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1. Introduction

Let G = (V, E) be a finite simple graph with vertex set V(G) = {1, 2, ..., n} and edge set E(G).
Denoting by d¢ (i) the degree of vertex i, let

D(G) = diag(dg(1), dg(2), . ... dc(n))

be the diagonal matrix of vertex degrees. The Laplacian matrix L(G) of G is defined by L(G) = D(G) —
A(G), where A(G) is the adjacency matrix of G. The matrix L(G) is positive semi-definite. The spectrum
of L(G) is

Spec(G) = (Ao, A1, ..oy An—1),

where 0 = Ay < Ay < --- < Ay are eigenvalues of L(G) arranged in nondecreasing order. We set
Wi=An—i, 1<i<m

M1 =z == =0
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When more than one graph is under discussion, we may write A;(G)(resp. «i(G)) instead of A; (resp.
i)

We now fix some notation and terminology. For an eigenvalue A € Spec(G), we denote its multi-
plicity by mg(A).

We denote by K;, Kq,,—1 and P,, the complete graph, the star graph and the path graph of order n,
respectively. A connected subgraph of a tree T will be called a subtree of T.

For graphs Gy = (V1,Eq), G, = (V,, E3) with disjoint vertex sets, the union of Gy and G, is
G1 + Gy, = (V1 UV,, Ey UE,). If Gy and G, are isomorphic, G; + G, may be written as 2G;. For graphs
G1, G, ..., Gk, we denote their union by Gy + Gy + - - - + G.

A set of pairwise independent edges in a graph G is called a matching in G. The maximum cardinality
of a matching is called the matching number of G and we denote it by v(G). A perfect matching is a
matching that satisfies 2v(G) = |V(G)]|.

Subgraphs G1, G, . .., Gy of a graph G are said to be independent if V(G;) N V(G;) = ¥ for all
1 < i < j < k. We generalize the notion of matching as follows. For a subgraph H of a graph G, a
set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching.
The maximum cardinality of an H-matching is called the H-matching number of G and we denote it by
v(H, G). A perfect H-matching is an H-matching that satisfies |V(H)|v(H, G) = |V(G)|.

The deficiency of a maximum H-matching of G is defined by §(H, G) = |V(G)| — |[V(H)|v(H, G).
Evidently G has a perfect H-matching if and only if §(H, G) = 0.

Itis proved in[3, Theorem 2.5] that, if a tree T has a perfect matching then 2 is a Laplacian eigenvalue
of T. We shall prove in Theorem 2.4 that if a tree T has a perfect H-matching by a subtree H of T, then
every Laplacian eigenvalue of H is that of G.

For an interval I in R, mg(I) stands for the number of Laplacian eigenvalues of G, counting multi-
plicities, that belong to I.

The multiplicity of zero m¢(0) is equal to the number of connected components of G. In particular,
G is connected if and only if A1 > 0.

We recall some known results used in this paper. The following result is well known and follows
from the Courant-Weyl inequalities.

Theorem 1.1 [1, Theorem 2.1]. For a given graph G let G = G + e be the graph obtained from G by
inserting a new edge e into G. Then the eigenvalues of G and G’ interlace:

0=120(G) = 20(G) = 21(G) < M(G) <+ < A—1(G) < Ap1(G).
In particular,

wi(G) < ui(G), 1<i<n, (11)
and

%i(G) <2i11(G), 0<i<n-—2. (1.2)

Theorem 1.2 [6, Theorem 2.2], [3, Theorem 2.1]. Let A be a Laplacian eigenvalue of a tree T. If A is not a
unit in the ring of algebraic integers, then it is a simple Laplacian eigenvalue of T.

2. Matching by a subgraph and Laplacian spectrum
The following theorem is the key result in this paper.
Theorem 2.1

(a) Let H be a connected subgraph of a connected graph G. Then
me[pi(H), 00) > iv(H, G), 1=<i=<|[V(H)|.
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(b) Let H be a subtree of a tree G. Then
mr(0, Ai(H)] = iv(H,G), 1=<i<|V(H)|—-1.
Proof. Set
F=v(H, GH+ ([V(G)| — v(H, G)|V(H)DK1,

where Kj is the trivial graph.
We now prove (a). The graph G can be built up from the spanning subgraph F, by adding new edges.
The Laplacian spectrum of F is

(w1 (H), .. i (H), pa(H), ooy pa(H), ooy per(H), oot (H), O, 0, 0),

wherer = |V(H)| and w;(H) appears v(H, G) times foreach 1 < i < r.Then by repeated applications
of (1.1) in Theorem 1.1, we have

HivH,) (G) > ni(H), 1 =<i<|V(H),

and this proves (a).
We shall prove (b). We consider the spanning forest F of the tree G. Set

s =[V(G)] —v(H, O)(V(H)| —1).
Then s is equal to the number of connected components of F and the Laplacian spectrum of F is
(Oa LR Os )"](H)a cet )"1(H)7 )"Z(H)9 LN} )"Z(H)’ R )erl(H)v .. -)erl(H))v

where 0 appears s times and A;(H) appears v(H, T) times for each 1 < i < r — 1. Then the tree
G can be built up from the spanning subgraph F by adding new s — 1 edges. Therefore by repeated
applications of (1.2) in Theorem 1.1 s — 1 times, we find that

AivH,0)(G) < A(H), 1<i=<r-—1,
and this proves (b). O

Corollary 2.2

1. Let H be a connected subgraph of a connected graph G. Then
wi(G) = wui(H), 1<i<|V(H)I.
2. Let H be a subtree of a tree G. Then
2i(G) < Ai(H), 0<i<|[V(H)|—-1
Example 2.3

1. If a graph G has a vertex of degree d > 1, then, since 11 (Kq,4) = d + 1, we have ;41 (G) > d+1
[2, Corollary 2].

2. If T is a tree with diameter d, then since A1 (Pg4+1) = 2(1 — cos(sr/(d + 1)), we have 11 (T) <
2(1 — cos(r/(d + 1)) [3, Corollary 4.4].

Theorem 2.4 Let 1 be a Laplacian eigenvalue of a subtree H in a tree T. If
§(H,T) = (mu(p) — DHv(H,T),

then p is a Laplacian eigenvalue of T.
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Proof. By Theorem 2.1, we have

msH,T)+ivH,6)(T) < wiH) < pipw,n(T), 1<i=<r. (2.3)

Setk = my(n) —1and u = wi(H) = pnip1(H) = -+ = piprx(H). Then since §(H, T) < kv(H, T),
it follows from (2.3) that

WiiripvE, D (T) < ws@,my+ivm,n (T < witH) = kM) < wivkyow,n (1),
and we have
H(itlovH, 1) (T) = wsw,n+iv,m)(T) = pi(H).

This proves the desired result. [

From Theorem 2.4 together with (2.3), we obtain the following:
Theorem 2.5 Let H be a subtree of order r of a tree T.
(a) If T has a perfect H-matching, then

ri(H) = piyn(T), 1<i=<r.

In particular, if T has a perfect H-matching, every Laplacian eigenvalue of H is that of T.
(b) If6(H, T) < v(H, T), then every multiple Laplacian eigenvalue of H is a Laplacian eigenvalue of T.

Example 2.6 Let T be a tree. Since jt1(P2) = 2, by Theorem 2.4, we recover a result of Guo and Tan
[5, Theorem 2] that if T has a perfect matching, then 1,1y (T) = 2.

Example 2.7

(1) Ifatree T has a perfect P3-matching, then since w1 (P3) = 3 and uy(P3) =1,

Moy, 1) (T) =3, poup,,n(T) = 1.

(2) Let m and n be positive integers with m|n. Then each Laplacian eigenvalue of Py, is a Laplacian
eigenvalue of P,,. This also follows from the explicit formula for the Laplacian eigenvalues of P,
and Py,.

Corollary 2.8 Let T be a tree with a perfect H-matching. If ;(H) is not a unit in the ring of algebraic
integers, then

mT[Mi(H)a OO) = iv(H7 T)

Proof. By Theorem 1.2, 4;(H) is a simple Laplacian eigenvalue of T and the result follows from Theorem
25. 0

3. Code and Laplacian spectrum

By a code in a graph G, we mean a subset of V(G). The minimum distance §(C) of a code C is the
minimum distance between distinct vertices in C. For a vertex v in G we denote by B.(v) the set of
all vertices at distance at most e from v. The packing radius of C is the maximum integer e such that
B.(v), v € C are pairwise disjoint. A code C is called an e — code if the packing radius of C is at least e.
The following proposition gives a relation between 1-codes and Laplacian spectrum of a graph.
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Proposition 3.1

(a) Let C be a 1-code of a connected graph G. Then
/,L|C|(G) > mindg(v) + 1.
veC

(b) Let C be a 1-code of a tree T. If miny¢c dy(v) > 2 then
Aci(T) <1 Ay (T) <3

Proof. Set d = min,cc dg(v). Then, since v(Kj 4, G) > |C|, A1(K1,4) = 1and 1 (Ky,q) = d + 1, the
result follows from the Theorem 2.1. [
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