
ELSEVIER 

An International Journal 
Available online at www.sciencedirect.com__ computers & 

. c , = . c E  f d )  o '"~cT"  m a t h e m a t i c s  
with applications 

Computers and Mathematics  with Applications 47 (2004) 863-875 
www.elsevier.com/locate/camwa 

Semilinear Integrodifferential Equations 
with Nonlocal  Initial Condit ions 

J I N  L I A N G  A N D  T I - J u N  N I A O  
D e p a r t m e n t  of M a t h e m a t i c s ,  Univers i ty  of Science and  Technology of C h i n a  

Hefei, A n h u i  230026, P.R. C h i n a  
<j liang><xiaot j >Oust c. edu. cn 

and 

M a t h e m a t i s c h e s  In s t i t u t ,  Univers i t / i t  T i ib ingen  
A uf  der  Morgens te l le  10, D-72076, T i ib ingen ,  G e r m a n y  

<j ili><t ixi>@f a. uni-tuebingen, de 

(Received July 2002; revised and accepted July 2003) 

A b s t r a c t - - o f  concern is the Cauchy problem for semilinear integrodifferential equations with 
nonlocal initial conditions. Under general and natural  hypotheses, we establish some new theorems 
about  the existence and uniqueness of solutions for the Cauchy problem. As a consequence, we unify 
and extend the corresponding theorems given previousiy for the Cauchy problem for differential 
equations or integrodifferential equations with nonlocal initial conditions. Moreover, we present two 
examples, one of which comes from heat conduction in materials with memory, to show tha t  the 
existing results are not applicable to them, in contrast  with ours. @ 2004 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - C a u c h y  problem, Nonlocal initial condition, Semilinear integrodifferential equation, 
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1. I N T R O D U C T I O N  A N D  P R E L I M I N A R Y  

Let X be a Banach space, L(X) the space of bounded linear operators from X to X, A the 
generator of a Co semigroup on X, / ) (A)  the domain of A, and [T?(A)] the space T)(A) with the 
graph norm. 

Of concern is the following Cauchy problem for a semilinear integrodifferential equation with 
a nonlocal initial condition: 

u'(t) = A u(t) + F ( t -  s)u(s)ds + f ( t ,u( t ) ) ,  

u(t0) + g ( t l , . . . ,  tp, ~) = u0, 

t ~ [to, to + T], 
(1.1) 
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where {F(t)}te[O,T] C L(X) is a family of operators such that 

F(t)([:D(A)]) C [/)(A)], 

AF(.)u(.) e LI([O,T],X), 

F(.)u e CI([O,T],X), 

f(-, .) E C([to, to + T] × X, X) and 

IIf(t,x) - / ( t ,y) l l  LIIx-Yll, 

t c [0,T], 

u(.) C C([0,T], [I)(A)]), 

u E X ;  

(1.2) 

t E [ t 0 , t 0 + T ] ,  x, y c X ,  (1.3) 

for a constant L > 0 and 0 < to < tl < .. .  < tp ~ to + T. The X-valued function g(tl , . . .  ,tp, .) 
on C([t0, to + T], X) satisfies 

I[g(tl,.. . ,tp, O) -g ( t l , . . . , t p ,¢ ) ] l  _< K max I]¢(t)-¢(t) l l ,  
re[to,to+T] (1.4) 

¢, ¢ e c([t0, c0 + T], X), 

for a constant K > 0. 
Interest in the Cauchy problem for differential equations with nonlocal initial conditions stems 

mainly from the observation that nonlocal initial conditions are more realistic than the usual 
ones in treating physical problems. From [1] and the references given there, one can find more 
detailed information about the importance of nonlocal initial conditions in applications. There 
have been many papers concerning this topic (cf., e.g., [1-7] and references therein), especially 
since the work [1] in 1991. 

However, much of the previous research was done under the condition "M(K + TL) < 1" or its 
analogues (cf., e.g., [1,3,6]). This condition turns out to be quite restrictive. In particular, limited 
by it, the results obtained for nonlocal problems cannot cover the classical results regarding the 
case when F -= 0 and g -- 0, i.e., the following differential equations with usual initial conditions: 

u(t) = Au(t) + f(t, u(t)) (to <_ t <_ to + T), u(to) = uo (1.5) 

(cf. [8, Chapter 6]). Thus, there naturally arises a question: "Can the condition above be relaxed 
in such a way that the results for nonlocal problems cover the corresponding ones for (1.5)?" In 
this paper, among others we will give an affirmative answer to this question (see Corollary 2.2(1), 
Theorem 2.7, Remark 2.3(c), and Remark 2.9(a)). 

In Section 2, we first study the existence and uniqueness of solutions for a general integral 
equation ((2.3) below), and then investigate the corresponding problems for (1.1). The theorems 
formulated are unifications and extensions of those given previously for the Cauchy problem for 
differential equations or integrodifferential equations with nonloeal initial conditions. As the 
reader will see, the hypotheses in our theorems are reasonably weak and the proofs provided are 
concise. Moreover, following every main result, we append a remark with a detailed analysis 
of how the result extends and improves the known ones. Finally, in Section 3, we apply our 
theorems to two concrete problems, one of which comes from heat conduction in materials with 
memory. It is shown that the existing results are not applicable to them, in contrast with ours. 

To begin with, we recall that there is a strongly continuous {R(t)}t~[O,Tl C L(X) such that 
R(O) = I, R(.)y e C1([0, T], X) n C([0, T], [:D(A)]) (y e :D(A)), and 

d R( t )y= A [R(t)y + f fo tF( t -s)R(s)yds]  

/o ---- R(t)Ay + R(t - s)AF(s)y ds, t E [0,T], 

(1.6) 

(cf. [6] or [91). 
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DEFINITION 1.1. A mild solution of (I.1) is a function u • C([to, to + T], X )  satisfying 

u(t) = R( t  - to)[u0 - 9 ( t l , . . . ,  tp, u)] + R(t  - s ) f ( s ,  u(s)) ds, 

t E [to, to + T]. 

A classical solution of  (1.1) is a function 

(1.r) 

u • Cl([to, to + T], X) n C([to, to + T], [~9(A)]) 

satisfying (1.7). 

2. R E S U L T S  A N D  P R O O F S  

Assume that 

(H1) {S(t)}te[O,T] C L(X) is a strongly continuous family, and IIS(t)ll _< M e  - ~ '  (t • [0,T]), 
where M and w > 0 are constants; 

(H2) h : C([to, to + T], X) + X and there exists a nonnegative function ¢) on C([to, to + 
T], [0, ~ ) )  satisfying 

such that 

• ( ,1)  _< ~(~2),  

g k > O ,  # • C ( [ t o , t o + T ] , [ O ,  oc)), 

v f #1,#2 • C([to,to +T],  [0, oo)), 
[ with pl(t) _< #2(t) (t • [to,to +T]) ,  

(2.1) 

IIh(¢) - h ( ~ ) l [  ~ ~(11¢ - ¢11), ¢ , ¢  • c([to,to + T] ,X) .  (2.2) 

We first look at a general integral equation 

J: v(t) = S( t  - to)(uo - h(v)) + S( t  - s ) f ( s ,  v(s)) ds, t • [to, to + T]. (2.3) 

THEOREM 2.1. Let (1.3), (H1), and (H2) hold and M~(e(UL-w)( ' - to))  < 1. Then, for all Uo • X ,  
(2.3) has a unique solution v • C([to, to + T], X). 

PROOF. Let Uz • C([to,to + T ] , X )  be fixed, and Uz,o := uo - h(uz). Define an operator 9 r on 
C([to, to + T], X) by 

//o (.Tu)(t) = S( t  - to)ul,o + S( t  - s ) f ( s ,  u(s)) ds, t e [to, to + T]. (2.4) 

Clearly, fi'(C([to, to + T], X)) c C([to, to ÷ T], X). By a standard argument, we see that ~- has 
a unique fixed point u2 E C([to, to + T], X). Using mathematical induction, we infer that there 

U exists a sequence { n}n=2 C C([to, to + T], X) such that 

f: u. ( t )  = s ( t  - to)u~_l,O + s ( t  - , ) / ( s ,  ~ ( ~ ) )  ds, t • [to, to + T], n > 2, (2.5) 

where 

Un--l,0 = UO -- h ( u n - 1 ) .  (2.6) 

A combination of (1.3), (H1), (2.2), (2.5), and (2.6) shows 

f e~tllua(t) - u2(t)H < e~tM~(llu2(')  - u l ( ' ) l l ) ÷ M L  e~Sllua(s) -u2(~)ll ds, t • [to,to +T]. 
,]to 
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By Bellman-Gronwall's inequality, 

Hu3(t) - u2(t)]l _< Me(ML-~)(t-t°)~(Hu2(') -- ul(')ll), t e [to,t0 + T]. 

Using (2.1) and mathematical induction, we have for each t E [to, to + T], 

- _ ~ ( l l ~ ( ' )  - ~1~(.)11), n > 3. 

According to the assumption, we obtain for any m > n > 3 

m a x  t l~ , ,~ ( t )  - u n ( t ) l l  
t6[to,to+T] 

m--1 

< ~ max I]u~+l(t) -u~(t)[ I 
-- rE[to,to+T] i=r~ 

m--i i--2 <max{M, Me(ML-~)(T-t°)}~(nu2(.)--ul(.)ll) ~_~ (M~@(ML-~)('-t°))) ----+0, 
i = n  

as n - - ->  oo ;  

t t  oo that is, { n}n=2 iS a Cauchy sequence in C([to, to + T], X). Therefore, there is a u c C([to, to + 
T], X )  such that 

nli~n u~ i t) = u(t), uniformly for t e [to, to + r] .  

This together with (2.4)-(2.6) implies that u(t) is a continuous solution of (2.3). 
Let u(t) and v(t) be tile solution of (2.3). Then, by (1.3), (H1), (2.2), and (2.3), 

e~tl lu(t)  - v(t)t l  <_ e ~ t M ~ ( l l ~ ( ' )  - v( ') l l )  + M L  e ~Uu(s )  - v(s)ll ds,  t ~ [to,t0 + TI, 

which implies, by Bellman-Gronwall's inequality and (2.1), that 

t e [ t 0 , t o + T ] ,  n > l .  

Letting n --~ co, we have u(t) _=. v(t) on [to, to + T]. This means that the solution of (2.3) is 
unique. 

COROLLARY 2.2. Let (1.3), (H1), and one of the following assumptions hold. 

(I) There is a constant K > 0 such that 

I I h ( ¢ ) - h ( ¢ ) l l < K  max II¢(s)-¢(s)ll ,  ( ¢ , ¢ e C ( [ t o , t o + T ] , X ) ) ,  
sE[to,to+T] 

and K M e  Tmax{ML-w'O} < 1. 

(2) There are constants K > 0, to <_ q < r < to + T such that 

f lib(C) - h(¢)ll -< K I1¢(8) - ¢(s)  ll ds, (¢, ¢ ~ C([to, to + T], X)),  

and 

K ~ ( r  - q) < 1, i f  M L  = w, 

K M  (e (ML-w)(r-t°) -- e (ML-w)(q-t°)  ) < 1, if M L  ~ ~. 
M L  - w 

(3) There are e l , . . . ,  ep E C (the set of complex numbers) such that 
P 

Ilh(¢) - h(¢)tl < ~ l~llt¢(t~) - ¢(t~)tl, (¢, ¢ e c([to,  to + T], X)) ,  
i = l  

and P M ~ I = I  leile(ML-w)(t{-t°) < 1. 

Then, for 61I uo E X ,  equation (2.3) has a unique solution v E C([to, to + T], X). 
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PROOF. Applying Theorem 2.1 to the functions 

r P 

,I)(~) = K max p(s), ¢(tt) = K ~ ~(s) ds, ¢(~) = ~ la~l~(t~), 
sE[to,to+T] i=1 

respectively, we get the desired conclusions. 

REMARK 2.3. 

(a) The proof of Theorem 2.1 shows a way to compute the continuous solution of (2.3). 
(b) Corollary 2.2(1) gives a generalization of [6, Theorem 3.2], because 

(1) the operator family {S(.)} and the mapping h(u) in Corollary 2.2(1) are more gen- 
eral than the operator family {R(.)} and the mapping g ( t l , . . . ,  tp, u ( t j ) , . . . ,  U(tp)), 
respectively; 

(2) if we let 

t o = O, w = O, S ( ' )  = R ( . ) ,  h ( u )  = g ( t l , . . . , t p ,  u ( t l ) , . . . ,  U(tp)) ,  

then, Corollary 2.2 says that  (1.10),(1.11) in [6] has a unique mild solution for any 
u0 E X provided M K  < e -MTL. But, Theorem 3.2 in [6] is not applicable for any 
K _> 0 when M T L  _> 1, since 

M K  + M T L  >__ 1, for any K __k O; 

(3) for M, K, T, L _> 0, the inequality M K e  M T L  < 1 does not imply M ( K  + TL) < 1 
even if M T L  < 1 (for example, let M K  = 3/4 and M T L  = 1/4, then M T L  < 1 
and M K e  MTL < 1, but  M ( K  + TL)  = 1), however, the converse holds, in fact, for 
M, K, T, L >_ 0, the inequality M ( K  + TL)  < 1 implies 

M K e  MTL < M K e  1-MK < 1, 

by noting that  the function ~ ~ @1-~ is increasing on [0, 1]. 
(c) Corollary 2.2(1) covers naturally and directly the "existence and uniqueness" part of [8, 

p. 184, Theorem 6.1.2], because if h _-- 0, then K -~ 0 which means that  the assumption 
K M e  Tmax{ML-~°,O} < 1 always holds. 

Using the idea in the proof of Theorem 2.1, we can also get the following theorem. 

THEOREM 2.4. Let A generate a strongly continuous semigroup {T(t)}t>_o. Write f~  := {u; 

u e X and [lull < r} (r > 0). Assume that 

(i) there exists a constant Lo > 0 such that 

[ I f ( t , x ) - f ( t , y ) [ I  ~ L o l l x - y l l ,  t e  [to,to+T], x, y e ~ ;  

(ii) there exists a constant Ko > 0 such that 

Ilg(tl,...,tp,¢) -g(tl,. . . ,tp,¢)ll <_ Ko max [[¢(t) -¢(t ) [ [ ,  
rE[to,to+T] 

¢,¢ c c([to,to + T],a~);  

(iii) the inequality M0(HuoH + G + T(rLo + F)) < r hoIds with 

Mo : =  m a x  IlT(s)[[, F := ~ to,to÷T] ~@o,to÷T] m ~  t[f(s,O) , 

and C := supceo(tto,to÷T],aT)Itg(tl, . . . ,  tp, ¢)l]; 
(iv) MoKoe M°TL° < 1. 
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Then~ 
u'(t) = Au(t) + f(t, u(t)), to <_ t <_ to + T, 

(2.7) 
~(to) + g ( t ~ , . . . ,  t~, ~) = ~o, 

has a unique mild Solution u E C([to, to + T], f~). 

REMARK 2.5 .  

(a) Theorem 2.4 is an extension of [1, Theorem 3.1] for the same reasons in (1) and (3) of 
Remark 2.3. 

(b) The conclusion of Theorem 2.4 is also true replacing Assumption (iii) with the following 
weaker one. 

(iii') The inequality M0(]lu0II + G + TFo) < r holds with 

.h~ro := max llT(s)!l, Fo := sup tif(s,¢(s))II, 
sE[to,to+T] sE[to,to+T],¢EC([to,to+T],f~) 

and G := suPcec([to:o+Tl,a~ ) l l g (h , . . . ,  tp, ¢)I1- 

For the case of h(.) taking the form h(¢) P = Y'~4=1 ci¢(t~) for every ¢ E C([to, to + T], X), 
c l , . . .  ,ep E C, we present the following Theorem 2.6 which is sharper than Corollary 2.2(3). 
Purtherlnore, this result unifies and extends both of [6, Theorem 4.3] and [3, Theorem 3.1] (see 
Remark 2.9 below). 

THEOREM 2.6. Let (1.3) and (H1) hold and for some Cl , . . .  ,Cp E C, 

P 

h(¢) = E ci¢(h) (¢ e C([t0, to + TI, X)). 
i=1 

Assume that B := (I + ~P=i e~S(h - to)) -1 E L(X) and 

P 

]IB]IMEIc~I  e-'°( ' '-t°) (e ML<*'-*°) - 1) < 1. 
i=1 

Then, for aii uo E X ,  equation (2.3) has a unique soIution v E C([to, to + 7'], X). 

PROOF. By the standard arguments, we see that for every x E X, there is a unique v,(-) E 
C([to, to + T], X) satisfying 

v~(t) = S ( t  - to)X + S ( t  - s ) f ( s ,  v~(s))  ds, t c [to, to + T]. (2.S) 

Hence, 

v~(h) = S(ti  - to)x + S (h  - s ) f ( s ,  vx(s)) ds, i -- 1 , . . .  ,p, (2.9) 

and (1.3) implies that for every Xl, x2 E X, 

e~t]tvxl( t )-v~2(t) l  t <e°~t°MNxl -x2I I  + M L  e~'I lvx~(s)-v~2(s)l[ds.  

Thus, Gronwall-Bellman's inequality shows that 

Ilv~i(t) - vx~(t)]] < Me(ML-w)(t-t°)]IXl -- x21t, Xl ,x2  e X .  (2.10) 

Fix uo E X and define an operator ~ : X --* X by 

~ = B~o - S Z ~' s(t, - s)f(~, ~(~)) d~, 
i=I 

x E X. (2.11) 
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Then, by virtue of (1.3) and (2.10), we obtain for every Xl,X 2 C X ,  

]I~Xl --~X21[ ~_~ IIBI[ }-~' [eil Me-~(t~-S)Lllvx~(s)- v~(s)[[ ds 
i=l 

p 

= IIBIIM }--~ Icile - ~ ( ~ - t ° )  (e  ML(~'-t°) -- 1)Ilx~ - ~211. 
i= l  

This means that  G is a contractive operator on X. Therefore, G has a unique fixed point x .  E X. 
Thus, from (2.11) and (2.9), it follows that  

P P j( t l  i 
• . = ~o - ~ c~S(t~ - to)~ ,  - ~ e~ S(t~ - s ) f  (s, ~x. (s))  ~s 

i= l  i= l  
P 

: UO -- E eiVx* (ti). 
i=1 

This together with (2.8) shows that  v~. (t) is the solution of (2.3) as desired. 

We now return to the nonlocal Cauchy problem (1.1). 

THEOREM 2.7. Let (1.2)-(1.4) hold. Suppose that M and co are constants such that [[R(t)[] _< 
Me -~t (t E [0, T]) and A := M K e  Tmax{ML-~,°} < 1. Then, for every Uo E X ,  (1.1) has a unique 
mild solution u. 

Moreover, (1.1) has a unique classical solution provided 

uo - g ( t ~ , . . .  , tp,u) E 7)(A), f ~ Cl([to,to + T ]  x X , X ) .  (2.12) 

PROOF. From Corollary 2.2(1) and the plain fact tha t  a classical solution of (1.1) is also a mild 
solution of (1.1), we deduce that  (1.1) has at most one classical solution. 

On the other hand, Corollary 2.2(1) says that  for every u0 C X,  (1.1) has a mild solution u(t). 
Next, we show that  u(t) is continuously differentiable on [to, to + T]. The proof of this fact is 
almost standard (cf. [8]). We give it here for completeness. 

For s E [to, to + T] and x E X, denote 

= = ( 2 . 1 3 )  

By (1.3), we have 

and 

m a x  Ily~(s,u(s))ll < o~ 
s~[to,to+T] 

f ( s ,  u(s + ~) ) - f ( s ,  u(s) ) = y2(s, u(s) )(u(s + or) - u( s) ) + COl(8 , o-), 

f ( s  + ~r, u(s + 0)) - f ( s ,  u(s + or)) = y1(8, ~t(s -~- o))~ n t- CO2(s, o-), 

where lim~_~0(llwi(s, ~)ll/~) = 0 uniformly on [to, to ÷ T] for i = 1, 2. 
Let (2.12) hold. Then, 

d (R(t  - to)(Uo - g ( t l , . . . ,  tp, u))) c C([0, T], X).  

Thus, by the standard arguments we deduce that  the integral equation 

= { d (R(t  - to)(uo - g ( t l , . . . ,  tp, u))) + R( t  - to) f  (to, u(to)) x( t )  

t s [to, to + T], 

(2.14) 

(2.15) 

has a unique solution x(t) e C([to, to + T], X). 
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Making use of (1.7), (2.13)-(2.15), we obtain 

u ( t  + (T) ?£(t) 
- x ( t )  : 1_ [ R ( t  + (r - t o )  - R ( t  - to)] [uo - g(h  . . . .  , tp, u)] 

£r ( i  

+ 1  
f R(t - s)[wl(S, ~) + w2(s, a)] ds 

0 ~ Ao 

f2 + R(t - s)[yl(8, ~(8 + o)) - yl(S, ~(~))1 ds (2.16) 

1 / t o + a  
+-- R(t + a - s)f(s,  u(8)) ds - R(t  - to)f  (to, u(to)) 

(T J to  

By virtue of the fact that  the norm of each of the four terms on the right-hand side of (2.16) 
tends to 0 as cr --. 0, in conjunction with the Gronwall-Bellman inequality, we see that  u(t) is 
continuously differentiable on [to, to + T], and its derivative is x(t). This implies that  f(t, u(t)) E 
cl([to,  to + T], X). Thus, by (1.6) and (1.7), we conclude that  u(.) satisfies 

[ ] u'(t) = A  u( t )+  F ( t - s ) u ( s ) d s  + f ( t , u ( t ) ) ,  t E  [to,to+T], 

i.e., u(.) is the unique classical solution of (1.1). 

Likewise, by Corollary 2.2(2),(3) and Theorem 2.6, we get the following result. 

THEOREM 2.8. Let M and w be constants such that [JR(t)[ [ _< Me -~t (t E [0, T]), and let one of 
the following assumptions hold. 

(1) There are constants K > O, q and r with to <_ q < r <_ to + T such that 

// IIg(t~,... ,tp,¢) -g(t~,. . .  , tp ,¢) l  I < K lie(s) - ¢(s)ll ds (¢,¢ e C([to,to + T] ,X))  

and 

K M ( r -  q) < 1, 

K M  < 1, 
M L  - w 

if M L  = w, 

if M L  # ~. 

(2) For some c l , . . . ,  Cp E C, 

P 
g( t l , . . . ,  tp, ¢) = ~ c,¢(t,) 

i=1 
(¢ e c([to, to + T], X)).  

Suppose that B := (I P + ~ = 1  e~R(h - to)) -I C L(X) and 

P 
I lalM Ic le (e - 1) < 1. 

i=1 
(2.17) 

Then, the conclusions of Theorem 2.7 hold. 

REMARK 2.9. 
(a) Theorem 2.7 covers naturally and directly [8, p. 187, Theorem 6.1.5]. 
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(b) Theorem 2.8 unifies and generalizes [3, Theorems 3.1 and 4.3] and [6, Theorems 4.3 and 4.4]. 
Let us illustrate this point in detail. 

(i) Specialized to the case of F = 0 and w = 0, Theorem 2.8(2) extends [3, Theorems 3.1 
and 4.3]. Actually, in this case, inequality (2.17) becomes 

P 

[IBliM ~-~ Ic~l ( eMLt'  -- 1) < 1. (2.18) 
i=1  

Suppose that  the hypotheses in [3, Theorems 3.1 and 4.3] hold. Then, 

M L T (  l+' 'BHM~-~'ci '  ) ~ = t  < 1 .  (2.19) 

So M L T  < 1, NBNM~P=I ]c d < (MLT) -1 - 1 (if M L T  7~ 0), and hence, 
P P 

ItBI[M ~--~ Icil (e Mnt~ - 1) _< IIBIIM ~-~ [ed (e MLT - 1) 
i=l i=1  

< ((MLT) - t -  1) (e  M L T -  1) < 1. 

Thus, (2.19) implies (2.18). 
Clearly, the converse is not true. 
Moreover, we mention that the assumption on initial data in [3, Theorem 4.3] was 

/: Buo e Z)(A), B R(ti - s)f(s,u(s)) ds e TI(A), i = 1, 2 , . . . , p .  (2.20) 

P Write wt := uo - Y~=z eiu(ti). Then, by 

u(t) : R(t - to)w1 + R(t - s)f(s, u(s)) ds (t E [to, to + T]) 

and (2.20), we have 

P i t{ 
wl = Buo - ~ ciB R(ti - s)f(s, u(s)) ds e Z)(A). 

i=1  J to 

(ii) Taking to = 0 in Theorem 2.8(2), we get 
P 

IIBllM }-~lcde -~t' (e M L t ' -  1) < 1. ( 2 . 2 1 )  

i=1 

We say that (2.21) is implied by the hypotheses 
P 

w - M L  > O, M~-~lcde (ML-~)t` < 1, (2.22) 
i=1  

given in [6, Theorems 4.3 and 4.4], and (2.21) is indeed much weaker than (2.22). 
P In fact, if a := M ~ = 1  Jail e(ML-~°)t~ < 1, then ~ := M P ~i=1 leil e-~t~ < 1. This implies 

II ~ = 1  eiR(ti)ll < 1, so that  B e L(X)  and ItBII < 1/(1 - fl). Therefore, 
P 

I lB l IMEIcde  -~°t~ (e MLt~- 1) <_ 1 _--~1 R ( a - ~ ) <  1 _ ~ 1  R ( a - a / ~ ) : a  < 1. 
i=1  

This shows that  (2.22) implies (2.21). On the other hand, for 
P 

3,:= .~_ ciR(ti) < / ~ < 1 ,  1 _ < a < 1 + / 3 - 7 ,  

we have 
P 1 

IIBIIM)--L'Ie{I e - ~  (e M L ~ -  1) _< 1 _---L--~(a- Z) < 1; 
i =1  

i.e., (2.21) holds but  not (2.22). 

In addition, similar to Theorem 2.4, we have the following extension of [1, Theorem 5.1]. 
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THEOREM 2.10. Let A generate a strongly continuous semigroup {T(t) }t>_o. Assume the follow- 
ing. 

(i) The function f : [to,to + T] × X -~ X is continuously differentiable and there exists 
constant Lo > 0 such that 

I I ] ( t , x ) - f ( t , y )H<_Lo l l x - yN ,  r e [ t o , t o + T ] ,  x, y e f t ~ ,  

(ii) 
where ~r is as in Theorem 2.4. 
The function g : [to, to + T] p x C([to, to + T], X)  ~ I)(A) and there exists a constant 
Ko > 0 such that 

IIg( t~ , . . . , t , ,¢ )  - g(t~,...,t~,¢)il -< Ko max II¢(~) - ¢(s) lh 
tE [to , to+T] 

¢, ¢ e c([to,  to + T], a~). 

(iii) The vector uo E 2)(A) and the inequaIity Mo(ll~ol] + C + TFo) ~ r is true ~o~ 

M0 : :  max ItT(s)ll, Fo : :  sup I]f(s,¢(s)ll, 
sC [to,to + T] sE[to,to + T],¢EO ([to ,to + T],~r ) 

and G := suPcec([to,to+T],f~ ) Ng(tl , . . . ,  tp, ¢)H" 
(iV) MoKoe M°TL° < 1. 

Then, (2. 7) has a unique cIassicaI solution. 

3. A P P L I C A T I O N S  

EXAMPLE 3.1. Let us consider an operator A on a Banach space X, which generates an analytic 
semigroup {R(t)}t>0 on X such that  

1 -t/3 HR(t)H < e -t/a, [[AR(t)[[ < - e  - (t > 0). 
- -  - -  t - -  

Clearly, the operator A --- A - (1 /3 ) / i n  the Banach space X = L2(R n) with :D(A) = H2(R n) is 
all example for such A and X. From [8,10-14], one can find many other examples. 

Suppose that  f :  [0, 3] x C([0, 3], X) -+ C([0, 31, X) is continuous with 

1 
H~(t,~)- f(t,y)H _< 5H~- yH, t ~ [ o , 3 ] ,  x, y e X ,  

and 
g(1, 2,¢) = 1¢(1) - 1¢(2) (¢ E C([0, 3], X)). 

Set t o = 0 ,  T = 3 ,  L - - w - - 1 / 3 ,  M - - 1 ,  p = 2 ,  C l = l / 2 ,  c 2 = - l / 2 ,  t l = l ,  a n d t 2 = 2 .  Then, 

p 1( ) a = MEIe i ]e (ML-a) t i  = 2 eL-w +e2(L-~) = 1, 
i=1  

P 1 
= "~' E Icite-wt~ -~ 2 ( e-1/3 + e-2/3) < 1, 

i=1  

and 

= 111//A ,s,,s 1 
1 ~2 e-S/3 le_1/3 

ds < In 2. 
<-3 s - 2  
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Hence, 

/3--7)  !e-1/3 [(1-1- e-1/3) --in2] ~0, 
- 2  

and 1 = a < 1 + /7  - 7. By Remark  2.9, (2.17) holds. So the nonlocal Cauchy problem 

u'(t) = Au(t) + f(t, u(t)) (0 < t < 3), 

u(0) + g(1, 2, u) = u0 

has a unique mild solution u E C([0, 3], X)  by Theorem 2.6. But  [6, Theorem 4.3] is not applicable 
since a = 1; neither is [3, Theorem 3.1] since 

( 0 M T L  I + M[I B [e~ = 1 + 112711 ___ 1. 
i=1 

EXAMPLE 3.2. Let ft be a bounded open connected subset of R a with C °~ boundary, and let a 
and/3  be in C2([0, oo), R) with a(0) and/3(0)  positive. We consider an equation arising in the 
s tudy of heat conduction in materials with memory  

o'(t) {o(t) 
d ( t ) )  = (~(0°)A s -/3(0)s) ) \~ ( t )  

(3.1) 
t 0 S dS+fa( t ,O( t ) )"  ) +Io o 

- , 7 ( s ) )  " 

Set X = H l ( f l )  x L2(fl), 

A = a (0 )A - /3 (0 ) I  ' 7:) = (H2(fl)  rG Hol(ft)) x Hol(fl). 

From [15], we know tha t  A generates a Co semigroup {T(t)}t>o on X with 

IIT(t)ll _< M e - %  t _> 0, 

for constants M, 7 > 0. For any given 1 > 0 and each t E [0, 4l] set 

F(t) = (Fij(t)), 

where 

Assume tha t  

~'(t) 
Fll(t) ~ F12(t) = 0, F22(t) = -~-~I,  

F21(t) = - # ' ( t ) s  +/3(o)F22(t). 

7 e--~t [0, 4l], HF22(t)[I, IlF21(t)[] __< ~-~  , t e 

2 
IIF;2(t)H, flF~l(t)ll < 7- - ~  t e [0,4l] - 4 M  e ~ , 

Then, from [9, p. 344], it follows tha t  the resolvent operator  R(t) for (3.1) satisfies 

IIR(t)ll < Me -~/2, t e [0,4l}. 
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Suppose that  a(t ,  e ) :  [0, oo) x H01(~) ~ L2(a)  satisfies 

"Y x Na(t, x)  - a(t,Y)ilL2(~) < ~-~]I -YliH~(gt), x , y  • Hlo(~2), t E [0,4/], (3.2) 

and define b(8): C([0,41],H~(f~))  ---+ n2( f l )  by 

b(O) = ( M l )  -1 O)(s) ds + _e)l(grad0)(s) ds , (3.3) 

where e < 1/2. Then, by virtue of Theorem 2.7, we infer tha t  for each 0o • Hol(f~), r~o • L2(~2), 
equation (3.1) (for t • [0, 4l]) together with the nonlocal initial data  

0,o,)( o ))(0o) 
~(o) + (MO -1 _~)l(gradO)(s)ds+ _~)t(gradO)(s)ds = rio 

has a unique mild solution 

In fact, if we write 

e(.) ~ , L =(a)) ~(.) / • c ([0, 4z] g0~(a) × 

(0) 
/ ( t ,u )  = a(t,o) ' 

g(21,4',¢) = (b~0)) ,  

then by (3.2) and (a.a), 

7 
Ilf(t,u) - f ( t , v ) l  I <_ ~ -~ l lu  - vii , 

Ilg(2/, 41, ¢) - g(21, 41, ¢)ll -< 2zM-1 max lie(t) - ¢(t)ll, 
te[0,z] 

f o r t C [ 0 , 4 l ] ,  u = ( ~ ) e X ,  

for ¢ - - ( ~ ) e C ( [ O , 4 1 ] , X ) ,  

u, v E X ,  t E [0,4/], 
(3.5) 

¢, ¢ c c([0, 4z], x) .  

Clearly, A (in Theorem 2.7) = 2z < 1. Therefore, by using Theorem 2.7, we get immediately the 
desired conclusion for any V and l > 0. Nevertheless, Theorem 3.2 in [6] is not applicable to the 
nonloeal Cauchy problem (3.1) and (3.4) if 71 > (1/2)(1 - e) > 1/4. From (3.5), it is plain that  
the larger 7 is, the larger the set of admissible f .  
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