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LetG be a graph andH a subgraph ofG. In this paper, a set of pairwise

independent subgraphs that are all isomorphic copies of H is called

an H-matching. Denoting by ν(H, G) the cardinality of a maximum

H-matching in G, we investigate some relations between ν(H, G)
and the Laplacian spectrum of G.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V, E) be a finite simple graph with vertex set V(G) = {1, 2, . . . , n} and edge set E(G).
Denoting by dG(i) the degree of vertex i, let

D(G) = diag(dG(1), dG(2), . . . , dG(n))

be the diagonal matrix of vertex degrees. The Laplacian matrix L(G) of G is defined by L(G) = D(G) −
A(G), where A(G) is the adjacencymatrix of G. Thematrix L(G) is positive semi-definite. The spectrum

of L(G) is

Spec(G) = (λ0, λ1, . . . , λn−1),

where 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 are eigenvalues of L(G) arranged in nondecreasing order. We set

μi = λn−i, 1 ≤ i ≤ n;
μ1 ≥ μ2 ≥ · · · ≥ μn = 0.
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When more than one graph is under discussion, we may write λi(G)(resp. μi(G)) instead of λi (resp.

μi).

We now fix some notation and terminology. For an eigenvalue λ ∈ Spec(G), we denote its multi-

plicity by mG(λ).
We denote by Kn, K1,n−1 and Pn, the complete graph, the star graph and the path graph of order n,

respectively. A connected subgraph of a tree T will be called a subtree of T .

For graphs G1 = (V1, E1), G2 = (V2, E2) with disjoint vertex sets, the union of G1 and G2 is

G1 + G2 = (V1 ∪ V2, E1 ∪ E2). If G1 and G2 are isomorphic, G1 + G2 may be written as 2G1. For graphs

G1, G2, . . . , Gk, we denote their union by G1 + G2 + · · · + Gk.
A set of pairwise independent edges in a graphG is called amatching inG. Themaximumcardinality

of a matching is called the matching number of G and we denote it by ν(G). A perfect matching is a

matching that satisfies 2ν(G) = |V(G)|.
Subgraphs G1, G2, . . . , Gk of a graph G are said to be independent if V(Gi) ∩ V(Gj) = ∅ for all

1 ≤ i < j ≤ k. We generalize the notion of matching as follows. For a subgraph H of a graph G, a

set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching.

The maximum cardinality of an H-matching is called the H-matching number of G and we denote it by

ν(H, G). A perfect H-matching is an H-matching that satisfies |V(H)|ν(H, G) = |V(G)|.
The deficiency of a maximum H-matching of G is defined by δ(H, G) = |V(G)| − |V(H)|ν(H, G).

Evidently G has a perfect H-matching if and only if δ(H, G) = 0.

It is proved in [3, Theorem2.5] that, if a tree T has a perfectmatching then2 is a Laplacian eigenvalue

of T . We shall prove in Theorem 2.4 that if a tree T has a perfect H-matching by a subtree H of T , then

every Laplacian eigenvalue of H is that of G.

For an interval I in R, mG(I) stands for the number of Laplacian eigenvalues of G, counting multi-

plicities, that belong to I.

The multiplicity of zeromG(0) is equal to the number of connected components of G. In particular,

G is connected if and only if λ1 > 0.

We recall some known results used in this paper. The following result is well known and follows

from the Courant-Weyl inequalities.

Theorem 1.1 [1, Theorem 2.1]. For a given graph G let G′ = G + e be the graph obtained from G by

inserting a new edge e into G. Then the eigenvalues of G and G′ interlace:

0 = λ0(G) = λ0(G
′) ≤ λ1(G) ≤ λ1(G

′) ≤ · · · ≤ λn−1(G) ≤ λn−1(G
′).

In particular,

μi(G) ≤ μi(G
′), 1 ≤ i ≤ n, (1.1)

and

λi(G
′) ≤ λi+1(G), 0 ≤ i ≤ n − 2. (1.2)

Theorem 1.2 [6, Theorem 2.2], [3, Theorem 2.1]. Let λ be a Laplacian eigenvalue of a tree T. If λ is not a

unit in the ring of algebraic integers, then it is a simple Laplacian eigenvalue of T.

2. Matching by a subgraph and Laplacian spectrum

The following theorem is the key result in this paper.

Theorem 2.1

(a) Let H be a connected subgraph of a connected graph G. Then

mG[μi(H), ∞) ≥ iν(H, G), 1 ≤ i ≤ |V(H)|.
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(b) Let H be a subtree of a tree G. Then

mT (0, λi(H)] ≥ iν(H, G), 1 ≤ i ≤ |V(H)| − 1.

Proof. Set

F = ν(H, G)H + (|V(G)| − ν(H, G)|V(H)|)K1,

where K1 is the trivial graph.

We nowprove (a). The graphG can be built up from the spanning subgraph F , by adding new edges.

The Laplacian spectrum of F is

(μ1(H), . . . , μ1(H), μ2(H), . . . , μ2(H), . . . , μr(H), . . . μr(H), 0, . . . , 0),

where r = |V(H)| andμi(H) appears ν(H, G) times for each 1 ≤ i ≤ r. Then by repeated applications

of (1.1) in Theorem 1.1, we have

μiν(H,G)(G) ≥ μi(H), 1 ≤ i ≤ |V(H)|,
and this proves (a).

We shall prove (b). We consider the spanning forest F of the tree G. Set

s = |V(G)| − ν(H, G)(|V(H)| − 1).

Then s is equal to the number of connected components of F and the Laplacian spectrum of F is

(0, . . . , 0, λ1(H), . . . , λ1(H), λ2(H), . . . , λ2(H), . . . , λr−1(H), . . . λr−1(H)),

where 0 appears s times and λi(H) appears ν(H, T) times for each 1 ≤ i ≤ r − 1. Then the tree

G can be built up from the spanning subgraph F by adding new s − 1 edges. Therefore by repeated

applications of (1.2) in Theorem 1.1 s − 1 times, we find that

λiν(H,G)(G) ≤ λi(H), 1 ≤ i ≤ r − 1,

and this proves (b). �

Corollary 2.2

1. Let H be a connected subgraph of a connected graph G. Then

μi(G) ≥ μi(H), 1 ≤ i ≤ |V(H)|.
2. Let H be a subtree of a tree G. Then

λi(G) ≤ λi(H), 0 ≤ i ≤ |V(H)| − 1.

Example 2.3

1. If a graph G has a vertex of degree d ≥ 1, then, sinceμ1(K1,d) = d+ 1, we haveμ1(G) ≥ d+ 1

[2, Corollary 2].

2. If T is a tree with diameter d, then since λ1(Pd+1) = 2(1 − cos(π/(d + 1)), we have λ1(T) ≤
2(1 − cos(π/(d + 1)) [3, Corollary 4.4].

Theorem 2.4 Let μ be a Laplacian eigenvalue of a subtree H in a tree T. If

δ(H, T) ≤ (mH(μ) − 1)ν(H, T),

then μ is a Laplacian eigenvalue of T.
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Proof. By Theorem 2.1, we have

μδ(H,T)+iν(H,G)(T) ≤ μi(H) ≤ μiν(H,T)(T), 1 ≤ i ≤ r. (2.3)

Set k = mH(μ) − 1 and μ = μi(H) = μi+1(H) = · · · = μi+k(H). Then since δ(H, T) ≤ kν(H, T),
it follows from (2.3) that

μ(i+k)ν(H,T)(T) ≤ μδ(H,T)+iν(H,T)(T) ≤ μi(H) = μi+k(H) ≤ μ(i+k)ν(H,T)(T),

and we have

μ(i+k)ν(H,T)(T) = μδ(H,T)+iν(H,T)(T) = μi(H).

This proves the desired result. �

From Theorem 2.4 together with (2.3), we obtain the following:

Theorem 2.5 Let H be a subtree of order r of a tree T .

(a) If T has a perfect H-matching, then

μi(H) = μiν(H,T)(T), 1 ≤ i ≤ r.

In particular, if T has a perfect H-matching, every Laplacian eigenvalue of H is that of T.

(b) If δ(H, T) ≤ ν(H, T), then every multiple Laplacian eigenvalue of H is a Laplacian eigenvalue of T.

Example 2.6 Let T be a tree. Since μ1(P2) = 2, by Theorem 2.4, we recover a result of Guo and Tan

[5, Theorem 2] that if T has a perfect matching, then μν(T)(T) = 2.

Example 2.7

(1) If a tree T has a perfect P3-matching, then since μ1(P3) = 3 and μ2(P3) = 1,

μν(P3,T)(T) = 3, μ2ν(P3,T)(T) = 1.

(2) Let m and n be positive integers with m|n. Then each Laplacian eigenvalue of Pm is a Laplacian

eigenvalue of Pn. This also follows from the explicit formula for the Laplacian eigenvalues of Pn
and Pm.

Corollary 2.8 Let T be a tree with a perfect H-matching. If μi(H) is not a unit in the ring of algebraic

integers, then

mT [μi(H), ∞) = iν(H, T).

Proof. ByTheorem1.2,μi(H) is a simple Laplacianeigenvalueof T and the result follows fromTheorem

2.5. �

3. Code and Laplacian spectrum

By a code in a graph G, we mean a subset of V(G). The minimum distance δ(C) of a code C is the

minimum distance between distinct vertices in C. For a vertex v in G we denote by Be(v) the set of

all vertices at distance at most e from v. The packing radius of C is the maximum integer e such that

Be(v), v ∈ C are pairwise disjoint. A code C is called an e − code if the packing radius of C is at least e.

The following proposition gives a relation between 1-codes and Laplacian spectrum of a graph.
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Proposition 3.1

(a) Let C be a 1-code of a connected graph G. Then

μ|C|(G) ≥ min
v∈C

dG(v) + 1.

(b) Let C be a 1-code of a tree T. If minv∈C dT (v) ≥ 2 then

λ|C|(T) ≤ 1 λ2|C|(T) ≤ 3

Proof. Set d = minv∈C dG(v). Then, since ν(K1,d, G) ≥ |C|, λ1(K1,d) = 1 and μ1(K1,d) = d + 1, the

result follows from the Theorem 2.1. �
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