2N∏

i=1

dξi

|ξa − ξb||ξb − ξc||ξc − ξa|
dξa dξb dξc

×
∏
s>r

|ξs − ξr | α′
2 kr ·ks (ξs − ξr )

λr◦λs−qrqs

× exp

[∑
s>r

(
nr∑
i=1

ns∑
j=1

(2α′)ε(i)
r · ε(j)

s +
mr∑
i=1

ms∑
j=1

ε(i)
r ◦ ε

(j)
s

)
(ξs − ξr )

−2

]

× exp

[∑
r 
=s

(
ns∑

i=1

(−2α′)kr · ε(i)
s −

ms∑
i=1

λr ◦ ε(i)
s

)
(ξr − ξs)

−1

]∣∣∣∣∣
multilinear

eiπΘ(P ).

(33)

This amplitude is different from D2 amplitude by a factor −1. It is caused by the difference
between the measure of the CKG on RP2 and D2. When we change the topology, this −1 appears.
The phase factor only depends on the ordering of the open strings. We can break the integrals
into pieces as in the case of D2 and keep the multilinear terms of the polarization tensors. Then
Eq. (33) becomes

A(N)
RP2

= εαβA
(N)αβ
RP2

= −
(

i

4

)N−1

κN−1εαβ

∑
P

M(2N)αβ(P )eiπΘ(P ). (34)

As in the case of D2, KLT factorization relations (2) do not hold on RP2. The left- and the
right-moving sectors are not independent of each other again. The interactions between the two
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sectors connect them into a single sector. Since the interactions between the two sectors are just
the those between open strings, the two open string tree amplitude in the case of S2 are connected
into one amplitude for open strings. In the relation (34), we also sum over all the orderings of the
external legs of the open strings. By using the same method in [29], the relations on RP2 for N

closed strings can be reduced to (2N − 3)! terms.
From the relations (25) and (34) we can see, the amplitudes on D2 and RP2 with same external

closed string states are equal except for a factor −1. In fact, after we transform the complex
variables into real ones, the image of a point ξr in the left-moving sector becomes 1

ηr
on D2 and

− 1
ηr

on RP2. The minus means a twist in the right-moving sector. After this twist, the amplitude
on RP2 becomes that on D2 except for a factor −1. Then if we consider a theory containing
both D2 and RP2, the amplitudes with same external states cancel out. However, if we consider
T-duality, the interactions on D2 becomes interactions between closed strings and D-brane, while
the interactions on RP2 becomes interactions between closed strings and O-plane. As we have
seen in Section 2, we should make appropriate replacement on the momenta and polarizations
in the right-moving sector to give the relations in D2 case. Under the T-duality, we also need
to replace the vertex operators on RP2 by new ones [30]. We take the massless NS–NS vertex
operator as an example. The vertex operator after T-duality becomes

VRP2(ε, k, z, z̄) = 1

2

(
εμν :Vμ

α (k, z)::Ṽμ
β (k, z̄):

+ (
D · εT · D)

μν
:Vμ

α (k · D,z)::Ṽν
β(k · D, z̄):). (35)

Here V
μ
α (p, ε) in 0 and −1 picture are

V
μ
−1(k, z) = e−φ(z)ψμ(z)eik·X(z),

V
μ
0 (k, z) = (

∂Xμ(z) + ik · ψ(z)ψμ(z)
)
eik·X. (36)

The second term in (35) can also be given by replacing εμν and kμ in the original vertex by
(D · εT · D)μν and (k · D)μ respectively. Now we consider the amplitudes for N NS–NS strings.
Each vertex operator (35) have two terms, each term can be considered as a vertex operator on
RP2 under appropriate replacement. The amplitude then is given by 2N terms, each term can
be obtained from the amplitude before T-duality by appropriate replacements. Then each term
can be given by partial amplitudes for 2N open strings again. So the RP2 relation gives the
amplitudes for closed strings scattering from an O-plane by open string amplitudes. Generally,
under the T-duality, the D2 amplitudes cannot be canceled by the RP2 amplitudes [30].

In the low energy limit of an unoriented string theory, the amplitudes for closed strings on
RP2 contribute to the amplitudes for gravitons. Then the KLT factorization relations do not hold
in this case as in the case of D2. The amplitudes for N gravitons cannot be factorized by two
amplitudes for N gauge particles. They can be given by an amplitude for 2N gauge particles.

4. Conclusion

In this paper, we investigated the relations between closed and open strings on D2 and RP2.
We have shown that the KLT factorization relations do not hold for these two topologies. The
closed string amplitudes cannot be factorized by tree amplitudes for left- and right-moving open
strings. However, the two sectors are connected into a single sector. We can give the amplitudes
with closed strings in these two cases by amplitudes in this single sector. The terms in the rela-
tions on D2 and RP2 can be reduced by contour deformations.
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Under the T-duality, the relations on D2 and RP2 give the amplitudes between closed strings
scattering from D-brane and O-plane respectively by open string partial amplitudes.

In the low energy limits of these two cases, we cannot use KLT relations to factorize ampli-
tudes for gravitons into products of two amplitudes for gauge particles. Interactions between the
“left-” and the “right-”moving gauge fields connect the two amplitudes into one. Then an gravi-
ton amplitude in these two cases can be given by one amplitude for both left- and right-moving
gauge particles.

The relations for other topologies have not been given. However, we expect there are also
some relations between closed and open string amplitudes. If there are more boundaries and
crosscaps on the world-sheet, the boundaries and the crosscaps also connect left- and the right-
moving sectors, then in these cases, KLT factorization relations do not hold.
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