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Abstract

It is known that the class of graphs with treewidth (resp. pathwidth) bounded by a constant
w can be characterized by a /nite obstruction set obs(TW (w)) (resp. obs(PW (w))). These ob-
struction sets are known for w6 3 so far. In this paper we give a structural characterization
of graphs from obs(TW (w)) (resp. obs(PW (w))) with a /xed number of vertices in terms of
subgraphs of the complement. Our approach also essentially simpli/es known characterization
of graphs from obs(TW (w)) (resp. obs(PW (w))) with (w + 3) vertices.
Also for any w¿ 3 a graph from obs(TW (w)) \ obs(PW (w)) is constructed, that solves an

open problem. ? 2002 Elsevier Science B.V. All rights reserved.
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All graphs in this paper are /nite, undirected and without loops and parallel edges.
The di:erence between isomorphism and equality of graphs is ignored. As a standard
notation we use G =(V; E), where G is a graph with the vertex set V (or V (G)) and
the edge set E (or E(G)).
Let G =(V; E) be a graph. If v∈V (G) then G\v denotes the subgraph of G induced

by V \ {v}. If e∈E(G) then G \ e denotes the subgraph (V; E \ {e}) of G. A discrete
graph is a graph with empty edge set.

Kk stands for the complete graph with k vertices, Kr1 ;:::;rk for the complete k-partite
graphs. The bipartite graph K1; r (r¿ 1) is termed a star and the vertex of K1; r con-
nected with r vertices is called the central vertex. G stands for the complement of a
graph G and Pk is the path on k + 1 vertices.

1. Introduction

If H are G are graphs, then H is a minor of G if and only if H can be obtained from
a subgraph of G by contracting edges. A class F of graphs is called minor-closed if for
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every graph G in F, every minor of G is also a member of F. The obstruction set for
a minor-closed class F, denoted by obs(F), is the set of all graphs in the complement
of F that are minimal in the minor order. Robertson and Seymour [9] proved Wagner’s
conjecture that every minor-closed class of graphs has a /nite obstruction set. If we
know all the graphs in obs(F), then we can decide whether G ∈F in polynomial time
using the fact, that for every /xed graph H there exists a polynomial-time algorithm
that, when given an input graph G, decided whether H is a minor of G [10].
Extensively studied are graphs of bounded treewidth. Note that for each k, the class

of graphs of treewidth at most k is minor closed.
The concept of treewidth seems to be interesting from the algorithmic point of view:

many graph problems that are NP-complete in general can be polynomially solvable if
graphs are constrained to have bounded treewidth.
A better comprehension of the obstructions for treewidth and pathwidth can help to

design better algorithms for the graphs with treewidth (resp. pathwidth) bounded by a
/xed constant.

De�nition 1. A tree-decomposition of a graph G =(V; E) is a pair (T;X), where
T =(V (T ); E(T )) is a tree and X=(Xt; t ∈V (T )) is a family of subsets of V with
the following properties:
(1)

⋃
(Xt; t ∈V (T ))=V ;

(2) for every edge e∈E there exists t ∈V (T ) such that e has both ends in Xt ;
(3) for t; t′; t′′ ∈V (T ), if t′ is on the path of T between t and t′′ then

Xt ∩ Xt′′ ⊆ Xt′ :

The width of the tree-decomposition (T;X) is

max
t∈V (T )

(|Xt | − 1):

The treewidth of the graph G, TW (G), is the smallest integer k such that G has a
tree-decomposition of width k.
A path-decomposition of the graph G is a tree-decomposition (T;X) such that T is

a path. The pathwidth of the graph G, PW (G), is the smallest integer k such that G
has a path-decomposition of width k.

Several equivalent de/nitions of treewidth are extensively used, see e.g. [2] or [6].
Let us give one, which is frequently used in this paper.

De�nition 2. k-trees are de/ned recursively as follows: a clique with (k+1) vertices is
a k-tree; given a k-tree G with n vertices, a k-tree with (n+1) vertices is constructed
by taking G and creating a new vertex v which is made adjacent to a k-clique of G
and nonadjacent to the (n− k) other vertices of G. A partial k-tree is any subgraph of
a k-tree.
A k-path is a k-tree which is an interval graph. A partial k-path is a subgraph of a

k-path.
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It can be proved, that the treewidth of a graph G is k if and only if k is the minimum
value for which G is a partial k-tree (see e.g. [2] or [6]). A similar statement can be
formulated for pathwidth: the pathwidth of a graph G is k if and only if k is the
minimum value for which G is a partial k-path (see [6]).
Let TW (w) denote the class of graphs with treewidth at most w. For any /xed w,

TW (w) is minor-closed and consequently it can be characterized by a /nite obstruction
set obs(TW (w)). The same statement can be formulated also for the class PW (w) of
graphs with pathwidth at most w.
Only the obstruction sets for treewidth 1, 2, and 3 are known so far (see [1,13]). In

[11] over 75 minimal forbidden minors for treewidth at most four of widely varying
structures are presented. (The obstruction set for treewidth 4 could be probably deter-
mined using reductions given in [12]. To the best of author’s knowledge the full list
of graphs from obs(TW (4)) has not been given explicitly.) The obstruction sets for
pathwidth 1 and 2 were described in [5]. In [8] a structural characterization of graphs
from obs(TW (w)) (resp. obs(PW (w))) with (w + 3) vertices is given.

2. A characterization of graphs with bounded |V (G )| − TW (G )

In this section we give a characterization of graphs with bounded di:erence between
the number of vertices and treewidth of the graph. This characterization is given in
terms of forbidden subgraphs of the complement.

De�nition 3. Let T1 = {K2}. For r¿ 2, let Tr+1 be the set of graphs G that can
be constructed in the following way: take a graph H from Tr and an independent
vertex set A (possibly empty) of H with at least |V (H)| − (r + 1) vertices. Denote
B=V (H)\A. Let C ∪{v0} be the set of new vertices such that |C|= r+1−|B|. Then
G is the graph de/ned by

V (G)=V (H) ∪ C ∪ {v0} and E(G)=E(H) ∪ {{v0; u}; u∈B ∪ C}:

Remark 4. Each graph fromTr is connected graph with r(r+1)=2 edges and Kr+1 ∈Tr .

Obviously, T2 = {K3; P3}. Let us describe the set T3, which will be used later. The
set T3 consists of /ve graphs, see Fig. 1.

Fig. 1.
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Rather than to test for each H ∈T3 individually, we prefer the structurally-related
test based on the following simple observation.

Observation 5. Let H be a graph. Then H contains a graph from T3 as a subgraph
if and only if either
(a) H contains a triangle with each vertex of degree at least 3, or
(b) H contains a cycle of length 4 with two consecutive vertices of degree at least 3.

Lemma 6. Let r¿ 1 and G be a k-tree with (k + r +1) vertices. Then G consists of
a single nontrivial component from Tr and zero or more isolated vertices.

Proof. We proceed by induction on r. For r =1 the complement of any k-tree with
(k + 2) vertices consists of K2 (∈T1) and isolated vertices.
Let r¿ 1. Let G be a k-tree with (k + r +2) vertices for some nonnegative integer

k. According to the recursive de/nition of k-trees there is a vertex v0, which together
with all k neighbors {vr+2; : : : ; vr+k+1} creates the clique Kk+1 in G.
Let G0 =G \ v0. Obviously, G0 is a k-tree with (k + r +1) vertices {v1; : : : ; vk+r+1}.

By the induction hypothesis, G0 consists of a single nontrivial component H0 ∈Tr and
zero or more isolated vertices.
Look closer how the component H0 is modi/ed when the graph G from the graph

G0 is constructed:
• the new vertex v0 is added,
• the vertex set V (H0) ∩ {vr+2; : : : ; vk+r+1} is an independent set in G, consequently

in G0 and also in H0, with at least |V (H0)| − (r + 1) vertices,
• new vertices {v1; : : : ; vr+1} \ V (H0) are added, if V (H0)+ {v1; : : : ; vr+1},
• r + 1 new edges {v0; vj} (j =1; 2; : : : ; r + 1) are added.
As H0 is not a discrete graph, necessarily V (H0)∩ {v1; : : : ; vr+1} �= ∅. It implies that

H consists of a single nontrivial component.
This construction follows the same steps as described in De/nition 3. As a result

we obtain that the component H , constructed from H0 as above, belongs to Tr+1.

Lemma 7. Let r¿ 1 and let H be a graph from Tr . Then a graph consisting of H
and l (possibly l=0) isolated vertices is the complement of an (l+|V (H)|−r−1)-tree.

Proof. The proof uses induction on r. For r =1 we have H =K2. Obviously, the graph
consisting of K2 and l isolated vertices is the complement of a l-tree.
Let r¿ 1. To prove the induction step, /x H ∈Tr+1.
(a) First, we prove that H is a (|V (H)| − r − 2)-tree.
The graph H ∈Tr+1 was constructed from some graph H0 ∈Tr following the con-

struction described in De/nition 3:
• for /xed independent vertex set A in H0 and the set B=V (H0)\A with the property
|B|6 r + 1 we added a new vertex set C such that |B ∪ C|= r + 1,

• we added a new vertex v0 and (r + 1) edges {v0; u}, u∈B ∪ C.
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The graph H \ v0 consists of H0 and the set C of isolated vertices. By the induction
hypothesis, its complement is a (|C|+ |V (H0)|−r−1)-tree. Obviously, |C|+ |V (H0)|−
r−1= |V (H)|− r−2= |A| and the induced subgraph with the vertex set A is a clique
in H0. The graph H was created adding the new vertex v0, which was made adjacent
to a clique A. That means, H is a (|V (H)| − r − 2)-tree.
(b) It easily follows from (a) that the graph consisting of H ∈Tr+1 and l isolated

vertices is the complement of an (l + |V (H)| − r − 2)-tree.

Lemma 8. Let r¿ 1 and G be a graph with property TW (G)6 |V (G)|− r−1. Then
G contains some graph from Tr as a subgraph.

Proof. Fix G as above. TW (G)6 |V (G)| − r − 1 implies G is a partial (|V (G)| −
r − 1)-tree. It is well known that there exists a supergraph G0 of G with the same
vertex set V (G) such that G0 is a (|V (G)| − r − 1)-tree (see e.g. [6, Lemma 2:1:13]).
Due to Lemma 6, G0 contains some graph from Tr as a subgraph. Obviously, G0

is a subgraph of G and the proof is /nished.

Lemma 9. Let r¿ 1 and G contains a graph H from Tr as a subgraph. Then
TW (G)6 |V (G)| − r − 1.

Proof. Let H ∈Tr be a subgraph of G. Let G0 be the graph, whose complement
consists of H and isolated vertices of V (G)\V (H) (if V (H) �=V (G)). Due to Lemma 7
the graph G0 is a (|V (G)| − r − 1)-tree. Obviously, G0 is a supergraph of G, which
implies TW (G)6 |V (G)| − r − 1.

Theorem 10. Let G be a graph and r¿ 1. Then the following conditions are equivalent:
(1) TW (G)¿ |V (G)| − r;
(2) G contains no graph from Tr as a subgraph.

Proof. According to Lemmas 8 and 9 the following statement is true: G contains some
graph from Tr as a subgraph if and only if TW (G)6 |V (G)| − r − 1.

De�nition 11. An undirected graph G =(V; E) is called a comparability graph, or a
transitively orientable graph, if there exists an orientation of the edges such that the
resulting oriented graph (V; F) satis/es the following conditions:

F ∩ F−1 = ∅ and F + F−1 =E and F2 ⊆ F

where F2 = {(u; w) | ∃ v∈V (u; v)∈F & (v; w)∈F}.

For a k-tree G the following properties are equivalent:
(C1) G is a k-path;
(C2) G is a comparability graph;
(C3) G does not contain a triple of vertices with the property that any two of them

are connected by a path which avoids the neighborhood of the third.
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The equivalence (C1) ⇔ (C2) easily follows from the characterization of interval graphs
found by Gilmore and Ho:man [3].
The equivalence (C1) ⇔ (C3) is a consequence of another important characterization

of interval graphs proved by Lekkerkerker and Boland [7]. Hence analogous results as
we obtained in this section for the treewidth can be proved for the pathwidth.

De�nition 12. De/ne Pr = {H ∈Tr ; H is a comparability graph}.

Remark 13. It is easy to see that P1 =T1 and P2 =T2. Further, T3 \ P3 = {H5}
(net), as H5 (3-sun) is a 2-tree, which does not satisfy (C3), hence H5 is not a com-
parability graph (see Fig. 1 for the set T3). Moreover, for every r ¿ 3 there exists
H ∈Tr such that H5 is an induced subgraph of H and hence H is not a comparability
graph. It implies that Pr is a proper subset of Tr for every r¿ 3.

Replacing the set Tr by the set Pr , Lemmas 6–9 can be formulated and proved in
the same way also for pathwidth. Consequently, the analogous result of Theorem 10
holds also for pathwidth:

Theorem 14. Let G be a graph and r¿1. Then the following conditions are equivalent:
(1) PW (G)¿ |V (G)| − r;
(2) G contains no graph from Pr as a subgraph.

In the following, Theorems 10 and 14 will be used to give a structural character-
ization of graphs from obs(TW (w)), resp. obs(PW (w)) with (w + r + 1) vertices in
terms of subgraphs of the complement (for any r¿ 1). This description can be used
to construct explicitly some graphs from obs(TW (w)), resp. obs(PW (w)).

3. Graphs from obs(TW (w)) (resp. obs(PW (w))) with (w + 3) vertices

Ramachandramurthi [8] has found a structural characterization of graphs from
obs(TW (w)) (resp. obs(PW (w))) with (w + 3) vertices.
We give the method how to construct graphs from obs(TW (w)) (resp. obs(PW (w)))

with (w + r + 1) vertices for any r¿ 2. Our approach also essentially simpli/es the
results of [8].

Theorem 15. For every w; a graph G with (w + 3) vertices is in obs(TW (w))
(equivalently in obs(PW (w)) if and only if all components of G are stars and the
number of them is at least 3.

Proof. We will prove the theorem for treewidth. As P2 =T2, one can obtain the proof
for pathwidth replacing TW by PW in our proof.
(⇒) Let G be a graph from obs(TW (w)) with (w + 3) vertices. Then TW (G)=

w + 1= |V (G)| − 2. Due to Theorem 10 neither K3 nor P3 are subgraphs of G.
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Consequently, the components of G are stars and isolated vertices. Moreover, G is
not a discrete graph.
If G contains an isolated vertex v, then we delete an edge e of G connecting v

and the central vertex of a star. In virtue of Theorem 10 TW (G \ e)=TW (G), a
contradiction. Hence components of G are just stars.

Suppose that G consists of one star (resp. two stars). Then deleting the central vertex
(resp. contracting an edge connecting two central vertices) we obtain Kw+2 as a proper
minor of G. A contradiction with G ∈ obs(TW (w)).
(⇐) Let G be a graph with (w + 3) vertices of all required properties. G contains

no graph from T2 as a subgraph, that implies TW (G)¿w + 1. Our aim is to prove
that TW (H)6w for any proper minor H of G. It is clear, if |V (H)|6w + 1.
(i) The number of stars implies that the complement of any minor H of G with w+2

vertices contains an edge, which implies TW (H)6w.
(ii) Because G contains no isolated vertices, deleting any edge e the graph G \ e

contains K3 or P3. Due to Theorem 10 it follows TW (G \ e)6w.
This concludes the proof.

Remark 16. Due to the previous theorem, the number of graphs from obs(TW (n−3))
with n vertices is equal to the number of partitions of number n into at least three
parts of size at least 2.

4. A structure of graphs from obs(TW (w)) (resp. obs(PW (w)))

The following theorem gives a structural characterization of graphs from obs(TW (w))
with a /xed number of vertices in terms of subgraphs of the complement.

Theorem 17. Given r¿ 2. A graph G with (w + r + 1) vertices is in obs(TW (w)) if
and only if G satis<es the following three conditions:
T1(r): G contains no graph from Tr as a subgraph.
T2(r): If H is a minor of G with |V (G)| − 1 vertices; then H contains some graph

from Tr−1 as a subgraph.
T3(r): For every e∈E(G); G \ e contains some graph from Tr as a subgraph.

Proof. (⇒) This part follows from the de/nition of the obstruction set and Theorem
10.
(⇐) Due to Theorem 10 the property T1(r) implies TW (G)¿w+1. If H is a minor

of G with at most |V (G)| − 1 vertices, then TW (H)6w due to the property T2(r).
Let H be a proper minor (equivalently, subgraph) of G with |V (G)| vertices. Then

the property T3(r) implies TW (H)6w.

Lemma 18. Given r¿ 2 and a graph G with the property T2(r). Let F be a graph
such that F contains G as a subgraph. Then F has the property T2(r).
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Proof. For /xed r we denote

Mr:={H : H is a graph satisfying T2(r)}:

Now lemma can be formulated in the following way: if H ∈Mr and G is a supergraph
of H , then also G ∈Mr .
To prove this statement it is enough to show that if H ∈Mr , then the graph He

(resp. Hv) obtained from H adding a new edge e (resp. a new isolated vertex v) has
to belong to Mr .
As He is a subgraph of H , then each minor of He is the minor of H and the

conclusion is obvious.
Now let M be a minor of Hv with |V (H)| vertices.
(i) If M is a subgraph of H , the conclusion is trivial.
(ii) If M is a subgraph of Hv (v∈V (M)) or a graph obtained from Hv by contracting

some edge from E(H), then M \ v is a minor of H with |V (H)| − 1 vertices.
Hence H \ v contains a graph from Tr−1 as a subgraph.

(iii) Finally, let us suppose, that M is a subgraph of the graph obtained from Hv by
contracting some edge {u; v}∈E(Hv). (A new vertex which is result of contracting
{u; v} is denoted by w.) Then M \ w is a minor of H with |V (H)| − 1 vertices,
which completes the proof.

Remark 19. According to Lemma 18 the class of graphs Mr (for /xed r) is supergraph-
closed. It easily follows that Mr can be characterized in terms of subgraphs of the
complement. A graph G possesses T2(r) if and only if G contains some graph from
minMr as a subgraph (minMr stands for the set of minimal elements of Mr with
respect to subgraph relation).

The proofs of the following Theorems 20 and 22 give a general method, how to
/nd graphs from the obstruction set, obs(TW (w)).

Theorem 20. Let r¿ 2 be given and F be a graph with property T1(r) and T2(r).
Then for every w; w¿ |V (F)| − (r + 1) there exists a graph G ∈ obs(TW (w)) with
(w+ r+1) vertices such that some subgraph of F with vertex set V (F) is an induced
subgraph of G.

Proof. Let F be a graph with property T1(r) and T2(r) for given r¿2 and w¿ |V (F)|−
(r+1) be /xed. De/ne G with (w+r+1) vertices in the following way: G consists of
F and (w + r + 1− |V (F)|) new isolated vertices. The graph G satis/es the condition
T1(r) and also T2(r) (by Lemma 18).
Deleting a maximal set of edges from G for which the resulting graph has the

property T3(r), we obtain a graph satisfying T1(r), T2(r) and T3(r), hence a graph
from obs(TW (w)) with (w + r + 1) vertices.

Remark 21. Let r¿ 2 be /xed. Obviously, if G consists of three disjoint copies of
Kr , then G has the property T1(r) and T2(r). Theorem 20 implies the existence of
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Fig. 2.

graphs from obs(TW (w)) for each w¿ (2r−1). But this bound is not always optimal.
For example, for r =3 we have found three graphs from obs(TW (4)) with 8 vertices.
Their complements are in Fig. 2.

Theorem 22. Let H be a graph from obs(TW (w)) for some w¿ 0. Then for every
k ¿ w there exists a graph G from obs(TW (k)) such that

|V (G)| − k = |V (H)| − w

and H is an induced subgraph of G.

Proof. It easily follows from Theorem 20.

Remark 23. The results analogous to Theorems 17, 20 and 22, where treewidth is
replaced by pathwidth and Tr by Pr , can be proved in the same way.

5. Relation between obs(TW (w)) and obs(PW (w))

It is well known [4] that for each w ¿ 0 there are trees which are obstructions to
PW (w). However, since the treewidth of a tree is 1, no tree can be in obs(TW (w))
for any w ¿ 0. Therefore, obs(PW (w))* obs(TW (w)).
For w=1 and w=2 it holds obs(TW (w))= {Kw+2} ⊂ obs(PW (w)).
Ramachandramurthi [8] formulated a conjecture that for any w¿ 3 there exists a

graph H ∈ obs(TW (w)) \ obs(PW (w)). He gave an example of such a graph for w=3
only. It can be seen (from Theorem 15) that any such a graph has at least (w + 4)
vertices.
In the next we will construct for every w¿3 a graph which belongs to obs(TW (w))\

obs(PW (w)).

Construction. Let w ¿ 5 be /xed and k; l be integers such that w + 4= l + 3k,
l∈{1; 2; 3}. Let Kl;3; :::;3 be the complete (k + 1)-partite graphs with the correspond-
ing partition of the vertices {Vi}k+1

i=1 , where Vi = {vi
1; v

i
2; v

i
3} for 26 i6 k + 1 and
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w = 1 mod 3 w = 2 mod 3 w = 0 mod 3

Fig. 3. The complements of graphs Gw .

V1 = {v1j }l
j=1. De/ne a graph Gw in the following way:

V (Gw)=V (Kl;3;3; :::;3);

E(Gw) = E(Kl;3;3; :::;3) \ {{{v11; v
i
1}; 26 i6 k + 1}

∪{{v22; v
i
2}; 36 i6 k + 1} ∪ El}:

where El = {{v12; v
2
1}} if l=2; El = ∅ if l=1 or l=3 (see Fig. 3).

Theorem 24. For every w¿ 3 the set obs(TW (w)) \ obs(PW (w)) is nonempty.

Proof. Let w ¿ 5 be /xed. We show that Gw ∈ obs(TW (w)) \ obs(PW (w)).
Applying Theorem 17 to prove Gw ∈ obs(TW (w)) it is enough to verify properties

T1(r)–T3(r) for Gw and r =3.
T1(3): The graph Gw has not the property (a) from Observation 5 and contains no

cycle of length 4, which concludes the proof of this part.
T2(3): Obviously, the complement of each minor of Gw with |V (Gw)| − 1 vertices

contains K3 as a subgraph.
T3(3): Let e∈E(Gw) be /xed. It is enough to prove that Gw \ e has property (a) or

(b) from Observation 5.
If vi

3 ∈ e (26 i6 k + 1), then property (a) holds. Suppose v2i ∈ e (36 i6 k + 1).
If the second vertex of e is v11 or vj

2 (36 j6 k + 1), then (a) holds. If e= {vi
2; v

j
1}

(26 j6 k + 1), property (b) holds. The same argument is true, whenever the second
vertex of e is v12 (if l¿ 2) or v13 (if l=3).
Now assume vi

1 ∈ e (26 i6 k + 1). If any of the vertices vj
1 (26 j6 k + 1), v12

(if l¿ 2) or v13 (if l=3) is the second vertex of e, then property (a) trivially holds.
Finally, if e= {vi

1; v
2
2} (36 i6 k + 1), then property (b) holds. The other cases for

e= {v1i ; v22} (16 i6 l) can be simply discussed.
Due to Remark 23 to prove Gw �∈ obs(PW (w)) it is enough to /nd e∈E(Gw) such

that Gw \ e contains no graph from P3 as a subgraph. Let e= {v32; v
4
2} (dashed edge

in Fig. 3). One can easily check that Gw \ {v32; v
4
2} contains no cycle of length 4.

Consequently no graph from P3.
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Fig. 4.

In the case w=4 (resp. w=5) an example of a graph from obs(TW (w))\obs(PW (w))
is the graph whose complement is the third graph in Fig. 2 (resp. graph whose
complement is in Fig. 4). This fact can be easily veri/ed using Theorem 17 and
Remark 23.
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