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Exposure of HL-60 cells to subthreshold concentrations of TPA caused monocytic differentiation only when 
cells were cotreated with the Ca2+ ionophore A23187. Phorbol ester dose-response curves for growth arrest 
and enzymatic markers of differentiation were shifted to lower concentrations when the ionophore was pre- 
sent. Expression of a monocyte/granulocyte cell surface antigen also occurred only when cells were treated 
with both agents. Similar effects were seen with other active but not inactive phorboi esters and with another 
Caz+ ionophore. The Ca2+ component of phosphoinositide-based signalling may thus play a role in HL-60 

differentiation. 

Synergism Phorbol ester Ca2+ ionophore Differentiation (HL-60 cell) 

1. INTRODUCTION 

Signal transduction mediated by inositol 
phospholipid turnover can be mimicked by phor- 
bol esters and Ca*+ ionophores which activate pro- 
tein kinase C and elevate intracellular Ca*+, 
respectively [ 11. Synergism between these agents in 
secretory events [l] and in some long-term signal- 
ling events such as lymphocyte activation [2] in- 
dicates that the affected pathways often act in 
concert to elicit a full biological response. 
Although phorbol esters influence terminal dif- 
ferentiation in many cell types [3], synergism with 
Ca*+ ionophores has not been observed. As a 
result, the role of phosphoinositide turnover in 
such processes is poorly understood. 
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Abbreviatiorzss: DMSO, dimethyl sulfoxide; OAG, 
1 -oleoyl-2-acetylglycerol; PDBu, phorbol 12,13-di- 
butyrate; PDD, phorbol 12,13-didecanoate; 4cu-PDD, 
4cu-phorbol 12,13_didecanoate; TPA, 12-O-tetrade- 
canoylphorbol 13-acetate 

The HL-60 human promyelocytic leukemia line 
[4] terminally differentiates into macrophage-like 
cells when treated with phorbol esters [S] and other 
activators of protein kinase C [6,7]. The ability of 
phorbol esters to induce HL-60 differentiation 
parallels their biological activity in other systems 
and activation of protein kinase C in vitro [8]. In- 
hibitors of the kinase block differentiation [9], im- 
plying that its activation is necessary for 
commitment to a monocytic lineage. However, 
OAG and bryostatin activate the kinase in situ but 
do not cause HL-60 cell maturation [lO,ll], sug- 
gesting .phorbol esters have other pleiotropic ef- 
fects which initiate the differentiation program. 
Since the precise role of protein kinase C in HL-60 
differentiation is unclear and since synergism has 
not been extended to the differentiation of well 
characterized cell lines, it was of interest to deter- 
mine the role of Ca*+ signalling in HL-60 cell 
maturation. 

2. MATERIALS AND METHODS 

HL-60 cells (American Type Culture Collection) 
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were grown in RPM1 1640 medium supplemented 
with 20% fetal bovine serum, 2 mM glutamine, 
and antibiotic/antimycotic from Gibco. Medium 
was buffered with 5 mM Hepes and 25 mM 
sodium bicarbonate in a 5% CO2 atmosphere so 
that an equilibrium pH of 7.6 was obtained. Drugs 
obtained from commercial suppliers were added to 
cells (2 x lO’/ml) from stocks (phorbol esters in 
ethanol, Ca2+ ionophores in DMSO) such that 
final solvent concentrations were always 0.3%. 
Solvent alone was added to 0.3% when it was not 
required as a carrier. Cells used for staining or 
preparation of enzyme extracts were harvested by 
gentle scraping and counted with a model ZF 
Coulter counter. Acid phosphatase activity was 
determined by the method of Schnyder and Bag- 
giolini [12] while secreted lysozyme activity was 
measured according to Huberman et al. [7]. 
Growth inhibition was calculated as 100 - 070 
relative growth (corrected for initial plating densi- 
ty) of treated cells vs control solvent-treated cells. 
Cell adherence and clumping was assessed 
qualitatively [range: no adherent cells ( - ) to essen- 
tially all cells adherent and extensive clumping 
( + + + )]. Immunofluorescence was carried out 
with OKM-1 monoclonal antibody [ 131 from Or- 
tho Diagnostics Systems and fluorescein- 
conjugated goat anti-mouse IgG as described by 
Sauder et al. u4]. Cell viability was determined 
simultaneously by ethidium bromide fluorescence 
of nuclei. Positive viable cells were scored as per- 
cent of total viable cells (n = 200) by a naive 
observer for each condition. Immunofluorescence 
was also quantified with an Ortho Diagnostic 
Systems Spectrum III flow cytometer. In this case 
cell fluorescence was corrected for non-specific 
background staining by subtracting fluorescence 
from cells treated identically except for the absence 
of primary antibody. Similar results were obtained 
with each method of assessment. 

3. RESULTS AND DISCUSSION 

When HL-60 cells were exposed to 0.5 nM TPA, 
300 nM A23187 or carrier solvents alone they were 
indistinguishable from untreated cells except for 
degranulation induced by the Ca2+ ionophore 
(fig.la-d). However, cotreatment with TPA and 
A23 187 caused dramatic changes in morphology as 
cells aggregated and adhered to substratum 
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(fig.le). Morphological changes apparent in 
stained cells included a decrease in nuclear to 
cytoplasmic ratio and loss of azurophilic granula- 
tion (fig. la-e). These responses are typical of cells 
exposed to high concentrations of TPA (fig. 1 f and 

151). 
Morphological differentiation in response to 

TPA and A23187 was accompanied by growth in- 
hibition and induction of the macrophage-specific 
enzymes acid phosphatase and lysozyme [5,7]. 
This was manifested as a shift in dose-response 
curves to lower concentrations of TPA (fig.2a,c,e). 
At high TPA concentrations differentiation was 
not altered by cotreatment of cells with A23187 but 
in such cases a shorter duration of TPA exposure 
was required for commitment to differentiation 
(not shown). Ionophore by itself had no effect ex- 
cept for cytotoxic growth inhibition and elevation 
of lysozyme secretion at high concentrations 
(fig.2d,f). In this case however, cell morphology 
was not altered and acid phosphatase activity 
dropped as cell viability decreased (fig.2b). 

Observations with TPA and A23187 were 
verified with other phorbol esters and another 
Ca2+ ionophore, ionomycin. Differentiation in 
response to PDBu and PDD, as well as TPA, was 
strongly enhanced by either 300 nM A23187 or 
300 nM ionomycin (fig.fa-c). 300 nM A23187 
alone depressed cell growth but synergism with 
phorbol esters was nonetheless evident in enzyme 
activities and cell morphology. Ionomycin con- 
sistently enhanced cell adherence and growth in- 
hibition but required higher concentrations of 
phorbol ester to synergistically induce enzyme 
markers. Ionophores alone or in the presence of 
high concentrations of the biologically inactive 
ester, 4cr-PDD, did not induce differentiation. 

The macrophage and granulocyte membrane an- 
tigen identified by OKM-1 monoclonal antibody 
[13] also appeared upon cotreatment with 0.5 nM 
TPA and 300 nM A23 187 (table 1). Synergistic dif- 
ferentiation was accompanied by OKM-1 reactivity 
similar to that induced by 10 nM TPA, suggesting 
that most of the population had differentiated into 
macrophage-like cells. Cells exposed to 0.5 nM 
TPA, 300 nM A23187 or carrier solvents alone ex- 
hibited reactivity comparable to untreated cells. 
Thus, neither monocytic nor granulocytic differen- 
tiation occurred under these conditions. 

At least two other parameters influenced the ex- 
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Fig.1. Morphological changes in HL-60 cells after treatment with various combinations of A23187 and TPA. (a) No 
treatment, (b) carrier solvents alone, (c) 300 nM A23187, (d) 0.5 nM TPA, (e) 0.5 nM TPA and 300 nM A23187, (f), 
10 nM TPA. Insets show corresponding May-Grunwald-Giemsa stained cells. All fields were chosen randomly by naive 

observers. 

tent of synergistic differentiation. Media was buf- 
fered at pH 7.6 since lower initial pH values 
increased the cytotoxicity of A23187 and caused a 
concomitant drop in marker enzyme activity 
(fig.2b,d,f, triangles). Secondly, DMSO and 
ethanol, used as carrier solvents for ionophores 
and phorbol esters respectively, were found to 
enhance synergistic differentiation. Compared to 
cells treated with drugs in an aqueous carrier, 
20-30070 more growth inhibition and increased 
adherence occurred when solvents were present. 
Although granulocytic differentiation of HL-60 
cells is induced by 1.2% DMSO [15], no evidence 
of this was seen at 0.3% DMSO (table 1 and [IS]). 
Measurement of intracellular Ca2+ by quin 2 

fluorescence indicated that neither DMSO nor 
ethanol affected ionophore activity at the concen- 
trations used (not shown). It remains unclear how 
these solvents affect HL-60 cells. 

Two events that occur early in HL-60 differen- 
tiation, transferrin receptor downregulation [ 161 
and activation of the Na+/H+ antiporter [ 171, are 
synergistically regulated by Ca*+ and protein 
kinase C [16,18]. However, Na+/H+ exchange is 
not a requisite for cell maturation [ 171 and 
synergistic downregulation of the transferrin 
receptor has not been correlated with subsequent 
differentiation. The results presented here suggest 
commitment to the complete differentiation pro- 
gram can be initiated by phorbol ester and Ca*+ 
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Fig.2. Dose-response curves for synergistic differentiation of HL-60 cells induced by TPA and A23187. Maturation was 
assayed by cellular acid phosphatase activity (a,b), secreted lysozyme activity (c,d) and growth arrest and morphology 
(e,f). (a,c,e) TPA in the presence (.,+A) or absence (0,-A) of 200 nM A23187. (b,d,f) A23187 in the presence 
(0, A , + T) or absence (0, A , - T) of 0.5 nM TPA. Triangles represent cells grown in media buffered to pH 7.2 with 
10 mM sodium bicarbonate. Experimental points are for duplicate dishes (f SD) and curves are representative of 

several experiments (n = 3). 
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Fig.3. Synergistic differentiation of HL-60 cells induced by various phorbol esters and Ca” ionophores. Concentrations 
of active phorbol esters used approximate the inflection point of dose-response curves. Untreated (unt) and solvent 
(0.3% DMSO, 0.3% ethanol) represent control conditions without phorbol esters. Phorbol esters were added to cells 
either alone (open bars), or with 300 nM ionomycin (stippled bars), or with 300 nM A23187 (hatched bars). Bars with 
dots in the upper right corner indicate that phorbol ester and Ca*’ ionophore cotreatment had a greater effect than 
the sum of individual drug effects (p < 0.05, t-test). Similar data were obtained in at least 3 separate experiments. 
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Table 1 

OKM-1 reactivity of HL-60 cells after various treatments 

immunofluorescence studies and Lea Harrington 
for technical assistance. Supported by the MRC 
and NC1 of Canada. 

Condition % positive 

Untreated 6*2 
Solvent 8+3 
300 nM A23187 19 f 7 
0.5 nM TPA 12 f 4 
0.5 nM TPA + 300 nM A23187 77 * 4 
10 nM TPA 87 f 7 

Expression of the macrophage-granulocyte cell surface 
glycoprotein detected by OKM-1 antibody was 
determined visually and by flow cytometry on HL-60 
cells after 3 days continuous treatment. Five 
independent experiments (3 visual, 2 flow cytometric) 
were pooled and expressed as mean f SE. Cotreatment 
with TPA and A23187 had a greater effect than the sum 
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