Subgraphs and the Laplacian spectrum of a graph

Yasuo Teranishi
Department of Mathematics, Meijo University, Nagoya 464-8602, Japan

ARTICLEINFO

Article history:

Received 8 July 2009
Accepted 8 February 2011
Available online 8 March 2011
Submitted by S. Kirkland
AMS classification:
05C50

Keywords:

Graph spectra
Laplacian matrix
Tree

Abstract

Let G be a graph and H a subgraph of G. In this paper, a set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching. Denoting by $\nu(H, G)$ the cardinality of a maximum H-matching in G, we investigate some relations between $\nu(H, G)$ and the Laplacian spectrum of G.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a finite simple graph with vertex set $V(G)=\{1,2, \ldots, n\}$ and edge set $E(G)$. Denoting by $d_{G}(i)$ the degree of vertex i, let

$$
D(G)=\operatorname{diag}\left(d_{G}(1), d_{G}(2), \ldots, d_{G}(n)\right)
$$

be the diagonal matrix of vertex degrees. The Laplacian matrix $L(G)$ of G is defined by $L(G)=D(G)-$ $A(G)$, where $A(G)$ is the adjacency matrix of G. The matrix $L(G)$ is positive semi-definite. The spectrum of $L(G)$ is

$$
\operatorname{Spec}(G)=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right)
$$

where $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1}$ are eigenvalues of $L(G)$ arranged in nondecreasing order. We set $\mu_{i}=\lambda_{n-i}, \quad 1 \leq i \leq n ;$

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0
$$

[^0]When more than one graph is under discussion, we may write $\lambda_{i}(G)$ (resp. $\mu_{i}(G)$) instead of λ_{i} (resp. μ_{i}).

We now fix some notation and terminology. For an eigenvalue $\lambda \in \operatorname{Spec}(G)$, we denote its multiplicity by $m_{G}(\lambda)$.

We denote by $K_{n}, K_{1, n-1}$ and P_{n}, the complete graph, the star graph and the path graph of order n, respectively. A connected subgraph of a tree T will be called a subtree of T.

For graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ with disjoint vertex sets, the union of G_{1} and G_{2} is $G_{1}+G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$. If G_{1} and G_{2} are isomorphic, $G_{1}+G_{2}$ may be written as $2 G_{1}$. For graphs $G_{1}, G_{2}, \ldots, G_{k}$, we denote their union by $G_{1}+G_{2}+\cdots+G_{k}$.

A set of pairwise independent edges in a graph G is called a matching in G. The maximum cardinality of a matching is called the matching number of G and we denote it by $\nu(G)$. A perfect matching is a matching that satisfies $2 v(G)=|V(G)|$.

Subgraphs $G_{1}, G_{2}, \ldots, G_{k}$ of a graph G are said to be independent if $V\left(G_{i}\right) \cap V\left(G_{j}\right)=\emptyset$ for all $1 \leq i<j \leq k$. We generalize the notion of matching as follows. For a subgraph H of a graph G, a set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching. The maximum cardinality of an H-matching is called the H-matching number of G and we denote it by $\nu(H, G)$. A perfect H-matching is an H-matching that satisfies $|V(H)| \nu(H, G)=|V(G)|$.

The deficiency of a maximum H-matching of G is defined by $\delta(H, G)=|V(G)|-|V(H)| v(H, G)$. Evidently G has a perfect H-matching if and only if $\delta(H, G)=0$.

It is proved in [3, Theorem 2.5] that, if a tree T has a perfect matching then 2 is a Laplacian eigenvalue of T. We shall prove in Theorem 2.4 that if a tree T has a perfect H-matching by a subtree H of T, then every Laplacian eigenvalue of H is that of G.

For an interval I in $\mathbb{R}, m_{G}(I)$ stands for the number of Laplacian eigenvalues of G, counting multiplicities, that belong to I.

The multiplicity of zero $m_{G}(0)$ is equal to the number of connected components of G. In particular, G is connected if and only if $\lambda_{1}>0$.

We recall some known results used in this paper. The following result is well known and follows from the Courant-Weyl inequalities.

Theorem 1.1 [1, Theorem 2.1]. For a given graph G let $G^{\prime}=G+e$ be the graph obtained from G by inserting a new edge e into G. Then the eigenvalues of G and G^{\prime} interlace:

$$
0=\lambda_{0}(G)=\lambda_{0}\left(G^{\prime}\right) \leq \lambda_{1}(G) \leq \lambda_{1}\left(G^{\prime}\right) \leq \cdots \leq \lambda_{n-1}(G) \leq \lambda_{n-1}\left(G^{\prime}\right)
$$

In particular,

$$
\begin{equation*}
\mu_{i}(G) \leq \mu_{i}\left(G^{\prime}\right), \quad 1 \leq i \leq n \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{i}\left(G^{\prime}\right) \leq \lambda_{i+1}(G), \quad 0 \leq i \leq n-2 . \tag{1.2}
\end{equation*}
$$

Theorem 1.2 [6, Theorem 2.2], [3, Theorem 2.1]. Let λ be a Laplacian eigenvalue of a tree T. If λ is not a unit in the ring of algebraic integers, then it is a simple Laplacian eigenvalue of T.

2. Matching by a subgraph and Laplacian spectrum

The following theorem is the key result in this paper.

Theorem 2.1

(a) Let H be a connected subgraph of a connected graph G. Then

$$
m_{G}\left[\mu_{i}(H), \infty\right) \geq i v(H, G), \quad 1 \leq i \leq|V(H)|
$$

(b) Let H be a subtree of a tree G. Then

$$
m_{T}\left(0, \lambda_{i}(H)\right] \geq i v(H, G), \quad 1 \leq i \leq|V(H)|-1 .
$$

Proof. Set

$$
F=v(H, G) H+(|V(G)|-v(H, G)|V(H)|) K_{1}
$$

where K_{1} is the trivial graph.
We now prove (a). The graph G can be built up from the spanning subgraph F, by adding new edges. The Laplacian spectrum of F is

$$
\left(\mu_{1}(H), \ldots, \mu_{1}(H), \mu_{2}(H), \ldots, \mu_{2}(H), \ldots, \mu_{r}(H), \ldots \mu_{r}(H), 0, \ldots, 0\right)
$$

where $r=|V(H)|$ and $\mu_{i}(H)$ appears $\nu(H, G)$ times for each $1 \leq i \leq r$. Then by repeated applications of (1.1) in Theorem 1.1, we have

$$
\mu_{i v(H, G)}(G) \geq \mu_{i}(H), \quad 1 \leq i \leq|V(H)|,
$$

and this proves (a).
We shall prove (b). We consider the spanning forest F of the tree G. Set

$$
s=|V(G)|-v(H, G)(|V(H)|-1)
$$

Then s is equal to the number of connected components of F and the Laplacian spectrum of F is

$$
\left(0, \ldots, 0, \lambda_{1}(H), \ldots, \lambda_{1}(H), \lambda_{2}(H), \ldots, \lambda_{2}(H), \ldots, \lambda_{r-1}(H), \ldots \lambda_{r-1}(H)\right),
$$

where 0 appears s times and $\lambda_{i}(H)$ appears $v(H, T)$ times for each $1 \leq i \leq r-1$. Then the tree G can be built up from the spanning subgraph F by adding new $s-1$ edges. Therefore by repeated applications of (1.2) in Theorem $1.1 s-1$ times, we find that

$$
\lambda_{i v(H, G)}(G) \leq \lambda_{i}(H), \quad 1 \leq i \leq r-1,
$$

and this proves (b).

Corollary 2.2

1. Let H be a connected subgraph of a connected graph G. Then

$$
\mu_{i}(G) \geq \mu_{i}(H), \quad 1 \leq i \leq|V(H)| .
$$

2. Let H be a subtree of a tree G. Then

$$
\lambda_{i}(G) \leq \lambda_{i}(H), \quad 0 \leq i \leq|V(H)|-1 .
$$

Example 2.3

1. If a graph G has a vertex of degree $d \geq 1$, then, since $\mu_{1}\left(K_{1, d}\right)=d+1$, we have $\mu_{1}(G) \geq d+1$ [2, Corollary 2].
2. If T is a tree with diameter d, then since $\lambda_{1}\left(P_{d+1}\right)=2\left(1-\cos (\pi /(d+1))\right.$, we have $\lambda_{1}(T) \leq$ $2(1-\cos (\pi /(d+1))$ [3, Corollary 4.4].

Theorem 2.4 Let μ be a Laplacian eigenvalue of a subtree H in a tree T. If

$$
\delta(H, T) \leq\left(m_{H}(\mu)-1\right) \nu(H, T)
$$

then μ is a Laplacian eigenvalue of T.

Proof. By Theorem 2.1, we have

$$
\begin{equation*}
\mu_{\delta(H, T)+i v(H, G)}(T) \leq \mu_{i}(H) \leq \mu_{i v(H, T)}(T), \quad 1 \leq i \leq r . \tag{2.3}
\end{equation*}
$$

Set $k=m_{H}(\mu)-1$ and $\mu=\mu_{i}(H)=\mu_{i+1}(H)=\cdots=\mu_{i+k}(H)$. Then since $\delta(H, T) \leq k \nu(H, T)$, it follows from (2.3) that

$$
\mu_{(i+k) v(H, T)}(T) \leq \mu_{\delta(H, T)+i v(H, T)}(T) \leq \mu_{i}(H)=\mu_{i+k}(H) \leq \mu_{(i+k) v(H, T)}(T),
$$

and we have

$$
\mu_{(i+k) v(H, T)}(T)=\mu_{\delta(H, T)+i v(H, T)}(T)=\mu_{i}(H)
$$

This proves the desired result.
From Theorem 2.4 together with (2.3), we obtain the following:
Theorem 2.5 Let H be a subtree of order r of a tree T.
(a) If T has a perfect H-matching, then

$$
\mu_{i}(H)=\mu_{i v(H, T)}(T), \quad 1 \leq i \leq r .
$$

In particular, if T has a perfect H-matching, every Laplacian eigenvalue of H is that of T.
(b) If $\delta(H, T) \leq v(H, T)$, then every multiple Laplacian eigenvalue of H is a Laplacian eigenvalue of T.

Example 2.6 Let T be a tree. Since $\mu_{1}\left(P_{2}\right)=2$, by Theorem 2.4, we recover a result of Guo and Tan [5, Theorem 2] that if T has a perfect matching, then $\mu_{\nu(T)}(T)=2$.

Example 2.7

(1) If a tree T has a perfect P_{3}-matching, then since $\mu_{1}\left(P_{3}\right)=3$ and $\mu_{2}\left(P_{3}\right)=1$,

$$
\mu_{\nu\left(P_{3}, T\right)}(T)=3, \quad \mu_{2 v\left(P_{3}, T\right)}(T)=1
$$

(2) Let m and n be positive integers with $m \mid n$. Then each Laplacian eigenvalue of P_{m} is a Laplacian eigenvalue of P_{n}. This also follows from the explicit formula for the Laplacian eigenvalues of P_{n} and P_{m}.

Corollary 2.8 Let T be a tree with a perfect H-matching. If $\mu_{i}(H)$ is not a unit in the ring of algebraic integers, then

$$
m_{T}\left[\mu_{i}(H), \infty\right)=i \nu(H, T)
$$

Proof. By Theorem 1.2, $\mu_{i}(H)$ is a simple Laplacian eigenvalue of T and the result follows from Theorem 2.5.

3. Code and Laplacian spectrum

By a code in a graph G, we mean a subset of $V(G)$. The minimum distance $\delta(C)$ of a code C is the minimum distance between distinct vertices in C. For a vertex v in G we denote by $B_{e}(v)$ the set of all vertices at distance at most e from v. The packing radius of C is the maximum integer e such that $B_{e}(v), v \in C$ are pairwise disjoint. A code C is called an e - code if the packing radius of C is at least e. The following proposition gives a relation between 1-codes and Laplacian spectrum of a graph.

Proposition 3.1

(a) Let C be a 1-code of a connected graph G. Then

$$
\mu_{|C|}(G) \geq \min _{v \in C} d_{G}(v)+1
$$

(b) Let C be a 1-code of a tree T. If $\min _{v \in C} d_{T}(v) \geq 2$ then

$$
\lambda_{|C|}(T) \leq 1 \quad \lambda_{2|C|}(T) \leq 3
$$

Proof. Set $d=\min _{v \in C} d_{G}(v)$. Then, since $v\left(K_{1, d}, G\right) \geq|C|, \lambda_{1}\left(K_{1, d}\right)=1$ and $\mu_{1}\left(K_{1, d}\right)=d+1$, the result follows from the Theorem 2.1.

References

[1] D.M. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1979.
[2] R. Grone, R. Merris, The Laplacian spectrum of a graph, SIAM J. Discrete Math. 7 (1994) 221-229.
[3] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238.
[4] R. Merris, The number of eigenvalues greater than two in the Laplacian spectrum of a graph, Port. Math. 48 (1991) 345-349.
[5] J.-M. Guo, S.-W. Tan, A relation between the matching number and Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74.
[6] Y. Teranishi, The Hoffman number of a graph, Discrete Math. 260 (2003) 255-265.

[^0]: E-mail address: yasutera@meijo-u.ac.jp

 0024-3795/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
 doi:10.1016/j.laa.2011.02.019

