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0. Introduction 

It is well known (Bass [3], Quillen [ll]) that some ring homomorphisms q: A + B 

give rise to a transfer map (p*:K1(B)-K,(A) on algebraic K-theory. For group 
homomorphisms rp: rr + p one has often used the fact that the ring homomorphism 
(still called cp) q: Hr + Zp gives rise to a transfer map cp*: Ki(Ep) --, Ki(Zrr) when cp is 
an inclusion of a subgroup of finite index. However, it seems to have gone unnoticed 
that q* is defined much more generally, namely when cp has kernel of type (FF) and 
image of finite index in p. 

The classical homotopy-theoretic interpretation of Kr(Zn) goes via the quotient 
Wh(rr) =Kr(Z7r)/*r. We refer, of course, to the Whitehead torsion T(B, A)E 

Wh(xi(B)), defined for any pair of finite simplicial complexes with A c B a homo- 
topy equivalence (see e.g. Milnor [8]). 

In this paper we investigate the relationship between this homotopy-theoretic 
interpretation of Wh(7r) and the algebraically defined transfer map ~*:K1(Zp)-* 
Kr(Hr). The connecting tissue is made by PL fibrations (Hatcher [6]). 

To describe our results we let p: E + B be a PL fibration with E and B compact 

polyhedra. Let F be the fiber, and 

i 
m(F) 2 m(E) 5 m(B) 

the induced sequence of fundamental groups. For any homotopy equivalence A c B 

one has the Whitehead torsion 

r(B, A) E Wh(rl(B)). 

Our general problem will be the computation of s(E, p-‘(A)) in terms of r(B, A). 

The first result states that this problem is closely related to the transfer map. 

* This work was done while the author visited Princeton University and was also partially supported by 

the Danish Natural Science Research Council. 
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Corollary A. Assume that Fis the classifying space, BY, for a group v of type (FF), and 
that i,: v + rrl(E) is manic. Then q = p*: T,(E) + ml(B) gives rise to a transfer map on 
K,, which induces 

cp*: Wh(rrr(B))-, Wh(rrr(E)). 

Moreover, 

T(E, p-‘(A)) = v*(dB, A)). 

Remark. When v + rr +p, a short exact sequence of finitely presented groups with v 
of type (FF) is given, then for any r G Wh(p) one can find A E B and p: E --* B with 
fiber Bv such that 7rl(Bv) + 7r1(E) --, rl(B) is (isomorphic to) the given sequence and 
r(B, A) = 7. Thus the homotopy-theoretic interpretation characterizes cp*: Wh(p) + 
Wh(r) completely. 

For the next result we recall that Hi(F) is a Zrrl(B) module, so it represents an 
element of the integral representation ring G(T~(B)). Also Wh(rrr(B)) is a right 
G(rl(B)) module. 

Corollary B. If p* factors as shown here 

with Q onto and i manic then in Wh(+) one has 

~ddE, P-IA)) = i*(dB, A) - x (-l)‘[Hi(FO)]) 

where FO is the base point component of F. 

Remark. In the case where p is a fiber bundle, p* is onto, and each Hi(F) is free over 
B, this result is due to Anderson [l]. 

For the final corollary we let v = Ker(cp = p*: rr(E) + srl(B)), and we let $ -P FO be 

the covering of the base point component of F corresponding to the subgroup 

Ker(rrr(Eo) + rr(E)) c TI(&). 

Then rl(E) acts on Hi(@) in a natural way (described in Section 6) and one has the 
following. 

Corollary C. If v = Ker( pJ is of type (FF) then there is a transfer map q*: Wh(rrB) + 
Wh(rr(E)) and one has 
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All the above corollaries are derived from the main theorem which is stated and 
proved in Section 7. It computes r,s(E, p_lA) whenever 

is a factorization of p* with r onto and Ker(cp) of type (FF). 
In [2] Anderson proved that any PL fiber bundle p : E-, B gives rise to a 

(geometrically defined) transfer map p*: Wh(ri(B)) -, Wh(ri(E)). 
According to Remark 2 of Ehrlich’s paper [5] Anderson’s p* depends only on the 

restriction of p to the 2-skeleton of B. Our results may be viewed as an algebraic 
description (in terms of the algebraically defined transfer map and homology of 
various fibers) of some important instances of Anderson’s geometrically defined 
transfer map. In this respect we should also mention that a recent preprint by 
Pedersen [lo], shows that the geometrically defined transfer depends only on the 
“fundamental group and orientation” data of the PL fibre bundle p: E + B. Presum- 
ably the proper setting for these results by Anderson, Ehrlich and Pedersen are PL 
fibrations rather than PL fiber bundles. 

We now outline the contents of the various sections. 
In Section 1 we generalize Milnor’s treatment, in [S], of chain complexes of bused 

A modules with based homology modules to the context of modules with a 
given bused, finite resolution. The build-up follows Milnor’s closely. In Section 2 we 
define the Whitehead torsion for suitably restricted spectral sequences, and we prove 
that for suitably filtered chain complexes C, with spectral sequence ET, one has 

r(C*) = ~6% ). 
The results of Sections 1 and 2 overlap considerably with those of Maumary [7]. 

We have chosen to present our own approach because it seems better adapted to our 
applications. 

In Section 3 we recall the definition of the transfer map q*:K1(B)+K~(A) for 
suitable ring homomorphisms rp : A + B. And we prove the formula 

&C*) = cp*(r(C*)) E XI(B). (D) 

Here C, is a based chain complex with based homology, over B. cp’C* is C,, viewed 
over A, via q. The point of the formula is that cp’C* (and its homology) becomes b.f. 
resolved in a natural way, so that r((p!C*) is defined. 

In Section 4 we recall the integral representation ring, G(r), admitting also 
representations N which’are just finitely generated (and not free) over Z. Also we 
recall how it acts on K1(Er) and Wh(r). This part owes much to Pedersen and Taylor 
[9]. We relate the G(r) action to the torsion of chain complexes by showing that 
when C, is b.f. resolved and free over a! while H*(C,) is b.f. resolved, then C, 0 N 
and H*(C, 0 N) inherit b.f.-resolutions with respect to which one has 

T(C* 0 NJ = r(C,)[Nl 

in R,(Er) or Wh(rr). 

03 
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In Section 5 we show that a group homomorphism cp: T + p gives rise to a transfer 

map 

provided Ker(cp) is of type (FF) and Im cp is of finite index in p. We have not been able 
to prove, algebraically, that cp* induces a map (still called) 

cp* : Wh(p) + Wh(rr). 

This, however, follows from our main theorem, at least when all the groups are 
finitely presented. 

In Section 6 we recall, in some detail, Hatcher’s description of PL fibrations in 
terms of iterated mapping cylinder decomposition. We study the behaviour of such 
decompositions under passage to covering spaces. And we use the results to rederive 
the El-term of the Serre spectral sequence for homology. We need the explicit 
isomorphisms in order to compare, later on, different b.f.-resolutions. 

Finally, in Section 7, we use all of the above to prove the main theorem. Essentially 
what happens is that formulas (D) and (E) allow one to compute the torsion of the 
El-term in the relevant spectral sequence, namely 

E$., = &‘*(I?, A>, 0 H&. 

Also, from Section 2, one knows that this differs from T(E, p-‘(A)) = T(C,(Z$, &)) 

by 1 (-l)‘r(EE*). To show that this latter term vanishes, one uses a generalization of 
Anderson’s excision lemma [l], to express it as a product x(B, A&7(&@)) where 
the Euler characteristic, of course, vanishes. This depends crucially on the fact 
(Hatcher [6]) that the maps entering into the iterated mapping cylinders which 
decompose a PL fibration are simple homotopy equivalences. 

1. Based, finite resolutions 

Let A be an associative ring with unit having the property that any free A module 
has a well-defined dimension. Unless something else is mentioned module will mean 
finitely generated left A module. Recall from [8] the group El(A) obtained from the 
infinite general linear group over A by abelianizing and factoring out the subgroup 
generated by f 1. If two bases b and 6’ for a module M are given we let [b/b’] E Kl(A) 
be the element represented by the matrix expressing b in terms of 6’. We shall freely 
use the properties of [-/-I given in [a]. 

A based finite resolution e for a module M is defined to be an exact sequence of 
modules 

together with a finite basis fi(&) for each Fi(E). We shall use the abbreviation a 
“b.f.r.” F,(&)-*M. If a b.f.r. for M has been specified then we shall say that M is 
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b-f-resolved. It is the purpose of this section to redo Sections 2 and 3 of [B] for 
b-f-resolved modules instead of based (or stably based) modules. 

If two b.f.r.‘s for M, E and E’, are given, then we define {E/E’}E l?,(A) as follows. 
The identity on M lifts to a map Q* of resolutions 

F*(E) -M 

F&‘) -M 

the mapping cone MC(Q,) of Q* is in an obvious way a based, acyclic chain complex 
over A. We put 

k/e’) = r(MC(Q*)) E &(A), 

the torsion of MC(Q*) in the sense of [B]. To fix notation let us mention that MC(Q,) 
has 

MC(Q& = Fn-~k)OFnk’) 

with differential given by the matrix 

(Qz, z. 

To see that {E/E’} is well defined we note that a different choice Q; of lifting will be 
chain homotopic to Q*. And from a chosen chain homotopy h, one readily constructs 
a chain isomorphism 

4*=(,1* II’) : MC(Q,) + MC(Q~ 1 

which is simple with respect to the given bases (i.e. (I,, represents 0 in XI(A)). It 

follows that T(MC(Q*)) = ~(MC(cpk)). 
In case each Q,, is an isomorphism there is a based acyclic chain complex C(n, Q*) 

with C(n, Q*)i = 0 for i Z n, II + 1, C(n, Q*)“+I = F”(E), C(n, Q*), =F,,(E’) and 
differential given by Q”. 

There is an obvious chain map 

g(n) : C(k Q*) + MC(Q,) 

sending x E C(n, Q*),,+l to (x, 0) and y E C(n, Q*),, to (-dQ,‘y, y). Furthermore 

g = Z g(n 1: 8 C(n, CPA + MC(Q*) 

is a chain isomorphism, and simple in each degree. It follows that 

T(MC(Q*)) = IX dC(n, CPA) 

=x (-l)“[f,(&)/Q,‘(fn(&‘))l. (1.1) 
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Especially, we see that 

{E/E} = 0. (1.2) 

Next, let E” be a third b.f.r. for h4. For brevity let Fi =Fi(E), F: = Fi(E’) and 
F’i = Fi(E”)m Let 1+4*: Fi + Fg be a lifting of the identity on M. Also let id be the 
identity map of Fi. There is then a short exact sequence 

O+ MC((p*) +MC(&cp*Oid) zMC(&) + 0 Q 

given in degree n by the matrices 

1 0 

-(Pn-1 0 ff, = 1 
0 

0 -1 

1 Pn =( (Pn-1 1 0 0 \ 

*n’ 0 0 1 J/n)’ 

Moreover, up to simple isomorphisms, (Y,, and Pn are the natural inclusion and 
projection respectively. Therefore, Theorem 3.2 of [8] applies to give 

dMC(cp,N + dMC(&d) = dMC(k+a+.@W 

= ~(MC(JI*d) + dMCW) 

= dMC(11/++4). 

Thus we have 

{&/&‘}+{&‘/E”} = {E/E”}. (1.3) 

The formulas (1.2) and (1.3) show that the relation E - E’ if {E/E’} = 0 is an 
equivalence relation among b.f.r.‘s for M. 

Let 0 + M’+ A4 + M” + 0 be a short exact sequence of modules with E’, E” b.f.r.‘s 
for M’, M”. We shall construct a b.f.r. E = E’E” for M. It has 

K(E) = Fi(E’)@E(E”) 

and 

fi(E) = (fik’), 0) U (0, fik”)). 

Furthermore, there exists a commutative diagram 

O-M’ -M -M”-0 
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It is well known that such F.+(E) - A4 exists. Clearly do and di:E(&)+E-I(&) are 
not unique. However, any new choice must have the form 

dl, = don,, d; = p&dp, 

where pi is an automorphism of Fi(&‘)OFi(&“) of the form 

1 Ti 
Pica 1. ( > 

Since pi is simple it follows from (1.1) that the equivalence class of & is independent of 
choices. 

Suppose b.f.r.‘s E; and E; for M’ and M” are also given. Let 

CF; :F*(&‘)-,F*(&i), 

p;:F*(&“)+F*(&);), 

be liftings of the respective identities. One readily shows that the identity on M lifts 
to a chain map of the form 

cQ*=(? Z;): F*(E’)OF*(&“)‘F*(&;)OF*(&;). 

The mapping cones fit into an exact sequence 

O~MC(a:,)~MC((p,)-,MC((p;)-,O 

with compatible bases. Therefore one has the formula 

{&‘&“/&~&;}={&‘/&;}+{&“/&;}. (1.4) 

A special case of this shows that changing E’ (and E”) within its equivalence class 
leaves the class of E’E” unchanged. 

By abuse of notation we shall, henceforth, use E, E’, etc. to denote equivalence 
classes of b.f.r.‘s. 

Following Milnor we consider the situation MO c Ml E Mz c M3, assuming that a 
b.f.r. &i for Mi/Mi_1 is given (i = 1,2,3). One gets two b.f.r.‘s for MS/MO, namely 
(&~E~)E~ corresponding to the exact sequences 

O-,M1/M,-*M2IMo-,Mz/M1~0, 

0~MzlMo~M3/Mo~M3/M2j0, 

and E~(&~E~) coming from the exact sequences 

O-,M*/Mo~M~/Mo-,M~/M~-*O, 

0 --, MJMr + MJM, --, MJMz + 0. 

It is not surprising, nor difficult to prove, that 

EI(EZE3) - (EIEZ)EJ. (1.5) 
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In fact by careful choice one can obtain 

F*(EIkZEJ)) = F*((E14&3). 

Similarly, if iWi EM and ci is a b.f.r. for Mi/Mi nM2, i = 1, 2 then (with {i, i} = 
{1,2}) one has the b.f.r. &i&j for (Mi +Mz)/(Mi n Mz) corresponding to the exact 
sequence 

O+MJ(Mi nMz)+ (MI +Mt)/(Mi nM2)+ Mi/(M1 nM2)+ 0. 

And there is the commutativity relation 

El&2 _&2&l. (1.6) 

In fact, using the obvious splitting Mi/(M1 nM2) --, (M1 + M2)/(M1 n Mz) one may 
take 

F*(EiEj) = F*(Ei)OF*(Ej) 

including differential and augmentation. The commutativity then amounts to the fact 
that the twisting isomorphism 

is simple with respect to the given bases. Here one needs to work with El(A) rather 
than K,(A). 

If b is a basis for MOA’ (s 2 0) then 0 + A’ + MOA’ + M + 0 with the standard 
basis for A’ and the basis b for MOA’ is a b.f.r., we call it p, for h4. If we also have a 
basis 6’ for MOA’ then it is easily seen that {PI/?‘} = [b/b’]. Thus our theory is an 
extension of Milnor’s treatment of stably based modules. 

2. Whitehead torsion for b.f.-resolved chain complexes and for spectral sequences 

In this section we define the dhitehead torsion for certain spectral sequences, and 
(as a special case) for finite chain complexes C, with each C, and each H,,C 
b.f.-resolved. Our approach follows Milnor’s [8] closely. There is considerable 
overlap with results of Maumary [7]. 

Lemma 2.1. If 0 + M’+ M-PM”+ 0 is an exact sequence of A modules, and ifMand 
M” admit b.f.r.‘s then so does M’. 

Proof. Let E and E” be the given b.f.r.‘s. By 8.4 of Bass [3], M’ admits a finite 
resolution by finitely generated projectives, say 

o+Pk+P&,+* + a--, P,,+M’-,O. 

Furthermore, one may assume that all Pi but Pk are free. In &(A) one then has 

C (-l)‘[Pi]+x (-l)‘[P~(E”)]=~ (-l)‘[F;:(E)]* 



Transfer on algebraic K-theory 203 

This shows that [Pk] is stably free. Thus 

O-*P,~As~P~-,~A’-,P~-~-,~~~~Po~M’~O 

is the desired free resolution for M’. 

Let C be a finite chain complex with a finite filtration by subcomplexes 

O=F_,CcFoCc*..cF,C=C. 

Consider also the induced filtration on homology 

FpHC = Im(HF,C + HC) 

and the resulting spectral sequence (E:,, 8). This has 

E:., = F,C,+JF,-1&r, 

E:, = E:.;’ = F,H,,,C/F,_,H,+,C. 

We assume that E$ and EF, have given b.f.r.‘s E$ and e:, = of:‘. Furthermore, we 
assume that the other modules El.,, 1 =S r s 1, admit b.f.r’s, say E:.,. 

Lemma 2.1 then applies to the exact sequences 

0 --, B:, + Z:, + E:,;’ + 0, 

O-, Z:, + E:, --, B:-r.,+r-, + 0, 

to show (inductively on s + t) that B:, admits a b.f.r., say p:.,. Once pi., is chosen one 
gets the b.f.r. 

P~.r~~.~lP~-r.r+r-i for E:,,, 

and one defines the torsion of the spectral sequence to be 

4%d =C (-l)S+‘{~:.r~::lP:-,.,+r-~I~:.,}. 

It is easily seen that this is independent of the choice of p:,( (all r, s, t) and of 
E:,~ (lSr<l, all s, I). 

In case I= 0 this specializes to the definition of T(C) for any finite chain complex C 
with each C,, and each H,C b.f.-resolved. 

In the general case (I 2 0) C, and H,C do get preferred b.f.r.‘s, namely 

= E&&_i * * * 
0 

Yn E n.0, 

1+1 /+1 1+1 
Xn=~O.n~l.n-l “‘Ell.0. 

Thus r(C) is defined, and it is not surprising that one gets the following theorem. 

Theorem 2.2. Let C be a finite chain complex of A modules with a finite filtration 

O=F_,C~F,C~.--EF,C=C 

by subcomplexes of A modules. In the resulting spectralsequence assume that each E$ 
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and EFl have a preferred 6.f.r. and that each E:, (1 G r s I) admits some 6.f.r. Equip 

each C,, and H,,C with a 6.f.r. as above. Then 

T(E&) = T(C) E I?,(A). 

The proof depends on the following generalization of Milnor’s Theorem 3.2 [8]. 
Let 0 + C’ + C + C” --, 0 be a short exact sequence of b.f.-resolved chain complexes 
(over A) with b.f.-resolved -homology modules. View the long exact homology 
sequence as an acyclic chain complex %’ of b.f.-resolved A modules. Then ~(2) is 
defined and one has the following. 

Theorem 2.3. In the above situation assume that the b.f.r.‘s for C’, C, and C” have 

yi - yi y’i. Then 

Proof. Replace the word “basis” by “b.f.r.” and the symbol [-/-I by {-/-} every- 
where in Milnor’s Section 3 [8]. 

Proof bf Theorem 2.2. We shall use induction on the length 1 of the filtration. If I = 0 
then one has El., = 0 except for s = 0 and Eg.. = C,, EA _ = H,C = Ei,. = . . . , so the 
result is trivial. 

Thus we assume that the theorem holds for the chain complex C = F,_, C with the 
inherited filtration. We denote by a bar any quantity derived from C. It is easily seen 
that one has 

E’A. = 
I 

E;, ifp+r<landp<l, 

0 if p 2 1. 

Also there are straightforward exact sequences 

O+B~;;P+l?~,.+E;),.+O ifp+r>l (2.4) 

O+E~,;P+‘~E~,;P~B~;p+O, p=O, 1,2 ,..., 1 (2.5) 

O+B;,.-+E;,.+Eh’.‘-,O. (2.6) 

We now choose b.f.r.‘s for I?‘“,* and for I?:* = EL,, namely 

-0 0 
ep.q = ep.q9 ifp=O, l,..., I-l,allq, 

-1 
c P.9 = P ~~qpe~q*, if l>p>O, allq, (2.71 

ICl 
&,(=~k~) = P&o.~, all 4. 

The resulting b.f.r.‘s j& for C”, y,, for C, and the given one ey,,_l for E&-l = C,/c” 
are clearly related by 

yn = %‘nEk-1. (2.8) 
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Therefore, Theorem 2.3 and the inductive hypothesis imply that 

r(C) = r(EZ*) + r(C/C) + r(X), (2.9) 

where &p is the long exact homology sequence of C + C --, C/C. We shall finish the 
proof by identifying the various terms on the right-hand side of (2.9). For computing 
r(Ef*) we take 

EPA r =p;.qE;;l&-,.q+r__l, r = 1,2, . . . ,I. 

Then, since Bkq = 0 for r > 1 -p, 

e;,, = p;.,p:., * * * P~~~E~~P~-l,q+,-lP~~~+~,q+,-~ * . ’ P;-l., 

and 

(2.10) 

(2.11) 

r(E***) = pi0; (-l)P+q{P~.q&~.qp~.q-*/&~.q}. 

Similarly we may take 

$,q = p;.,p’;,, * * * p~~~-P~~,q~~~~*,,q+r-*~~~~+*,q+1-3 * * * PL., 

and then we have 

r(E$*) = :i; ; (-l)“+‘~P~.,~~~,PR-~I~~.q~. 
P 

Since 

%,q = X, forr+p#l 

we can take 

-r 
P PA = PLl forr+p#I. 

It then follows from (2.11) and (2.13) together with (2.7) that 

-1 1 
EPA = EP4 forOspsI-l,allq. 

Using (2.17) and (2.16) for r = 0, p < 1, we see from (2.12) and (2.14) that 

&??* ) = T(E* ) + c (-l)““{/?” ** ** I.&L&q-1/e&I 
4 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

= r(E~*)+r(C/C) 

where H,,(C/C) = Et,,-, has b.f.r. E:,,G 

(2.18) 

From (2.18) and (2.9) we see that we can finish the inductive step by showing that 

T(X) = 0. (2.19) 

Thus we consider the long exact sequence Xtogether with its factorization into short 
exact sequences. By definition Ki_1 is the cokernel of Hi(C)+Hi(C/C); the other 
ingredients in the factorization are as shown in Fig. 1. For the computation of r(Z) 
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Fl-,HiC / 

\ I 
J-&C 

I \ 
Ef.i-t 
/ Eff!, 

K-1 
/ 

\ I 
H,_*C 

Fig. 1. 

we are free to choose b.f.r.3 for Ei,:Jl, Ki_l and Fl-1Hi-IC. For Ef.T!, we choose E~,~~~, 
for F,_IHi_1C we choose ec:eyiLr * - * ~fi-:+l+l. Then, recalling how the b.f.r. for 
HiC was chosen, we see that the contribution to T(%‘) coming from the spot HiC 
vanishes. 

Next, consider the ladder of short exact sequences (Fig. 2), where FS = 
F,H-lCy F, = FsHi-lC, FsKi-1 is the kernel of the induced map FS + F,, and the 
index at each inclusion is the chosen b.f.r. for the cokernel of that inclusion. By 

FIKi-1 ’ F* + FI 

T L4,‘-2 

F&i-l P 

T ab.,-1 

0 l 

T r:..-* p-L* 

FO l Fo 

T 
_I 
co.,--I T c2, 

0 ’ 0 

Fig. 2. 
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K-* 

II 
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fi-*Ki-I - E;,i-, + E:::, 

T r T 

t i T 
F&i - I . E:i_1 l 

I-cl 
El,i-/ 

I a:.,-, I &.-I I 

Fig. 3. 

“concatenation” one gets the same b.f.r.‘s for Hi-it and for Fl-iHi-iC that were 
chosen before. And one gets the b.f.r. Ki_1 =~~_i.i-Ip~_a,i-r+i * * * P::‘-$b.i-1 for 
Ki_1. Using (2.7) it is then easy to show that the contribution to r(X) from the spot 
Hi-1 C vanishes. 

Finally we see that the filtration which defines Ki-1 and the one which defines E ki-1 
are compatible, i.e. there is a further commutative ladder of exact sequences (Fig. 3). 
It follows easily that Ki_rei,T!r = Eli-1 and the contribution to r(X) at the spot Eti-1 
vanishes. This finishes the proof of Theorem 2.2. 

3. The transfer map and b.f.-resolved chain complexes 

We start by recalling from Quillen [ll, p. 1031 the transfer map f*: I?l(B) + RI(A) 
which is defined whenever f: A + B is a ring homomorphism with f!(B) (i.e. B viewed 
as A module via f> admitting a finite, finitely generated, projective resolution over 
A. In fact, let P(B) be the category of finitely generated projective B modules, and 
P,,(B) the category of B modules admitting finite resolutions by objects of P(B). 
The assumptions on f: A --*B guarantee that f! is a functor from P(B) to P,,(A) (see 
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e.g. Bass [3]). One also has the inclusion i: P(A)+P,,(A) which induces an 
isomorphism 

i. 

K,(A)=KIVYA))- KIV'<,(A)). 

By definition, the transfer f* is the composition 

K,(B) = Kl(P(B)) (f!), KI(P<,(A)) i;‘__, KI(P(A)) = ICI(A). 

If the resolution of fr(B) can be chosen (finite, finitely generated, and) free then f* 
sends the subgroup generated by -1 into “itself” so it induces a map (still called) 

f”:&(B)-&(A). 
We want to relate this transfer map to the notion of b.f.-resolved chain complexes. 

We need the following lemma. 

Lemma 3.1. Let f: A + B be a ring homomorphism such rhar f !(B) admits a finite, 

free, finitely generated resolution over A. Then f!(B) admits a b.f.r. G, + f!(B) with the 

following property: any automorphism cp of f!(B)‘“’ = @rSl f!(B) lifts to a map of 
resoh4tions Q* : G* (“) + G’,“’ which is an automorphism in each degree (any integral 
n >O). 

Proof. Let 

O*F~+F,c_l-,- . -Fo+f’(B)+O 

be a given b.f.r. for f!(B). Define do: G, + f!(B) as follows. Put 

Gi=FoOFl@* * *oFi, 6_, = 0, 

Gi = Gi 0 Gi-i @E, 0 s i < k, 

GI, = &_,OFk. 

Give each di and each Gi the obvious basis; define the differential di : Gi + Gi-1 and 
do: Go+ f!(B) in terms of the similar quantities for F* * f!(B) (also called di and do) 
as follows 

do= (0 do), di=[i H ii], dk=[i :I* 

One checks easily that G* + f!(B) is a b.f. r. The lifting property can be proved as in 
Lemma 7.4 of Bass [4]. Actually G, is just an explicit version of the resolution 
obtained there. 

Now let m be a given basis for a B module M. View m as an isomorphism of A 
modules 

m:f!(B)(“‘+ f!(M), n = Irnl. 

Once a b.f.r. G, as in the lemma has been chosen then one gets a b.f.r. 

md:’ : G’,“’ + f!(M) 

for the A module f!(M). Call that b.f.r. &. 
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In this way, if C is a finite chain complex of based B modules with based homology 
modules the chain complex f’(C) becomes a b.f.-resolved chain complex of A 

modules with b.f.-resolved homology modules. Also, the terminology is not 
misleading, i.e. one has the following theorem. 

Theorem 3.2. Let f: A + B be a ring homomorphism with f!(B) admitting a b.f.r. over 

A. If C is a finite;based chain complex of B modules with based homology modules, 

then 

T(f!(C)) =f*(T(C)) E &(A). 

Remark. The equivalence class of the b.f.r. A does depend on the choice of 
G* + f!(B). However, the theorem shows that r(f!(C)) is independent of the choice. 

Proof. We claim that it is suffices to prove the result when C has the form 

In fact knowing the theorem for that case amounts to knowing that whenever h4 
comes equipped with two B bases, m, and mo, then 

1 

{~j71/m0~=f*CmJm01). (3.3) 

Thus equivalent bases for M give rise to equivalent b.f.r.‘s for f!(M), and it easily 
follows that one has 

(3.4) 

whenever m’ and m” are those given bases for B modules M’ and M” appearing in a 
short exact sequence 

O-,M’-,M-*M”+O. 

And from (3.3) and (3.4) the general case of the theorem follows by a purely forma1 
manipulation, at least if the modules of boundaries of C are free over B. If they are 
not, then at least they are stably free, and then-by adding to C a number of chain 
complexes of the form 

id 

O+* . .+O-PB -B+O_,. . e-0, 

an operation that changes neither T(C) nor r(f!(C))-one may make them free 
over B. 

Thus we concentrate on proving (3.3). To compute {rGjtl/rii~} we need a lifting cp* in 
the diagram 

(PI) 
G, 

db”’ 
- f! (B)“” d f!(M) 

I 
I I I 

‘PI ’ 
I 

rp 

+ 1 
(n) 

G, - 
f !(&’ - f!(M) m0 
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where cp = mo’mi. By Lemma 3.1, a cp* with each pi and A automorphism exists. 
But, by the description of 

(Q-’ : KI(P<,W) -, KI(P(A)) 

given by Bass [3], this means that 

(i*)-‘[f!(B)‘“‘, up] = z (-l)i[Gj”), pi]. (3.5) 

Here we use [P, $1 to represent the element of Ki(FU), 2l a category, represented by 
the automorphism 4 of the object P of ZI. 

If gi”’ is the given basis for Gin’, then 

[Gj”), vi] = [gj”‘/qf’ (gin’)] 

SO (1.1) shows that the right-hand side of (3.5) is ~(Mc((p*)) = {mi/&). Since also 
[B(“), cp] = [ml/mo] the left-hand side is f*([mi/mo]). 

This finishes the proof of (3.3). 

4. The action of the representation ring on the torsion of chain complexes 

Let R be a principal ideal domain for which every finitely generated R torsion 
module is finite; of course R = Z and R = H/kh are important examples. Let r be a 
group and let A = Rrr be the group ring for rr over R. 

Recall that GR(7r) is the abelian group with one generator [N] for each Rn module 
which is finitely-generated-and-free over R and one relation [N] = [N’] + [N”] for 
each short exact sequence N’+ N + N” of such Rsr modules. Also G(r) is the similar 
construction where one gives up the requirement that N be free over R. Pedersen 
and Taylor [9] show that the obvious map GR (rr) --, G(r) is an isomorphism of rings, 
the product in both cases being induced by [N][Ni] = [N OR N’] where r acts 
diagonally on the tensor product. 

If P E P(R7r) and f E AutR,,(P) then [P, fl is the typical generator for KI(Rx), and 
the definition 

[p, flCNl= [p @R N, f @ 11 

makes K*(Rlr) into a right GR(~) module. The quotients z~(Rx) and Wh(Rn) = 
I?;l(Rr)/rr inherit GR(n) module structures. We use the above isomorphism 
GR(r)+ G(V) to consider K*(Rx), ff~(Rn) and Wh(Rn) right G(n) modules. 

Now, let M be a b.f.-resolved Rrr module which is R-torsion free. Let E : F*(E) + 

M be the given b.f.r. Also let N be an Rrr module which is finitely generated over R. 
We shall construct a 6.f.r. E* for M @RN (diagonal n action). Since there are short 
exact sequences of Rsr modules 

O+T+N+F+O (4.1) 

O+M@RT-+M@~N+MORF+O (4.2) 
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(the latter induced from the former) where T is the R-torsion part of N and F is 

R-torsion free, we can treat the cases N = T and N = F separately. 

Since T is finite, so is p = AutR (T). Also the action of v on T is a homomorphism 

(Y : IT + p. Now choose a free finitely generated Rp module FO and an epimorphism 

FO+ T. Let F, + FO be its kernel. Let Fi = a !Fi. Then one has the exact sequence 

of Rlr modules, and F,, F1 are R-torsion free, i.e. they represent elements of GR (7). 

Under the abovementioned isomorphism G(r) + GR(7r), [T] maps to [FJ-[FJ. 
If N = F is R-torsion free then one takes F1 = 0, F0 = F; thus in both cases we have 

the resolution 

O+F,+F,+N+O (4.3) 

with Fi R-torsion free. Then Fi is R free; choose a basisf, for Fi. 

When one equips the module F;_l(~)@ F1@Fi(e) @ F0 with the R7r basis 

h-i(e) 0 fl ufi(e) 0 f,-, the resolution 

F&)O,zF*+M&N 

represents a b.f.r. for M OR N which we call E’. 

Theorem 4.4. Let C be a finite chain complex of Rsr modules. Assume that C,, and 

H,,Care b.f.-resolved and R-torsion free. Also let Nbe an Rrrmodule finitely generated 

over R. Then under the action of G(rr) = GR(r) on I?I(R~) one has 

r(C OR N) = r(C’XNl 

when C OR N and its homology are given b.f.r.‘s as above. 

Proof. We claim that it suffices to prove this for the case where C has the form 

o+o+* * .+O4jid-&O. 

In fact, knowing the formula in that case amounts to knowing that 

(4.5) 

holds whenever ,u and p 1 are b.f.r.‘s for h4 (MR-torsion free Rrr module) and [N] is 

as above. 

But if (4.5) holds then we see that the equivalence class of L depends only on that 

of ,u (and on [N] E G(T)). It then easily follows that 

F~_ci’c;” 
(4.6) 

holds whenever I*’ and ,u” are b.f.r.3 for R-torsion free Rr modules that fit into a 

short exact sequence 

O+M’_,M-*M”_,O 

of Rrr modules. 
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And, using (4.5) and (4.6), the proof of Theorem 4.4 is purely formal. Thus we 
concentrate on proving (4.5). If 

cp*:F*(P)+F*(F1) 

lifts the identity on M, then 

cp* @R F* : F&) @R F* --, F&l) @R FyL 

lifts the identity on M @RN. Also 

MC((p, @R Fd = MCh+d @R F* 

by an isomorphism which is simple in each degree (the map is not just a permutation 
map; it also involves sign changes). Finally, there is an exact sequence of based, 
acyclic chain complexes 

0 + MC((p,) a,? Fo --, MC((p,) @R F’* + MC((p,) @R F, + 0 

with the projection having degree -1. It follows that 

{$/c;i) = r(M%.J @R Fo) - dMC(e+J @R Fl). 

But for a based, acyclic chain complex like MC(rp,) and an Rr module Fig which is 
free over R, one easily sees that 

r(MC(p*) @R El = ~(MC(~*))[fil. 

Since [N] = [F,] - [FJ this finishes the proof of (4.5). 

5. The transfer map for group rings 

Recall that a group v is said to be of type (FF) if Z, viewed as ZV module with trivial 
v action, admits some b.f.r. 

Consider a group homomorphism cp: rr -, p with Im(cp) = $ c p and Ker(cp) = v c 
rr. Also, let cp: Hsr + Zp be the corresponding ring homomorphism. 

Proposition 5.1. Let 

be an exact sequence of groups. Assume that 
(i) v is of type (FF), 

(ii) the index [p: Im(cp)] is finite. 
Then (p : ZIT + Zp gives rise to a transfer map 

(P*:R*(Zp)+K1(Z7r). 

Moreover, if all the groups are finitely presented then cp* induces a transfer map on 
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Whitehead groups 

cp* : Wh(p)+ Wh(sr). 

Proof. If P* --, Z is a b.f.r. for E over hv, then 

E7lOz,P*+H7rO~, Z=H5 

is a b.f.r. for Z+ over Zn. Since Zp is a direct sum of [p: ii] copies of Zii, as a Zlr 
module, we have the desired transfer map on J?i. 

We have not found any direct algebraic proof that cp* induces a map on Whitehead 
groups. This, however, follows from the main result of Section 7 (Remark 1 after 
Theorem 7.1). 

6. Iterated mapping cylinder structures and the Serre spectral sequence 

Let us start by recalling some results from Hatcher’s paper [6]. If 

is a string of PL maps between polyhedra then the iterated mapping cylinder 

MUi,. - * ,fs) is defined as follows: M(fi) is the ordinary mapping cylinder of fi. 
Assume that M(fi, . . . , fs_J is defined together with the induced PL map 

f:-1 :M(f1, * * . , fse2) + F,_,; one then lets 

M(fl, * * .,f~-l)=M(f:-,)=M(fl, . . . . fs-dxluF,-, 

and one defines f: by 

fk t) =ff:-1 (xl, x E M(fl, * * * ,fr-I), tcl, 

f:(Y) =fs(y), Y c&-r. 

Clearly this is functorial in the sense that a commutative ladder of PL maps 

F,, &F, 1. 
- . . . - F. 

induces a PL map M(cpo,. . . , cp,):M(f~, . . . , f,)+M(gl,. . . , gs). 

Letting each Gi be a point one gets the projection 
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onto the standard s-simplex. It is easily seen that the restriction of r to the ith face 
A”‘[s] is (identifiable with) 

MU29 * * . , fp), 
i = 0, 

M”‘(f*, . . .*fs)= M(fl,...,fific*,...,fr), 

i 

lsi<S, 

MU19 * * * ,fs-Jr i = s 

(and its projection onto A”‘[s]). 

Now let p:E + B be a PL map of compact polyhedra. Hatcher proves that p admits 
an iterated mapping cylinder decomposition ; this means that we have the following: 

(i) triangulations for E and B with respect to which p is simplicial; 
(ii) an ordering of the vertices of each simplex u (of the triangulation) of B; call 

the vertices (T(O), a(l), . . . , a(s) in this ordering (s = dim(o)); 
(iii) simplicial maps fi., : p-‘(cr(i - 1)) + p-‘(u(i)) (i = 1, 2, . . . , s = dim(g); u 

simplex of B); 

(iv) PL homeomorphisms 

CL,: Wfl,, f2.m . . . . fr.cr)-,p-l(a)cE. 

These data are subject to the following compatibility relations. 
(i) When we view CT as an affine map from A[s] onto u then 

MU*.,, * . * , fs.,) +* -P-*(4 

I 
A[sl 

v 
*I 

c-r 

commutes. 
(ii) The orderings of the vertices of the simplices are compatible under face 

operations, i.e. if a”’ is the ith face of g, then 

o”‘(j) = u(j) if j<i 

=u(j+l) if j B i. 

(iii) The homeomorphisms CL, are compatible with face operators, i.e. 

and 

(iv) 

l&&i) = I& Iiw(f*,,(i), . . . , fr+“‘). 

Finally, for any vertex u, & : p-‘( u) --, p-‘(u) is the identity. 
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Moreover, Hatcher also proves that p is a PL fibration precisely if fiJ(x) is 
contractible for each x E p-‘(a(i)) and all i, CT. Hence for PL fibrations all the fi.m are 
onto; this implies that the iterated mapping cylinder M(fr., . . . , fsvc) is a quotient of 
d[s] X p-‘(a(0)) by the relation - generated by 

to=tl=. . .=ti=o 

and 

fi+l.ofi,~ * * *fI.~7(X)=fi+l.ofi.o ' ' *.fl.c(Y). 

We shall let 

pr:A[slxp-‘((T(O))-,M(f1,,, . . . ,fs.,) 

be the projection. 
Now let p: E + B be a PL fibration with basepoints e. E E, bo = p(eo) E B and fiber 

F = p-‘(bo). Assume that F, E, and B are connected and that 

m(E, eo) &T &I = q(B, bo) 

is a factorization, with s onto, of 

P* : mE eo) --, mU% bob 

Let v c rr be the kernel of cp. We then have a commutative diagram 

F = 
qF 

F-k 

B-8 = 
9 

r3 

where q is the universal covering map for B, a the induced covering of E, cf the 
covering of I? corresponding to the subgroup Ker(s) of lrl(E, Zo) = Ker(qs)= 
m(E, eo); fj and p^ are PL fibrations and the fiber k= = @-‘(go) is the covering of F 
induced from q. Here, of course, base points are chosen compatibly, and we use them 
to identify the various fundamental groups with the relevant covering transformation 
groups. This means that the covering transformation groups are as follows: 

cov(qF) = Cov(tj) = v E 7r = Cov(ciq*), 

Cov(q) = p = cov(q). 
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Also, let A E B be a subcomplex; put A = q-*(A), Ea = p-‘(A), & = b-‘(A). We 
want to describe the Serre spectral sequence for (,??, ,??A) + (B, A) including its Zn 
module structure. This we do by means of iterated mapping cylinder decompositions. 

Thus let {&,.,fiBo} be such a decomposition for p: E +B. For each vertex t, of B 

choose a lifted vertex 0’ of g. Then each simplex (T of B is covered by a unique 
simplex 6 of I? having 6(O) = ~3). And there is a unique h(o) E p with 

5 = jt (,)$O) u 

while 

+ -G”), i>O. a(0 _ 

There are unique maps & making 

commute. It easily follows that 

I&,,*, = Jcr IM”‘(fi., * * .I. 

Therefore, if one uses 4: E --, E to identify p-‘(v’) with p-‘( pu’) for all vertices v’ of Z?, 
then it is seen that 8: ,?? + B has an iterated mapping cylinder structure consisting of 
the obvious triangulations of E and B’ and the maps 

fi,@ =fiSa:p-l(gG(i- l))+p’-‘(g:(i)), 

l&G =gf&:M(fi,, . . .)+E. 

Here u varies over the simplices of B and g varies over p = Cov($. 
In order to lift this decomposition up to one for c:s+ g we need the following 

lemma. 

Lemma 6.1. Let 

Fo- ‘I Fl+. . .f’-F, 

and a map c: M(f,, . . + , fS) + BY be given (Y any discrete group). Let fi + Fi be the 
covering classified by c 1 Fi. Then there are unique maps fi: $i- ,‘+ gi, covering fi, such 
that the covering of M(f,, . . . , fS) classified by c is M(fl, . . . ,is). 
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Proof. There is a commutative diagram 
I 

FO 

I 

/i(f,, . . .) ----*Eu 
. 

R /MO 
42 / / / . . . 

A[s]x& - 
I I 

A[s]xF,,,,-M(f,, . . .) ,-Bv 

where &?( fl, . . . ) is the covering considered, and where i&) = (1, 0, . . . , 0, x), x E 
FO.’ The dotted arrow, Pr, can be filled in because of standard properties of 
cofibrations versus fibrations. Actually the fill-in is unique; therefore it is equivariant 
with respect to the actions of Y. Also, the uniqueness permits one to prove the 
following: the restriction of Pr to (the ith vertex of A[s]) x po is a map Pri: $0 + Fi E 

fi(fl, *. .); moreover Pri =i Pri-1 for a unique map A: $i_i + $i, and L covers fi. 
Finally, Pr represents fi(fi, . . .) as the quotient M(fi, . . .) of A[s]x~~. 

Returning to the PL fibration p^: $ + ,!? we apply the lemma to the composite maps 
Cll/&M(fl*, . . .)+&Bu 

where c classifies 2. There result maps 
a 

covering 

fi,g&:p-‘(@(i - 1)) + p-‘(g&(i)) 
and maps 

I+&: IV&& . . .) + is. 

It is straightforward to prove that the set {&A $,z} gives an iterated mapping 
cylinder decomposition of /?:8+g when g varies over p and v varies over the 
simplices of B. 

With this decomposition available we return to the Serre spectral sequence for the 
homology of (g, ,&). We let C, denote the ordered simplicial chain functor. Then 
C,(& gA) is filtered by the subcomplexes 

EC& J%) = C,(& &) 
where 

&s = $-‘((I?, A)‘“‘), (@, A)“’ the s-skeleton of (g, A). 

In the resulting spectral sequence one has 

EZ.= = c,+.(&, &,), E:. = Hs+& &-I). 

If we let (T vary over the s-simplices of B, not in A, and we let g vary over p, then we 
have a relative homomorphism 

$:2 (M(!1.,& * * .), WI.,& . . .I + G% J%A (6.2) 
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which is $,G on the summand corresponding to (g, a). Also there is the sum of the 
projections 

pr : U MS], &I) xb-‘(gWO --, l_I W(fI.,~, . . .L ~?C~I.,G, . . 4). (6.3) g.- g.0 
The composition &pr) is a homology isomorphism, so if we let L~ be the generator of 

H,(A[s], d[s]) we get an isomorphism 

8: u {gC+} X H*(p^_‘(gG(O)))-, Ei,. (6.4) 
BP 

given by 

B(g& X) = &(pr)&, xx), x E MJh-‘(gG(O))). (6.5) 

It is easily seen that under the isomorphism 8 the differential d’ corresponds to the 
map a given by 

a(@, X) = (gf_P, (fi.gd)*(~)) + i$, (-l)‘(g~“‘, XL 

What we have recovered is, of course, just the well-known isomorphism 

8: C*(& A; R*(P))+E:* (6.7) 

between E:, and the (ordered, simplicial) chains of (6, A) with local coefficients 
Z*(P). 

If h E 7 = Cov(&f) has image KE p, then under the isomorphism 8 the action of h 
on EL, becomes 

h (gc?, x) = (Kg;, h,x) (6.8) 
where 

h,:H,(B-‘(g~(O))~H,(p^-‘(egg)). 

Any edge path w, from a vertex u’ to a vertex ii, in 6 gives rise to an isomorphism 

w*:H*(B-‘(li))~H*(B-‘(u’)) 

which is composed of maps of the form (fi.,), and their inverses (7 an edge in fi). 
Since 6 is simply connected this isomorphism depends only on the endpoints. There 
results an isomorphism 

/y : c*@, A, 0 H*(fi) + C*(G, A, Z*(P)) 

sending g6 0 x to (gG, w*(x)) where w is any path in 6 from &, to gG(0). 
Any h E 7~ maps M(fr,,h . . .) onto M(fr.r;8:, . . .), hence 

(6.9) 

F’(g30)) 
IL, 

l d-‘(&G(I)) 
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commutes. It follows that there is a r-action on H,(3) which lets h E r act as the 

composition 

H*(9) -2 H*(p^-V&J)) -=2 H*(F) 

where w(b) is any edge path in fi from &(&) to 60. 

Also, when one transfers the r action on C,(& A, R*(E’)) back to 

C,(E? A) 0 H,(i) via the isomorphism ,Y, then one gets 

h(gGOy)=&gSh(y), (hE~,g~OyEC*(~,A)OH,(~)). (6.16) 

This means that we have shown the following proposition. 

Proposition 6.11. With the above rr-action on H,(g) and diagonal action on the 
tensor product one has a sr-equivariant isomorphism of chain complexes 

x19: &‘,(I?, A) 0 H,(E) -, EL,. 

7. The main theorem 

Let p: E + B be a PL fibration with 

n(E, ed TH +P = m(B, bd 
v 

a given factorization of the induced map p*, with r onto. Let F0 be the base point 

component of the fiber F. It is easily seen that there is a PL fibration po: E + B. where 

B. = I?/+ + B is the (possibly irregular) covering of B corresponding to the subgroup 

ii = Im(q) of p; moreover the fiber of p. is FO. Applying the considerations of Section 

6 one gets the diagram 

1 

E = Et------E 

Then rr acts on H,(fio), so we get an element 2 (-l)‘[Hi(fio)]E G(r). Our main 
result is the following theorem. 

Theorem 7.1. In the above situation assume that v is of type (FF) and that we have a 
deformation retract A of B. Then the transfer map cp*: I?,(Zp) --, R,(Zr) is defined, 
and if p E &?,(Zp) represents T(B, A) E Wh(p) then ~*T(E, p-IA) E Wh(r) is 
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represented by the product 

(P*(P) ’ C (-l)'[Hi(fiOb)l 

(using the G(w) module structure on Rl(hm)). 

- Remarks. (1) If v is of type (FF) and v + T zii is a short exact sequence of finitely 
presented groups then we take PA: EA + A to be the restriction of BT + Bd to the 
two-skeleton of B+. For given P E Wh(+) there is then a finite complex B a A such 
that A is a deformation retract of B and T(B, A) = r. Letting d: B +A be the 
deformation retraction we take p: E + B to be the pull-back of PA: EA -+ A via d. 

When one applies the theorem to an arbitrary representative p ~Ifi(Bfi) for 
7 E Wh(+) one notes that $*(P)EJ?~(E~) represents T(E, EA)E Wh(r). Since the 
latter is independent of the choice of p it follows that $* does induce a map from 
Wh(+) to Wh(r). This proves the “moreover part” of Proposition 5.1 for the case 
where cp: n + p is onto. The general case follows since it is very easy, algebraically, to 
prove that the transfer map i* corresponding to the inclusion i:+ + p induces a map 
on Whitehead groups. 

(2) If r = identity and F = Bv, then the theorem specializes to Corollary A of the 
introduction. 

(3) If r = p*, so T = Im(p,) c p, then we get Corollary B. 
(4) Finally Corollary C results when one takes r = identity. 

Proof of Theorem 7.1. First note that one may assume p*: m(E, eO)+ q(B, bo) 

onto. Indeed, referring to the diagram above, one has 

4% p-‘A) = d!Z pO’(qOIA)), 

~(Bo, qO1 (AN = i*7(B, A), 

where i: +-, q(B, bo) is the inclusion. Since also rp* = G*i*, when cp = i+, the 
theorem for p. implies the one for p. 

Thus, from now on, p* is onto, and (consequently) F. = F. Then 0 = r(C&?, A)) 
where the preferred Ep basis is obtained by taking one lifted simplex c? for every 
simplex cr of (B, A). Also ~*T(E, EA) is represented by C,(& EA) similarly based 
over Hsr. 

In the Serre spectral sequence for C,(E, &A) the E&-term 

EZ, = c,+&, Es-1) 

is based in a similar way as (and compatibly with) C,(E, EA). Also we may use 
Proposition 6.11 to transport onto E& the b.f.r. on cp!Cr(& A> OH,@) which 
results from the given Zp basis in C,(@ A) by using Theorems 3.2 and 4.4. Also one 
then has, using first Theorem 2.2, then the definition of r(Eg,) and finally Theorems 
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3.2 and 4.4, 

7(C*(E &)) = r(JG*) 

= c (-l)“r(E:,)+~ (-1)‘G.J 

=c (-VT(E:*)+rp*(P) * Ix wm%~~~1. 

Thus the proof will be completed by showing that C (-l)‘&..) = 0. This occupies 
the rest of the present section. The main tool is the following generalization of 
Anderson’s excision lemma [ 11. 

Lemma 7.2. Let i + E be a regular covering with covering transformation group m and 
E’ a subcomplex of E with induced covering l? c I? Assume given a PL relative 
homeomorphism rp : (M, M’) --* (E, E’) and a pull-back diagram 

(ti,h?, + - (G 2, 

1 A 

If H&i, i@) and H,(E, J?) are given b.f.r.‘s over ZT with respect to which 4, is 
simple, and if C,(l@, &?I), C,(l?, I?) are given the obvious bases then 

7(C*(fi 2)) = T(C*(E, 2)) 

in Wh(r). 

Proof. Anderson’s proof [l] carries over directly to the present situation. 

The lemma applies to the pull-back diagram 

.I. Mf l.(n . * . )) ~65,. &,, 

Here 50 IM(fl,,, . . .) = rl, in some iterated mapping cylinder structure for p: E + B. 
Thus (o is a PL relative homomorphism when u varies over the s-simplices of (B, A), 
Also C$ restricted to 1 x,M(fi,~, . . .) is I,& (see Section 6) and $ is P-equivariant. 

For brevity let MgG = M(fI,,+, . . .) and Fg; =$-‘(gG(0)). One then has an iso- 
morphism 

n:~H~OzuH&H,(rr x..~(&,n;rj)) 

which sends g 0 x E Zlr OzV H,(3) into 

pr&, x w*(x)) E H,(g x, (MG., MS)) E H,(T x, u (M., &)) 
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where L, generates H,(A[s], d[s]), pr is the projection A[s] x FS + I%, and w is a path 
in B from & to 6(O). 

We now fix a b.f.r. for H,(p) over ZV, say E.+. Then u0 Zlr 0~” EP is a b.f.r. for 
u, Zrr &,H*(P); we use (Y to transport it over to become a b.f.r. for 
H*(n x,~&k&, &f~)). Since the basis for C,(rr x,~&&., &)) is obtained from ZY 
bases for C,(i&, 6&> by applying u,(Z7r 0~” -) we see that 

T c* 7T xJ(M,&+ ( ( )> =~i*T(C*(M&Kf&)) (7.3) 
(I V 

where i: u + 7r is the inclusion. To finish the proof we need the following two lemmas. 

Lemma 7.4. With the above notation 

T(C,(M& n;r,), = (-l)“r(C*(zQ) = (-l)%(C*(P)). 

Lemma 7.5. With the chosen b.f.r.‘s 

Indeed, Lemma 7.4 shows that the excision lemma is applicable. And the excision 
lemma in its turn shows that (7.3) is r(C*(ks,, is_,)). Since obviously r(Ey,.) = 
(-1)5~(C.&, &_i)) one gets 

= C (-l)‘i,r(C,($)) 

=x(& A)i,T(C,U?) 
= 0 

because the Euler characteristic x(B, A) vanishes. 

Proof of Lemma 7.4. For the first equality it suffices to show that 

T(c&“&, tic)) = -T(c&+'&), &f~~~J,,. (7.6) 

Let us write k@ for the part of M+ which sits above 5”’ u 6”’ u * * - u cci’. Hence, 

especially, Md tsl = &. We start by showing 

7(c.#&,kf~‘)=0 fOrO<i<s-I. (7.7) 
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This is done by induction on s and for fixed s by induction on i. First note that 
H,(M+, kf!‘) = 0 so that, at least, the desired torsion element is defined. For s = 0 
the statement is empty. For general S, and i = 0, one notes that k& is the mapping . 
cone of the obvious map Fz(~,-,@’ so Lemma 7.5 of Milnor [S] implies the 
vanishing. For 0 <i s s - 1 we have the short exact sequence of acyclic, based ZV 
module chain complexes 

C*(&!‘l &yl) + c 
C, * 

(M& &:-‘I) + c 
(J * 

(M MM) 
dr m * 

When one applies Theorem 2.3 and the inductive hypothesis one gets 

r(C*@& @I) = _r(C * (&!I &f;-‘l 0, )) 

but the latter vanishes by the inductive hypothesis and the excision lemma 
((M!‘, A4$-“) is replaced by (&III, M$!‘)). 

With (7.7) established we proceed to prove (7.6). The short exact sequence 

C*(&, MYI) + C,(M& ik$“) + C*(M+, ti5, 

has H,(&, kI$-‘l) = 0. Also, when we give E&(&, @-‘I) a b.f.r. coming from the 
one on H,(fi) by the isomorphism 

then the boundary isomorphism in the homology sequence becomes simple (both in 
the technical, and the non-technical sense), so Theorem 2.3 implies that 

7(C*(M& II&,, = -r(C*(ni, &-‘I)). 

And now an obvious excision argument finishes the proof of (7.6). 
For the second equality in Lemma 7.4 it suffices to prove that 

r(C*(kco,)) = r(C*(&cr,). (7.8) 

We let i be the edge of G connecting u’ = G(0) to t’ = G(1). Then we have the short 
exact sequence 

Theorem 2.3 is applicable and gives 

By definition, the left-hand side is the image in Wh(v) (under the obvious projection 
rr(F, eo)+ V) of the Whitehead torsion of fl.~:~-‘(~(~))-*p-‘(a(l)). Since fl.a is 
simple, by Hatcher [6], we see that the left-hand side vanishes. 

The first term on the right-hand side is -r(C*(F@,“,)) by the first part of the 
theorem. And the last term on the right-hand side is r(C,(FS,,,)). Thus the proof is 
complete. 



224 H.J. Munkholm 

Proof of Lemma 7.5. We have the following commutative diagram 

where CL restricted to the summand corresponding to u is given by 

cL,(g 0 x) = SC 0 g(x). 

Here g E p is the image of g E rr under cp and g(x) refers to the action of r on H,(3) 
defined earlier. Since the b.f.r.‘s involved are transports by means of a and ~0 of 
those on the left-hand modules, and since p is the direct sum of the CL, it suffices to 
prove that 

/La: H?T 02” H*(E) + cp!(Zp) 0 H*(F) 

is simple. 

(7.9) 

Here rr acts from the left only on the source, and diagonally on the target. Also one 

has po(g 0 x) = g 0 g(x). 
Let P* + Z be the chosen b.f.r. for Z over ZV, Q* + if the derived b.f.r. as in the 

proof of Lemma 3.1. Then Zx OzV P*+ cp!(Zp) is a b.f.r. for rp!(Zp) and the proof of 
Lemma 3.1 gives Err & Q* --, cp’(Zp) as our preferred b.f.r. for cp!(Zp). Also let 

O-*Rr+Rc+Hi(R)*O 

be a resolution of Hi($) by Err modules, free and finitely generated over Z (as in 
(4.3)). Then 

(H~Oz,Q*)0R*-,cp!(ZP)OHi(~) (7.10) 

is the chosen b.f.r. for the right-hand side of (7.9). The corresponding Zsr basis is 
10 q* 0 r* where q* is a ZV basis for R, and r* is a Z basis for R,. Moreover, in 
(7.10) h E T acts as follows 

h((gOq)Or)=(hgOq)Ohr. (7.11) 

On the other hand, as the preferred b.f.r. for ZYi(E), over ZV, we have 

Q*@R**BOHi(.F)=Hi(F) 

with bases q* 0 r*. So the chosen b.f.r. for Err 0~” FZi(E=) is 

ET 0~” (0, 0 R*) + Hr Ozv Hi(E) 

with bases 10 q* 0 r*. Also the module structure is given by 

h(gO(qOr))=hgOqOr. 

(7.12) 

(7.13) 
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The map CL, lifts to the following map of resolutions 

/A+: Hr Ozu (C&O R,) + (Z7r C&v Qz,J 0 R, 

with 

/&*(g 0 q 0 r) = g 0 q 0 g(r). 

It is easily seen that po* is well defined and a lifting of pW. Since CL,* preserves the 
preferred bases the proof is finished. 
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