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ABSTRACT 

Simple versions of the conjugate gradient algorithm and the Lanczos method are 
discussed, and some merits of the latter are described. A variant of Lanczos is 
proposed which maintains robust linear independence of the Lanczos vectors by 
keeping them in secondary storage and occasionally making use of them. The main 
applications are to problems in which (1) the cost of the matrix-vector product 
dominates other costs, (2) there is a sequence of right hand sides to be processed, and 
(3) the eigenvalue distribution of A is not too favorable. 

1. INTRODUCTION 

One of the most common intermediate tasks in scientific computation is 

to solve for x the equation 

Ax=b, 

where the real n X n matrix A and one or more n-vectors b are given. This 
paper concentrates entirely on the case when A is symmetric and n is large, 

In many, but not all applications A will be sparse, and an elegant way to 

exploit sparsity is to employ A solely as a linear operator which computes Au 
for any given vector u. 
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One of the most popular of these techniques is the method of conjugate 
gradients introduced by Hestenes and Stiefel [l]. In the same year Lanczos 
published his method of minimized iterations. Both he and Householder [2] 
pointed out the intimate connection between the two approaches. 

For various reasons both methods languished until Reid [16] demon- 
strated how effective the conjugate gradient algorithm (called CG hereafter) 
can be when A is positive definite. Since that time the method has been 
studied intensively. Attractive features are that no further special properties 
are needed for A, no acceleration parameters have to be estimated, and only 
three or four n-vectors need be held in the main store in addition to the 
demands of the operator A. Another intriguing feature is that the strong 
effect of roundoff errors on actual implementations does not prevent conver- 
gence but merely delays it. Finally, the recent idea of preconditioning can 
cut down significantly the number of steps needed; see Meijerink and van 
der Vorst [9], Kershaw [6], and Jennings and Malik [3]. 

The case when A has eigenvalues of both signs is also important. A 
valuable contribution to this problem was the algorithm SYh4W.Q of Paige 
and Saunders [13], which was discovered by viewing CG from the Lanczos 
point of view. The ensuing insights showed how to deal with the indefinite 
case in a stable manner. However, SYMMLQ is somewhat slower than CG (an 
extra 5n multiplications per step) and is not recommended for the positive 
definite case. In both cases, if the number of iterations performed is large, 
then roundoff errors must cause the residual vectors, which would be 
mutually orthogonal in exact arithmetic, to become linearly dependent to 
within working accuracy. 

The proposed method is, at an abstract level, identical to both CG, 
SYMMLQ, and the Lanczos algorithm. In exact arithmetic they all produce the 
same approximate solution at each step. In this paper we explore the 
consequences of adhering to the following two precepts: 

(1) Do not throw away the residual (or Lanczos) vector computed at each 
step. 

(2) Force these vectors to maintain robust linear independence. 

Both precepts are obeyed in the technique of full reorthogonahzation 
utilized by Lanczos [8] in 1952; at each step the new Lanczos vector is 
orthogonalized, by the Gram-Schmidt process, against all the previous 
Lar~czos vectors. This procedure is so very expensive in both storage require- 
ments and execution time that it was abandoned rather soon after its 
introduction. 

The economical way to obey (1) is to use the vast secondary storage 
device which is usually available. In order to achieve (2) we propose the 
technique of selective orthogonulization, presented by Parlett and Scott [15], 
which employs the old Lanczos vectors from time to time. 
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The new algorithm is equally applicable to definite and to indefinite 
systems. Its goal is to keep the number of calls on the operator A to a 
minimum. Its cost effectiveness depends on three independent factors: (i) the 
extent to which the computation of Au dominates a Lanczos step, (ii) the 
cost of recalling in order the full set of stored Lanczos vectors, and (iii) the 
number of right hand sides. 

It will be some time before the algorithm can be implemented, de- 
bugged, refined, compared with other methods, and assessed. This paper 
presents the background and ideas from which the new techniques sprang. 

The notation will follow the conventions popularized by Householder: 
small Greek letters for scalars, small Latin letters for column vectors, capital 
Latin letters for matrices. In addition we try to reserve symmetric letters for 
symmetric matrices. The roundoff unit is always denoted by E. 

2. THE LANCZOS ALGORITHM AND CONJUGATE GRADIENTS 

This section concerns the simple Lanczos algorithm in the context of 
exact arithmetic. The basic equations are presented, as a change from most 
expositions, in so-called “top down” manner. Rather than specifying an 
algorithm and then discussing it, our approach is to keep the level of 
description as high as possible, disclosing practical details only when neces- 

sary. 
Before beginning it will be convenient to rearrange the problem slightly. 

When processing a sequence of right hand sides it is usual to have on hand 
an initial approximation x, to the true solution A -lb; if not, then take x, = 0 
in what follows. The problem now is to find the correction xC which must be 
added to x,. This is done by computing the initial residual r,, E-b - Ax, and 
then solving the nonsingular n-rowed equation 

Axe = r,,. (24 

Note that x, and b have faded from the picture. 
The Lanczos algorithm (LAN for short) may be described very simply at 

an abstract level. By the end of the jth step it has constructed a special 
orthonormal basis for the Krylov subspace ‘% of IX” defined by 

Xi rSpan(r,,A~, ,..., Ai-%,). (2.2) 

The approximate solution of (2.1) associated with this step is the unique 
vector xI in xi whose residual $ (sr,,- Axi) is orthogonal to Xi [the 
so-called “weak” solution to (2.1) in Xi.] In theory when dim Xi reaches its 
maximum value (usually n), then +j must vanish and xi actually solves (2.1). 
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That brief description of LAN suffices for some purposes. In particular the 
conjugate gradient algorithm computes the same vector xi at step i, and 
fortunately there are important cases where’ )( ri]] is negligible for values of i 
much smaller than n. See Kaniel [5] for the theory behind the last remark. 

LAN and CG part company in the way in which xi is computed. In 
particular CG does not have the special Lanczos basis available but instead 
uses simple recurrences to generate xi and two auxiliary vectors. The way in 
which CG is related to LAN is explained very clearly by Paige and Saunders 
[13, Sees. 2, 31, but that relationship is not needed here. Suffice it to say that 
CG requires four n-vectors in the fast store and no access to secondary store, 
unless the computation of Au demands it. 

It is now time to give a brief description of one step of LAN. The La.nczos 

basis consists of the columns of the n X i matrix Q=(ql,qz,. . . ,qr). It is 

special because the projection of A onto xi is, in terms of Qj, a tridiag~naZ 
matrix 

I_ _I 

Equation (2.5) below helps to clarify more fully the relation of q to A. At 
the beginning of step i there is on hand Qi_ i, q_ r (q. = 0, To =O) a vector 
r/-r, and &~]]r~_i]). The jth step first normalizes rj_i to get qi (=rj_,/j!li) 
and then computes Aql, 9 (-q;AqJ, and a new vector ri according to the 
well-known formula 

ri-Aqi-qjaj-qi_&. (2.3) 

Finally L$+I (z 111;ll) is computed and termination tests are made (more on 
this below). Note that qi_2, qi-+. . . , q1 are not needed at step 1. The key 
relationships between the quantities computed by LAN, in exact arithmetic, 
can be summarized in three equations: 

Zi-QTQi=O, (2.4) 

QTri=O. (2.6) 

Here er (e/f)) is the jth column of the i X i identity matrix 4. 

1((r112= X*X, and x* is the transpose of r. 
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We remark, in passing, that 5 is, to within a scalar factor, one of the two 
auxiliary vectors used in cc. 

The next item is the termination criterion and the computation of x,,,, 
where m is the last Lanczos step taken. First solve for fm the m-rowed 
equation 

Tnfm = eim)P,. (2.7) 

The elements (QJ,, . . . ,&J of f, are the coefficients in the formation of x, 
from the definition 

(2.8) 
That this is the correct formula can be verified by postmultiplying (2.5), for 
i = m, by f, and using the fact that ra = q, & = Q,,ef”)&: 

F,,,=Ax,,,-r,=AQ,,&,-Q,,Tmfm 

=Wk?$. (2.9) 

Thus the residual fm associated with x, is a multiple of r, and, by (2.6) with 
i = m, is orthogonal to X. Moreover 

Ilf~ll =Pm+ll+ml~ (2.10) 

and so, for each i = 1,. . . , m, the TWW of the i th residual may be computed 
without forming either xi or 3. In fact it is not even necessary to compute fi 
in order to find t#~. There are various ways of updating r& from information at 
the previous step, but the most attractive of them is the recurrence used in 
the algorithm SYMMLQ by Paige and Saunders [13]. The details are not 
needed here, and the cost is negligible. 

The pieces can now be pulled together into the three stage algorithm for 
solving (2.1) displayed in Table 1. Some comments on details of this 
algorithm are given in Sec. 7. 

The algorithm LAN is not as elegant as CG (three phases instead of one), 
but it does offer some advantages for users with limited fast stores, and it is 
surprising that it was not tried in the middle 1950s. 

Here are some of its merits. Note that step 1 is invariant under transla- 
tion. In other words the same sequence of Lanczos vectors are produced 
from ra if A - u is used in place of A for any u. Consequently LAN is as stable 
when applied to indefinite problems as it is for the positive definite case, 
provided only that a stable algorithm is used to solve Tf = e, PI. [Of course a 
larger Krylov subspace may be needed to solve (A - a)x = b than to solve 
AX = b, but that is a theoretical limitation which none of these methods can 
escape.] 
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TABLE 1 

B. N. PABLB?T 

LAN (simple version) 

Initialize: q t 0, r c r,, p c I\rll, C#J t 1. 
Until residual norm (= Q+) < tol, repeat the following: 

take a Lanczos step, 
put the new Lanczos vector q into secondary store, 
update Cp. 

Solve Z” = el & for f in a stable manner. 
Recall the Lanczos vectors one by one and accumulate the solution 

of in 7. 

The jth Lanczos step 

Multiplications/divisions 

r*r/P n 

9+-4(--P) 

8, + P 0” 

qtAr+q “Aq” 
swap q and r 0 
acq*r n 

rtr-qa n 

oqC” 0 

P + llrll n 

The stable analogue of CC for indefinite problems is the interesting 
algorithm SYMMLQ of Paige and Saunders [13]. It avoids using secondary 
storage, but boosts the operation count by 5n at each step and requires two 
more n-vectors of fast storage. Consequently Paige does not recommend it 
for problems which are known to be positive definite. However, LAN can do 
the work of both CG and SYMMLQ. 

Finally there is the task of treating a sequence of right hand sides. If Qi 
and Ti are saved, then they can assist substantially in these subsequent 
calculations. AS an extreme example, suppose that a new pair, x, and ro, are 
given and r. happens to he in Xi; then A - ‘r. can be computed with almost 
no further calls on the big matrix A. Details are given in Sec. 6. 

Rather than compare ~.,AN with co, this paper focuses on modifications of 
LAN which prevent the loss of linear independence which, in practice, may 
tarnish both CG and LAN. 

3. THE WAY IN WHICH ORTHOGONALI’IY IS LOST 

Roundoff errors cause the computed Lanczos vectors to lose not just 
orthogonality but linear independence (to working accuracy) by a certain 
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step which depends on A and on the roundoff unit. In practice LAN will not 
always terminate by the time i = n, and it will take at least as many steps as 
would be required in exact arithmetic, sometimes no more and sometimes 
twice as many. A similar retardation troubles CG and SYMMLQ. For problems 
in which the matrix-vector product Au is dominant, this blemish in the 
algorithm is serious. 

The modifications to LAN, described in Sec. 4, spring from an understand- 
ing of the precise way in which orthogonality is lost. The honor for 
unraveling this process goes to Paige [lo] in his doctoral thesis. His results 
are not well known, at least not to those who work on Ax= b, and full 
accounts of them are not readily available; [14] and [17] are examples. 
Consequently this section supplies the necessary details of his interesting 
theory. A full account is given in [18]. 

It is often stated that the cause of this orthogonality loss is persistent, 
albeit modest cancellation in the execution of the statement 

ri+Aqi - qi’Y/ - qj- 1 Pi* 

NowPj+l=ll~,ll and llAqil12=P~+~~+P~1, since an adequate level of local 
orthogonality is maintained in the simple Lanczos algorithm. Thus cancella- 
tion can be measured by the ratio /3:+ i/( pi” + a,? + /3,“,,). 

By monitoring these ratios one discovers that they rarely drop below $. 
Indeed, if cancellation were the main cause of orthogonality loss, then there 
would be little choice but to use full reorthogonalization to remedy the 
situation, just as Lanczos did in 1950. No, there is another mechanism at 
work (roundoff) which imposes a very definite pattern on the way the 
Lanczos vectors tilt towards each other. 

To explain what happens it is necessary to introduce quantities which are 
not of direct interest when solving Ax= b. Consider the eigenvalues and 
orthonormal eigenvectors of T/: 

T# = .#3ji), i=l , . . . ,i. (3.3) 

These eigenvectors change at each step, but when there is no danger of 
confusion the superscript i will be dropped. From these one defines the Ritz 
vectors 

yjf’ = Qpj", i=l,...,i, (3.4) 

which form an alternative to the Lanczos vectors as an orthonormal basis of 
xi. 



330 B. N. PARLE’IT 

The pairs (0) j), zjj n, i = 1 , . . . , j, are approximate eigenpairs of A, but some 
are much better than others. The quality of the approximation is best 
measured by the associated residual norm. Postmultiply (2.5) by si to find 

= II ?;(ei*%)ll 

= pi+lsii ‘pii . q P-5) 

As in the previous section, it happens that the norm of a certain residual 
can be computed without computing the residual vector itself. The quanti- 
ties &, which involve the bottom elements of the eigenvectors of q, play an 
important role in explaining the behavior of LAN in practice. Clearly the 
convergence of a Ritz pair (O,(i), y/i)) to an eigenpair of A is signaled by small 
values of & 

From now on let QI, q, etc. denote the computed values of these 
quantities. When roundoff contaminates each arithmetic operation, the 
orthogonality relation (2.4) fails completely after a certain number of steps, 
but the other fundamental equation (2.5) is only slightly blurred whatever 
the value of 1. In fact 

AQi - Qiq = Tie: + Fi, (3.6) 

where F, is the local error matrix and its jth column accounts for the 
roundoff errors which occur during step i. It is not difficult to show that, for 
all k, 

llhll = ll~ekll = O(WllL 

where E is the unit roundoff quantity. In brief, II Fi II remains tiny. Paige’s 
insight can now be stated properly. 

The key quantity is the angle between 9i+ i and Xi or, equivalently, 
maxlu*qi+il over all u in X i. Paige shows that one of the Ritz vectors is 
essentially the closest vector in xi to si+r. In practice the y{o are defined by 
(3.4) and they are not the true Rayleigh Ritz approximations from %?, 
because Qi is not orthonormal. 

THEOREM (Paige). Consider the simple Lanczos algorithm implemented 
in floating point arithmetic with unit roundoff E. Then at step j 

yi 9j+l=Ylf’/PjjY 0) * i=l j, ,***, 
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where 

IY$ = WIAll). 

Furthermore, omitting (i), 
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The proof is buried in Paige [lo]. A simpler version is given in [18]. What 
matters is that the matrix rt is O(eIIAll) but, incidentally, lTr= S;Z$!$ where 
Z$ is the upper triangular part of the skew matrix F; QI - QF F,. 

It turns out that many important questions about the Lanczos algorithm 
are answered by the theorem. Note first that in practice 

Consequently the pi( are accurate measures of the corresponding residual 
norms until a norm reaches the roundoff level. In what follows a Ritz pair 
(0/n, y,‘“) will be called good if /$ is below some designated threshold such 
as fi [(A 11. Another point to be made is that although Q/, T/, and rr refer to 
computed quantities, the variables f?,, s,, and yi are purely notional and there 
is no artificiality in assuming that S( is exactly orthogonal, so that Zi - SF S, = 
0. 

A convenient measure of the level of mutual orthcgormlity among the 
{q4} is IIZ-Q~Qill. Note that the { y,‘“} h ave exactly the same level, since 

Moreover, the orthogonal&y vector QFqr+ i satisfies 

IIQ;q+d = llSjY;qi+,ll = IIY;cli+Al ( fl my I Yi$+h (3.10) 

Thus the quantities appearing in Paige’s theorem have a direct bearing on 
orthogonality loss among the Lanczos vectors. 

The first deduction is usually summarized as: loss of orthogonal@ is 
equivalent to convergence of a Ritz pair. In other words, a value of 1 y:qt+ II 
close to 1 corresponds to a value of p+, close to &](A (1. More precisely, when 
]I y{“]] +l for all i, Paige’s theorem says that qi+ 1 is tilted more towards the 
most accurate Ritz vector than towards any other. 
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The second deduction concerns the { yj j), i = 1, . . . ,I}. Recall that Xi = l.si 
= 1. Thus there are always some I+] greater than or equal to l/ fl . 
Initially the ]sji / will remain close to their mean, say ]sii] > $ q , and Paige’s 
theorem shows that the yi C/j belonging to different Ritz values retain a good 
level of orthogonality. Moreover the Kaniel theory of Krylov subspaces shows 
that it is ahnost impossible to have very close Ritz values for small values of 
j. On the contrary the Ojn tend to converge (as i increases) to the outer 
eigenvalues in A’s spectrum. 

The picture changes abruptly as soon as one 1 siil drops sharply below all 
the others. Then all the other yji), v#i, tilt towards yin and qi+l is tilted 
sharply towards yjo while retaining its previous level of orthogonulity to alI 
the other yjo, which also retain their previous level of mutual orthogonality. 

Other strange phenomena occur as j increases. These are compatible 
with, but not deducible from, Paige’s theorem, and they are not directly 
relevant to the next section. Suffice it to say that some time (say p steps) 
after a particular pi, sinks to O(E]]A]]), there will occur pi+p,l and Pi++ both 

O(sIIAll) with 

to within O(s(] A I]), despite the fact that X is a simple isolated eigenvalue of A 
with eigenvector z. It follows that 

Yf f+P)=Qi+psl=Qi+psk= yf+P)=q 

despite the fact that s, and s, are orthogonal. Thus Qi+&sr - sk) = O(E) and so 

Q l+p must have linearly dependent columns to within working accuracy. 
The Lanczos algorithm can run on indefinitely, but for large i the Ritz 

vectors include many redundant copies of eigenvectors of A which belong to 
the outer eigenvalues in the spectrum. 

Table 2, from Scott [17], illustrates some of the behavior described above. 
The example was chosen to force an early loss of independence. 

4. SELECTIVE ORTHOGONALIZATION 

This section describes some modifications to LAN. Recall that the jth 
‘Lanczos step produces a vector ri (= Aqi - qiLyi - qi_ 1 pi) and normalizes it to 
get qi+l. The new version modifies rj before normalizing it, and for purposes 
of description some notation is needed to distinguish r before modification 
from r afterwards. To facilitate subsequent analysis we reserve ri for the final 
version and use r; for the original. Thus now 

r;=Aqi-qiq -qi-&-fi, (4.1) 

where 6 accounts for roundoff. 
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TABLE 2 

A=diag(0,1X10-3,2X10-3,3X10-3,4X10-3,1) 

91’ (1, l,l,l,l,l)*/fi , &=10-7 

1 *NW333 .3726035 0 

2 Ku33665 .0003464 2x10-7 

3 .0002004 .0003094 6x 1O-4 
4 .1464297 3532944 5x10-2 
5 9998344 .0001098 1x100 + 

Selected information on Ritz values 

i i 

3 1 
2 
3 

5 1 
2 
3 
4 
5 

4 II Yill Pfi I YT9i+ll 

0.587x 1O-4 0.9999745 .225x 10-s .4297x 10-3 
0.3415 x 10-3 1.000025 .2228x 1O-3 .4297x 10-3 
1.0000 1.oooO01 .48x 1O-7 .923981 t 

0.157 x 10-4 1.000496 .486x10-4 .34x 10-2 
0.2001 x 10-3 1.000477 .778x 1O-4 .22x 10-2 
0.3845 x 10-3 0.999509 .486x 10-4 .35x 10-2 
0.9999996 0.75043 t .414x 10-4 .70x 10-2 
l.OOOOOO 1.148672 t .681 x 10-s .70x 10-2 

yp’y43) = 0.2 x 10-3 
yp’* yJ3’ E 

I yp*yp1< 10-3, (i, k) # (4,5) 
-0.2 x 10-3 

yp*yp = 0.1 x 10-e yp* yp = 0.5 x lo- 1 

The idea is quite simple. For appropriate values of i and i (depending on 
j) the algorithm computes tjjn and orthogonalizes $ against it to get 

rj ‘r; - yj”[!i) I 9 (4.2) 

where 

(4.3) 

The hope is that max” 1 yy* 1;l is significantly less than max, ( yz1;(. Will the 
hope be fulfilled, and if so, how much will the modification cost? The 
answers depend on how j and i are selected, so the rest of this section is 
devoted to that crucial topic. 

The level of orthogonality among the qi, i = 1,. . . , i, is measured by 

Ki=I(z- Q*Qlj. (4.4) 
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The modification is based on the goal of keeping ki <K for some given 
parameter K and all i. If K = m, then a very costly form of full reorthogonali- 
zation takes place, .2 there is no reason, other than simplicity, for keeping the 
bound on K~ constant; both q K and jK are valid alternatives. Arguments in 
[ 17] and [18] suggest that the choice K = l& is best for the computation of 
eigenvalues. For solving Ax = b the most desirable values of K are not known. 

At the end of the jth Lanczos step there are on hand Y$, r;, and /3i’,i 
(s ]I T,! I]). Loss of orthogonality is reflected in the size of ]I Q,?r,!]], but we do 
not want to compute Qyr,!. Instead we note that 

I(Q;r,(j( < q rn,g I yj’)*$l by (3.10) 

by Paige’s theorem. 

Paige has proved that yii (j) = 0( iellA I]), but in practice no counterexample is 
known to the stronger assertion 

and the new algorithm uses this uniform bound to reduce the estimation of 
Q,? r; to checking the computable numbers /?i ( = pi; 1sii), namely 

The computation of all the sii, i = 1,. . . , i, is an 0( i2) process. Fortunately 
as i increases, the sii change in an orderly way, and it is only necessary to 
compute a few of them, thus reducing the cost of testing orthogonality loss 
to O(i) multiplications per step. This important point is amplified below. 

At each step we define the subset of Ritz vectors, called the threshold 
vectors, which make too small an angle with r;. More precisely, let L (u, u) 
denote the acute angle between u and v, and define 

We say that 0/i) is a threshold Ritz value if i E y( i), and similarly for the Ritz 

21f tc>l, then no orthogonalizations will occur. 
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vectors. The modified algorithm LANSO (LAN with selective orthogonaliza- 
tion) replaces step 1 by 

1. Until the residual norm (p+) < tol, repeat the following: 
determine y( i), 
for each i E v( f) compute ZJ~ and orthogonalize r against vi, 
take a Lanczos step, 
put the new Q into secondary store, 
update Cp. 

Another idea is needed to keep down the cost of WSO: if i @ y( j - 1) 
and i E y( i), then the algorithm forces i E y( j + 1). This device helps to keep 
subsequent Lanczos vectors orthogonal to good vectors (those for which 

/$ < q sllAll/‘+ ‘I% e intuitive reason is as follows: good Ritz vectors are 
ahnost eigenvectors of A. If two successive Lanczos vectors are orthogonal to 
an eigenvector, then so are all subsequent Lanczos vectors because of the 
three term recurrence. In symbols, let A.2 = zx, z*Q~_ 1 = Z*Q~ = 0. Then 

The last line used the symmetry of A to get z*A =Az*. In practice, because 
of roundoff, a good Ritz vector will not remain orthogonal to all subsequent 
Q'S, and after a while it will become a threshold vector once again. The 
important result is that for each i, i E y(i) for fm i, and furthermore a three 
term recurrence can be used to detect when an already good yi is once again 
a threshold vector. The details are relegated to Sec. 5. 

The situation as regards orthogonality can be described conveniently in 
terms of the Ritz values BiCi), i = 1 , . . . , i. For each i they are divided into two 
subsets, the good and the bad ( /?i >E[ IA (1 fi /K). By Paige’s theorem r,’ is 
adequately orthogonal to all bad Ritz vectors, and by the Kaniell theory the 
bad values are in the interior of q’s spectrum and are in the majority until i 
is very close to n. The good Ritz values are, in general, the outer eigenvalues, 
but only a subset of them are threshold values. As we have seen, the 
threshold Ritz values are either S/i) which have just become good for the first 
time, or else already coverged B’s whose Ritz vectors have bent too much 
towards the Krylov subspace and must be banished again. 
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The two configurations are illustrated below at the left end of the 
spectrum; the threshold value is circled: 

I lrni 1111 . . . 
\ 

%ki~ bad 

I I I I I I III I . . . 
V 

L--i 
god bad 

Occasionally an interior Ritz value can converge before its neighbors, so 
the algorithm must check /3i; for all bad Ritz values from time to time. 
However, for most i it is only necessary to compute sik for values of 0$f) just 
adjacent to the good region. For many values of i (<066n), y(i) is empty. 

Now we turn to the orthogonalization process itself. The 
sequence is as follows: 

(i) Compute and store si (eigenvector of Ti) for each i E y( i). 
(ii) Fetch the Lanczos vectors back from secondary store one 

and accumulate the yi = Qis,, i E y(i). 
(iii) For each i E y( j) repeat 

r*Yi 
&+-- 

II YJ12 ’ 

natural 

by one, 

rtr - y&. 

(iv) Update bookkeeping records and store & and i together with B/i). 

Suppose that m n-vectors are available for holding the Ritz vectors. Let 
Iy( i)l be the number of elements in y(i). If Iy( i)I <m, the sequence given 
above will suffice; if not, then the whole sequence must be repeated until 
y( 1) is exhausted. However, each sequence involves the recall of all the 
Lanczos vectors, and this cost must be weighed against the burden of 
keeping m n-vectors in fast store. Our present value of m is 2. It should be 
noted that on the second of a pair of steps at which orthogonalization occurs, 
the costly items (i) and (ii) are not needed. 

The arithmetic operation count for each i E y(i) is 

(i) 4j (since 0,(i) is known) for si, 
(ii) in for yj, 
(iii) 2n (th e a ori lg th m assumes 11 yi 1) = 1) for orthogonalization, 
(iv) 0 for bookkeeping. 

This is approximately half the cost of Lanczos’s full reorthogonalization at 
step i. 



THE LANCZOS ALGORITHM 3.37 

The frequency with which orthogonalizations occur is problem depen- 
dent, but it should be noted that they occur only when actually needed to 
maintain the desired level of orthogonality. 

5. SOME ANALYSIS 

A few pieces of the algorithm will be analyzed here because the results 
throw light on the rather intuitive description given in the previous section. 

A. Preservation of angles 
Let in y( i). The algorithm replaces $ with ri, and certainly yFri= 

0(&/l All), by construction of ri. However, it seems possible that the angles 
between $ and all the other Ritz vectors may have been damaged in the 
process. To see the connection we consider a specific step i and drop the 
superscript. From (4.2) 

whence 

(5.2) 

In exact arithmetic both ( y;yJ and 5, vanish, but the same effect occurs in 
practice provided that their product is tiny. 

The factor & is not small. For simplicity we make the reasonable 
assumption that I( yi(l = 1+ O(E) for all i. Then, from (4.3), 

=cos L ( yy,fjyP/+l, since j?,‘+, = ljr;11, 

>Pj&/fi 9 by definition of y( j) in Sec. 4. 

(5.3j 

The other factor ( yz y,,) is bounded by K(, since 

IJZ- ~~ll=IISi(Z-Q~Qj)S,*~i=IIZ-Q~QjII=Kj. (5.4) 
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Moreover, by the second assertion of Paige’s theorem, this bound on yz yV is 
realistic whenever v E y(j) and yk is a bad Ritz vector, because then the 
ratios ]s,~/s,,] are maximal. Consequently some elements in the sum of (5.2) 
will probably exceed 

(5.5) 

Does this matter? Note that for some values of k we have ]sik] > l/G 
and so the first term on the right in (5.2) is less than q .sl]A]] for these k. If 
K’ >E, then the sum will dominate the first term in (5.2), and the orthogonah- 
zation process will degrade these particular angles L ( yk,r;). Parlett and 
Scott [15] take a strict attitude and use K = fi . 

At the other extreme the large values among the ] alar;], kB y( j), are 
already close to &+i K. and are unharmed by the orthogonalization, since I 

K< 1. 

B. The equivalent perturbation 
Selective ortbogonalization necessitates a change in the governing equa- 

tion (3.6). To derive the new one we begin from 

AQi-Qi~=r~e~+Fj (5.6) 

and use (5.1) to eliminate the overwritten vector ri, finding 

(5.7) 

The small device of bringing the new term to the left side of the equation 
permits a simple interpretation of the effect of orthogonalization. Substitute 
yy = Qisy in (5.7) to obtain the new equation 

AQ,-QQIT/=rieT+Fi, (5.8) 

where 
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The effect of selective orthogonalization is simply to replace q by T/. After a 
sequence of orthogonalizations q’ has the form indicated below: 

. . . . 

. . . . . 
. . . . . 

. . . . . 
. . . . . 

. . . . . 
. . . . . 

. . . . 
. . . . 

. . . . 
. . . 

. . . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
. . . . 

. . . 
. . 

It may be verified that for i E y( j), the eigenpairs (e,,s,) of 5 coincide 
with corresponding eigenpairs of T/ to working accuracy, whereas the pairs 
corresponding to bad Ritz values Bk are significantly changed. 

C. Solving T’f’ = e, /3, 
Step 2 of LAN requires the solution of T,,,f= e, &, where m is the final 

value of i. However, in the light of (5.9) it would be better to replace f by 
the solution f’ of TX= e, &. This can be done without imposing serious 
extra demands for storage, because the vectors sLn which characterize the 
rank one perturbations of Ti are easily recomputed when needed. All that is 
needed is to store [Y(i) and j, along with r3,, v E y( j), at each orthogonaliza- 
tion. 

Here is the reconstruction off’ from f in a typical situation. Let 

Recall that 6”) = $ r; and, by Paige’s theorem, 

(5.10) 
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Thus 

Now define an m-vector S+ by 

B. N. PARLETI 

(5.11) 

(5.12) 

Then 

=ii&Oi + O(EIIA~~)~ by (S.II), 

and we may say that $6 is an approximate eigenvector of T,. The perturbed 
matrix is 

Th = T,+ Sie(“)*[jf). (5.13) 

Letf=(+i,...,&)* satisfy T,J= eim)&; then it can be verified that with 

(5.14) 

we have 

T~f’=el”)P1+O(&IIAII). (5.15) 

No requirement is made in the derivation of (5.15) that Ti be tridiagonal. It 
could be replaced by any matrix for which (O,, .sJ was an eigenpair. It follows 
that f may be modified, as in (5.14), for a sequence of orthogonalizations 
provided only that these are made in the natural order of increasing j. 

D. The return of banished Ritz vectors 
Let y!” be a good Ritz vector: I 

Ayj - y,S, = q, lluill= O(&IIAll)* (5.16) 

Roundoff error will introduce small components of yi into all Lanczos 
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vectors after orthogonalization, and eventually these will be amplified un- 
acceptably. Let ( yT9jl < rr, suppressing the dependence on i. Then premulti- 
plying (5.6) by y: yields 

(5.17) 

where we have invoked (5.16). Hence 

,y ’4!  

I 1+1 
,< Iei~~lrj+P~rj-l+o(EIIAII) 

P/+1 

The algorithm drops the O(el[All) and uses 

(5.18) 

This recurrence is updated, for each good i, at each step. Whenever ri+i 
exceeds K/G , then i is put into y(i). After orthogonalization r is set back 
to E. 

6. PROCESSING A SEQUENCE OF RIGHT HAND SIDES 

Consider the case when the first Lanczos sequence (or run) stops at step i 
with a negligible residual, In the fast store are the tridiagonal Ti and the 
vector rr which would have been normalized to become 9i+l at the next step. 
In secondary store is Qi. At this point a new right hand side b and a new 
initial approximation x, (possibly 0) are presented. As before, the goal is to 
solve for the correction xc the equation 

Axc=ro (‘b-Ax,). (6.1) 

The vector b fades from the scene, but 11 b/J is kept to test the negligibility of 
the residuals from subsequent approximations. Now we begin by describing 
the approximate solution of (6.1) in the context of exact arithmetic. 

The first move is to compute /$+r (E Ilqll) ad 9j+1 (= q/Pi+J Then Qr 
is brought back from secondary storage in order to calculate the orthogonal 
decomposition 



342 B. N. PABLE’IT 

where wt = Q; a T and Qi*+iiO= 0. It is convenient to consider the contribu- 
tions to IC, from the three terms in (6.2) one by one. 

(I) Qi W. It is only necessary to solve TJ(i) = wi for f(l). The contribu- 
tion from SpanQi is 

X1 GQif(l). (6.3) 

There is no need to compute xi at this point, but its residual is 

(6.4) 

No calls on A are needed in the formation of xi. Note that the effective 
component of qi+l is changed from wi+i to ~+1=wf+1-/31+l+j. 

(2) q+1xj+1* If I%+ iI is not negligible, then the next contribution x2 
can be calculated by simply continuing the previous Lanczos sequence after 
setting the residual norm to I&+ iI. However, there is one new feature, 
because the algorithm must include the component of ?a in the direction of 
each new Lanczos vector. The extra calculations at i (i >j) are 

q = qi* ro, 

update the residual norm xi. 

(6.5) 

The sequence continues until x is negligible; when i = k say. The approxi- 
mate solution from Span Qk _ i is 

where Tk _ 1 f (2) = w, _ I and this supersedes (6.3). Again there is no need to 
accumulate_r2, but its Residual is the latest ?a which satisfies Qz +a = 0. 

(3) %I #&+i= Il~oll* If P,+, is not negligible relativ_e to 11 b (I, then a new 
Lanczos run is needed with starting vector qk+ r = ?a/&+ i. The new feature 
here is that, although Qzqk+ 1 = 0, 

Qk*A9k+,+O, in general. (6.7) 
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Thus the new Krylov subspace need not be orthogonal to the previous one. 
However, by the fundamental property of Krylov subspaces, 

if Qzu=O, uin %?, then Qt_lAv=O. (6.6) 

Thus the Krylov subspace generated by qk + r will be orthogonal to Span Qk_ i 
hut not to qk. In order to keep all the q’s mutually orthogonal it suffices to 
modify the basic Lanczos step to be 

ri=Aq,-q,(y,-q,-,Pi-qkyi, i>k+1, 

(6.9) 

where yi = qt(Aqi). Note that, by definition, &+ i = 0. However pk+ i ( = 
IlFall) may be stored in /3,+, for convenience. Strictly speaking 

Span(qk+l,qk+z,...,q,) is not a Krylov subspace, but it is the projection of 
one onto the subspace orthogonal to qk. 

The most serious burden incurred by the modification is the need to keep 
qk in the fast store, for i >k. The new elements yi can be put into a vector g. 
The new recurrence (6.9) changes the basic equation (2.5) into 

(6.10) 

where Tr [k X k] and T, [(i - k) X (i - k)] are symmetric tridiagonal matrices 

and g*=(Yk+iy**, yi). Let us denote the rank two modification of the 
tridiagonal by q. 

Suppose that by step i= 1 the associated residual is negligible and the 
Lanczos iteration finally stops. The final component of x, is given by 

~3 = Qlf (3)> (6.11) 

where f13) satisfies 

fp= p 
ek+l k+l* 

Recall that f@), in (6.6), is a k-vector, whereas fc3) is an Z-vector. To compute 
the approximation to xC produced by neglecting residuals as mentioned 
above it is only necessary to form 

f=( f'op')+p 
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and bring the columns of Q1 back to main memory to accumulate QJ. The 
neglected residual is 

The number of calls on A is l- j, and there will be cases when this 
number is small. However, when the new b is orthogonal to SpanQj it is 
more efficient to switch off the mechanism which keeps Span(q,+ r, . . . ,9J 
orthogonal to SpanQi and then ignore Qi. 

Two important details are (i) the updating of the residual norm at each 
step from i = k + 1,. . . , 1, and (ii) the computation of fC3) from (6.12). Both 
tasks can be accomplished by using well-known techniques concerning rank 
one and rank two modifications. For example, let fc3) be partitioned into 
fiefs so that 

(6.15) 

On eliminating fi from the second equation one finds 

(6.16) 

where 6, (E l/ ez T; ‘e,.) will be known from the first Lanczos run. To solve 
(6.16) two tridiagonal systems must be solved, namely 

T,u = e, fi, T,v = g. (6.17) 

Then fs is a linear combination of u and v since 

fi=(Z-vg*/6,)-‘T;‘e,p 

=(z+vg*/8)u 

= u + v( g*u)/& 

(6.18) 

where 

6=6,-g*v. (6.19) 

A third tridiagonal system must be solved to recover fi. It is not difficult to 
update the quantities g*u and S in (6.18) from step to step. The tridiagonal 
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systems should be solved by scaled QR factorization to ensure stability in the 
indefinite case, but we omit the details. The point is that the modifications 
employed to process a second right hand side do not complicate the 
algorithm significantly, although they do have to be combined with the 
modifications induced by selective orthogonalization-the computation of 
Ritz vectors, for example. 

It is apparent that an extra n-vector must be held in fast storage for each 
previous Krylov subspace if they are to be kept mutually orthogonal. Reid 
has suggested that if the new right hand sides are variations on the initial 
one, then it may be preferable to discard all Lanczos vectors except for the 
first (big) sequence, i.e. discard qk+ i, . . . , 91. In this way the extra storage 
remains at one n-vector. 

7. COMMENTS ON LAN 

(1) The (Y’S and p’s, the nonzero elements of T, could be put into 
secondary storage along with the 9’s and brought back for step 2 of LAN. 
However, the modifications proposed in Sets. 4 and 6 demand T at every 
step, and for the sake of consistency we have ignored this feature. 

(2) The algorithm for the jtb Lanczos step incorporates a trick, given by 
Paige [12], which reduces the fast storage requirements, other than for A, to 
two n-vectors. The price to be paid is that the two vectors must be swapped 
in the middle of the step and the basic computation r = A9i - siai - si _ i fii 
must be done as 

If the user supplied program is written to compute (A - a)9 rather than A9 
for given u and 9, then an attractive alternative for the heart of the Lanczos 
step is to compute a=trace(A)/n initially and then 

9+(A - 0 + 9, 
atq*r, 
swap 9 and T, 
rcr - 9”, 
ol,tcr + u. 

(3) It is well known that it is not necessary to normalize the Lanczos 
vectors to have unit length. The resulting matrix T will not be symmetric, 
but the device does save n divisions (n multiplications) per step. We follow 
Paige and Saunders in preferring to pay the small extra cost and enjoy the 
simplifications which accrue from a symmetric T. 
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The author has enjoyed helpful discussions with David Scott, John Reid, 
Olof Widlund, and lain Dufl 
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