Cognitive dysfunction in patients with chronic obstructive pulmonary disease — A systematic review

Lone Schou a,*, Birte Østergaard b, Lars S. Rasmussen c, Susan Rydahl-Hansen d, Klaus Phanareth a

a Telemedicine Research Unit, Frederiksberg University Hospital, Nrd. Fasanvej 57, 2000 Copenhagen F, Denmark
b Research Unit of Nursing, Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
c Department of Anesthesia, Centre of Head and Orthopaedics, Rigshospitalet, University Hospital of Copenhagen, 2100 Østerbro, Denmark
d Research Unit of Clinical Nursing, Bispebjerg and Frederiksberg University Hospital, 2200 Copenhagen N, Denmark

Received 4 November 2011; accepted 23 March 2012
Available online 11 May 2012

KEYWORDS
COPD; Cognitive function; Neuropsychological tests; Exacerbation; Activities of daily living; Severity of COPD

Summary
Background: Substantial healthcare resources are spent on chronic obstructive pulmonary disease (COPD). In addition, the involvement of patients in monitoring and treatment of their condition has been suggested. However, it is important to maintain a view of self-care that takes differences in cognitive ability into account.

The aim of this study was to determine the occurrence and severity of cognitive dysfunction in COPD patients, and to assess the association between severity of COPD and the level of cognitive function.

Methods: We conducted a systematic review, and a search in the following databases: Medline, PsychINFO, Cochrane Library, EMBASE, CINAHL, and SweMed up to July 2010. The articles were included if the participants were patients with COPD, relevant outcome was cognitive function investigated by a neuropsychological test battery, and the severity of COPD had been assessed.

Abbreviations: BADL, basic activities of daily living; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume (in the first second); FVC; forced vital capacity; IADL; instrumental activities of daily living; MDb; Mental Deterioration Battery; MMSE; mini mental state examination; MRI; magnetic resonance imaging; PaCO2, arterial carbon dioxide tension; PaO2, arterial oxygen tension; PICO, participants, interventions, comparisons, outcome; PRISMA, preferred reporting items for systematic reviews and meta-analyses; SaO2, arterial oxygen saturation of hemoglobin.

* Corresponding author. Tel.: +45 3816 4278.
E-mail address: loneschou@yahoo.dk (L. Schou).
Results: Fifteen studies were included, involving 655 COPD patients and 394 controls. Cognitive function was impaired in COPD patients as compared to healthy controls, but the level of functioning was better than in patients with Alzheimer’s disease. There was a significant association between severity of COPD, as measured by lung function and blood gases, and cognitive dysfunction, but only in patients with severe COPD.

Conclusions: Cognitive impairment can be detected in severe COPD patients, but the clinical relevance of the cognitive dysfunction is not yet known. Future studies should concentrate on the consequences of cognitive dysfunction for daily living in these patients, and solutions involving a high degree of self-care might require special support.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

Chronic obstructive pulmonary disease (COPD) affects up to 600 million people worldwide and it is currently one of the leading causes of morbidity and mortality in patients suffering from chronic diseases. The prevalence of COPD increases with age, and globally there is a growing number of people who are more than 65 years old, and major healthcare resources are spent on COPD, with 50% of costs accounted for by hospital stays. In addition, the demand for home care services has increased, and patients should be involved in monitoring and treatment of their disease in co-operation with the health professionals.

However, it is important to maintain a view of self-care that takes differences in cognitive ability into account. The literature indicate that cognitive dysfunction could be a limitation in patients with COPD. Therefore, the level of cognitive functioning of these patients must be taken into consideration before self-care can be planned and tailored toward the patient’s individual capability and needs.

COPD is not only characterized by progressive and largely irreversible limitation of air flow, shortness of breath, cough, and expectoration. In addition, brain function may be adversely affected by COPD, and magnetic resonance imaging (MRI) has shown altered cerebral perfusion in patients with COPD who have cognitive dysfunction as a clinical manifestation. The relationship between the many processes involved in an everyday cognitive task is complex, but cognitive ability is usually broken down into domains concerning memory, learning ability, attention/concentration, abstract thinking, and problem solving. Cognitive dysfunction reduces the level of functioning as assessed by activities of daily living, and it is associated with poor compliance with both medication and oxygen therapy, and poor compliance increases the risk of acute exacerbation.

Hypoxemia and hypercapnia appear to aggravate cognitive dysfunction in patients with COPD, and in a multicenter study of 302 patients with mild, moderate and severe hypoxia, the frequency of cognitive dysfunction was 27% in patients with mild hypoxia and 61% in patients suffering from severe hypoxia. Increasing age and low level of education were also associated with cognitive impairment. Furthermore, a direct association between cerebral hypo-perfusion and cognitive dysfunction has been described. In addition, cognitive performance might also be affected in patients with normal oxygen saturation. An association has also been described between cognitive impairment and fatigue, and increased need for sleep in patients with severe COPD. Also, McSweeny and colleagues discovered that cognitive dysfunction in patients with COPD was closely related to impaired functioning in daily life.

In a previous systematic review of patients with COPD the authors concluded that these patients may function at a reduced level of cognition, and that cognitive impairment is associated with a lower quality of life depending on the study design, the neuropsychological tests used, and sample size. The review included 81 studies encompassing...
multiple psychological characteristics or dimensions, 25 of which included assessments of cognitive function, published between 1966 and 2004. Six out of 25 studies only used the Mini Mental State Examination (MMSE) to evaluate cognitive function, and they found no impairment.4 However, the MMSE is developed for screening for dementia,18 and MMSE as a single test might fail to detect more subtle forms of cognitive impairment.19 In addition, the severity of the disease was only reported in one study. It is therefore difficult to investigate a possible relationship between the severity of COPD and the degree of cognitive dysfunction, and more importantly, the potential consequences for the patient’s daily life.

The aim of this study was to determine the occurrence and severity of cognitive dysfunction in patients with COPD, based on a systematic review of the literature. Furthermore, we wanted to determine the association between the severity of COPD and the level of cognitive function.

Methods

Search strategy

We adopted a systematic approach based on the guidelines set out by the Centre for Review and Dissemination, University of York (2001),20 but a systematic search strategy was furthermore initiated based on the PICO (Participants, Interventions Comparisons, Outcome) framework to identify core concepts, facets, and keywords for searching of electronic databases.21

The strategy was customized for each database and included controlled vocabulary, such as the National Library of Medicine MeSH and keywords, to identify relevant studies for this review. We systematically searched the following databases: Medline/PubMed, PsychINFO, the Cochrane Library, EMBASE, CINAHL, and SweMed up to July 2010. The search was conducted using the following keywords: COPD, Chronic Obstructive Pulmonary Disease, Pulmonary Disease, Chronic Obstructive [MeSH], Neuropsychological tests [MeSH], Psychomotor Disorders [MeSH], Cognitive function, Cognitive dysfunction, Cognitive impairments, Cognitive performance, and Brain perfusion.

Selection criteria

The selection of studies was done systematically. Following an initial examination of title and abstract, full-text articles were retrieved independently by first and second author for further examination and selection. The reviewers compared their selections of included studies, and any disagreements were discussed and resolved by consensus. The articles were critically evaluated and included in this review if they met the following criteria. 1. Participants were identified as patients with COPD. 2. Relevant outcome was cognitive function, investigated by a neuropsychological test battery, describing memory, attention/concentration, abstract thinking, mental flexibility, and learning ability. 3. The severity of COPD was assessed by lung function and/or blood gases.

Because the aim of this study was to investigate the occurrence of cognitive dysfunction in patients with COPD, we did not include any studies investigating the effect of an intervention. Studies only using the Mini Mental State Examination (MMSE) were excluded because the MMSE has a low sensitivity in relation to slight impairment18 and the diagnostic accuracy of the instrument has been found to be lower in patients with COPD than in the general population.22

The PRISMA checklist (2009) was used to make an attempt to report the results systematically.23

Results

The literature search was finalized in July 2010, and we identified a total of 273 abstracts (Fig. 1). Twenty-five additional abstracts were identified through hand searches. A total of 39 full-text articles, published between 1982 and 2009, were identified and 24 studies were excluded. The reasons for exclusion were1 the use of MMSE as a single test to evaluate the patients’ cognitive function (nine studies),2 investigation of auditory and visually evoked potentials, using a Cadwell Spectrum 32 recording instrument (two studies),3 using only driving simulator test (one study).4 no description of COPD severity for the patients included (three studies), and4 investigation of the effect of different kinds of interventions in relation to COPD (six studies). Two studies were excluded because they were reviews of previously published studies included in this review, and one study was excluded because it was only a protocol. Fourteen original studies (15 references) were included in this review, and nine of them11,15,16,19,24–28 were included in a former review by Hynninen et al. from 2005.4 All fourteen studies used a neuropsychological test battery (Table 1).

Of the fifteen studies included in this systematic review, ten were designed as "case-control studies", nine of which included healthy volunteers; three of these studies had mixed control groups and one study only had patients with chronic cerebral vascular disorders as a control group. One study used a prospective cohort design,12 and the last four studies used descriptive designs.8,16,25,28 The total numbers of study participants were 655 patients with COPD and 394 controls. Mean age of the study participants was 63.9 years. Information about gender distribution was available for 14 studies, and one study was conducted with males only. The severity of COPD was described in all fifteen studies and ranged from moderate to very severe COPD.

The main content of and methodological details from the relevant articles were extracted and tabulated into a matrix (Table 2), with information organized under the headings: author, year, design, sample (severity of COPD), neuropsychological test instruments used, definition of cognitive dysfunction, occurrence and severity of cognitive dysfunction, and correlation between severity of COPD and cognitive dysfunction.

Occurrence and severity of cognitive dysfunction in patients with COPD

Eight case-control studies found significant impairment in cognitive performance in half of the tests used compared to healthy controls.7,11,15,19,26,27,29,30 In two case-control
studies, the impairment was not statistically significant. The occurrence of cognitive dysfunction in patients with COPD was determined in only two studies — to be 17 patients (48.5%) and 13 patients (10.4%) — using the Mental Deterioration Battery, a global battery of tests assessing verbal intelligence, short-term verbal memory, immediate visual-spatial memory, visual-spatial intelligence, and constructional abilities.

With regard to the severity of cognitive dysfunction, three studies compared patients with COPD to patients with Alzheimer disease, and the patients with COPD performed significantly better in cognitive tests, but the test results from these patients were comparable to data obtained from patients with multi-infarct dementia.

Antonelli-Incalzi et al. found that patients with COPD had a significantly lower level of functioning in one of 13 cognitive tests, namely the “copying drawing with landmarks”. In a later study, they found significant differences in cognitive function in five of 12 cognitive tests; visual-spatial intelligence, verbal fluency, short-term verbal memory, copying drawing with landmarks, and immediate visual memory. In the remaining three studies, a mild, cognitive impairment was found that was not statistically significant, and in two studies the findings were compared with normative data.

Regarding cognitive domains, memory and attention are shown to be the most influenced domains in most of the studies. Also speed, coordination and learning abilities are affected, see Table 2.

Relationship between severity of COPD and cognitive dysfunction

The relationship between cognitive dysfunction and severity of COPD was measured in relation to lung function (FEV₁, FEV₁/FVC) and/or blood gases (PaO₂, PaCO₂, SaO₂). None of the three studies that included patients with moderate COPD found any significant association with severity of COPD. In the group of studies investigating patients with severe to very severe COPD (according to GOLD guidelines), eight of 12 studies found that these patients’ cognitive impairments were significantly associated with the severity of COPD. The remaining four studies found no association between severity of COPD and cognitive dysfunction, or it was not assessed.

Neuropsychological tests used and definition of “cognitive dysfunction”

All 15 studies included a battery of neuropsychological tests. The tests used measured visual and verbal memory (immediate and delayed recall), attention, concentration and speed, visual-spatial intelligence, constructive functions etc. (see Table 1).

A clear theoretical definition of “cognitive dysfunction” that is appropriate for patients with COPD have not been generally accepted. In consequence, different studies use different operational definitions. For example, one author
Cognitive dysfunction in patients with COPD

A study of three articles has defined “cognitive dysfunction” as a defective performance of more than four components of the Mental Deterioration Battery (MDB). One study defined cutoff means scores for dementia. The definition used in five other studies was a deterioration of at least one standard deviation (SD) in at least one measure compared to the normative mean. In the rest of the remaining six studies included, no specific definition of cognitive dysfunction was given (Table 2).

Discussion

The aim of this review was to determine the occurrence and severity of cognitive dysfunction in patients with COPD. The occurrence of cognitive dysfunction was only reported in two studies, being 48.5% and 10.4%. With regard to the severity of cognitive dysfunction, the finding shows that cognitive function is impaired in patients with COPD as compared to healthy controls. Compared to patients with Alzheimer’s disease, patients with COPD performed significantly better, but the test results from COPD patients were comparable to data obtained from patients with multi-infarct dementia. Alzheimer’s disease and multi-infarct dementia are serious brain disorders, and perhaps not the most relevant groups with which to compare patients with COPD. But there is a lack of more useful comparison studies comparing COPD patients with, for example, those with diabetes or chronic heart failure, which also show cognitive impairment.

We were unable to assess the effect of cognitive dysfunction on the daily life of patients with COPD. However, the information about the positioning of patients with COPD between that of the healthy controls and that of patients with Alzheimer’s disease illustrates the difficulties experienced by these patients.

We found a significant relationship between the severity of COPD and cognitive dysfunction only in patients with severe to very severe COPD. Patients’ cognitive impairments were significantly associated with the severity of COPD. Our findings contrast with the results of a review from 2010, where there was no significant relationship between cognitive impairment and the severity of COPD, but they also included fewer studies with patients with severe to very severe COPD and accepted studies that used MMSE as the only test.

The strength of this review is that we critically evaluated the definitions of “cognitive dysfunction” and the neuropsychological tests used in all the studies included. Furthermore, we compared the results to those in other groups of patients when possible, and not only to those in healthy controls, in order to gain an understanding of the degree of cognitive dysfunction. One limitation of the present review is publication bias, because only published studies were included. Another limitation is that several studies had small sample size, and the severity of COPD is not always well described. The included studies use a large variation in the batteries of cognitive tests, and most of the studies did not present an explicit definition of clinically meaningful effects.

There is a distinct lack of information on the strategies for screening for cognitive impairment in patients with COPD. Only one author discussed the neuropsychological tests that are available for these patients, and in earlier studies, this author made an effort to develop and validate existing tests to find a battery of tests that would detect more subtle cognitive difficulties in patients with COPD.

Neuropsychological test batteries consist of many single tests that each gives several variables, either scores or time

<table>
<thead>
<tr>
<th>Table 1 Domains and cognitive tests.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Memory and learning</td>
</tr>
<tr>
<td>(Immediate memory)</td>
</tr>
<tr>
<td>(Delayed memory)</td>
</tr>
<tr>
<td>(Verbal memory)</td>
</tr>
<tr>
<td>(Nonverbal memory)</td>
</tr>
<tr>
<td>(Learning)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Attention</td>
</tr>
<tr>
<td>(Simple attention)</td>
</tr>
<tr>
<td>(Selective attention)</td>
</tr>
<tr>
<td>(Sustained attention)</td>
</tr>
<tr>
<td>(Focused attention)</td>
</tr>
<tr>
<td>Intelligence</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Information processing</td>
</tr>
<tr>
<td>speed and coordination</td>
</tr>
<tr>
<td>Verbal fluency</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Visual attention</td>
</tr>
<tr>
<td>(Visual-spatial intelligence)</td>
</tr>
<tr>
<td>(Visuospatial scanning ability)</td>
</tr>
<tr>
<td>(Visual exploration)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Auditory attention</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Conceptual function</td>
</tr>
</tbody>
</table>

Neuropsychological test batteries consist of many single tests that each gives several variables, either scores or time.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Sample: COPD</th>
<th>Cognitive tests</th>
<th>Definition of cognitive dysfunction/Occurrence and severity of cognitive dysfunction</th>
<th>Relationship between severity of COPD and cognitive dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fioravanti et al., 1995</td>
<td>Case-control study</td>
<td>N = 50 patients with COPD (Moderate) 50 controls (chronic cerebral vascular disorders)</td>
<td>Memory efficiency test</td>
<td>Definition: Mean below age-matched normal population. About 30% of the COPD patients show memory impairment, which was confined to immediate memory? COPD patients’ different aspects of memory scores fell between the normal scores and the more impaired CCVD (control group) scores.</td>
<td>Respiratory parameters and memory efficiency were correlated.</td>
</tr>
<tr>
<td>Kozora et al., 1999</td>
<td>Case-control study</td>
<td>N = 32 patients with COPD (Moderate) Controls: 31 normal subjects 31 mild Alzheimer</td>
<td>Wechsler memory scale-revised Digit span subtest Trail making test — B Controlled oral word association test Animal naming test Boston naming test ZVT, NWT VLMT WRG S5 Cognitrone S2 WDG TAP</td>
<td>Definition: Not described. In 1 (letter fluency) out of 14 tests, the patients with COPD performed significantly worse than patients from the normal controls. COPD patients were significantly better than patients with Alzheimer’s disease in 13 tests.</td>
<td>No significant correlation.</td>
</tr>
<tr>
<td>Orth et al., 2006</td>
<td>Case-control study</td>
<td>N = 32 patients with COPD (Moderate) 10 healthy controls</td>
<td>Definition: Not described. Patient with COPD had significantly worse results in 14 out of 20 tests, compared with healthy controls. Domains as intelligence and attention were significantly impaired, while memory, speed and coordination were not.</td>
<td>No significant correlation.</td>
<td></td>
</tr>
<tr>
<td>Antonelli-Incalzi et al., 1993</td>
<td>Case-control study</td>
<td>N = 36 patients with COPD (Severe) Controls: 49 normal adults 26 Alzheimer 28 Multinfarct Dementia (MDI)</td>
<td>Mental deterioration battery</td>
<td>Definition: MDB — a “defective performance” of more than four components of the mental deterioration battery. 48.5% of the patients with COPD had cognitive impairment, especially in the memory domain. There was significant difference in 14 out of 19 cognitive tests, compared with normal adults. Patients with COPD were comparable to patients with MDI, and better than those with Alzheimer’s disease in 13 out of 19 tests.</td>
<td>Cognitive impairment was significantly and positively correlated with duration of chronic respiratory failure (p < 0.05).</td>
</tr>
<tr>
<td>Antonelli-Incalzi et al., 1997</td>
<td>Case-control study</td>
<td>N = 42 patients with COPD (Severe, very severe) Controls: 27 normal adult 31 Alzheimer</td>
<td>Mental deterioration battery Ray’s auditory verbal memory test Wechler’s adult intelligence Scale-Revised</td>
<td>Definition: MDB - a “defective performance” of more than four components of the mental deterioration battery. The global cognitive performance assessed by MDB was significantly better than in Alzheimer patients (p < 0.001), but significantly inferior to that of the remaining two normal groups</td>
<td>Not analyzed.</td>
</tr>
</tbody>
</table>
26 older normal subjects

(p < 0.0001).
In the rest of the 14 tests, patients with COPD were significantly impaired in 6 out of 14 tests, including memory and attention, compared with normal adults, but in 10 out of 14 tests patients with COPD scored significantly better than the Alzheimer patients.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study type</th>
<th>Sample size</th>
<th>Cognitive Tests</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonelli-Incalzi et al., 2006(^{12})</td>
<td>Prospective cohort study</td>
<td>(N = 134) patients with COPD (Severe) 105 survivors 29 non-survivors</td>
<td>Mental deterioration battery</td>
<td>Definition: MDB - a “defective performance” of more than four components of the mental deterioration battery. (p < 0.02). Not assessed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The prevalence of overall cognitive impairment, expressed by MDB, was 10.4%. In the subtests, the prevalence of the patients’ abnormal performance change between 2 and 40%. The only significant test results were the “Copying drawings with landmarks” test, that refers to visual attention.</td>
</tr>
<tr>
<td>Antonelli-Incalzi et al., 2008(^{8})</td>
<td>Descriptive study</td>
<td>(N = 149) patients with COPD (Severe). High (H), mid (M) and low (L) level of cognitive function</td>
<td>Raven Progressive matrices Verbal fluency Verbal memory Albert’s test Copying drawings Wechsler Sentence construction Wide range achievement test 3 Wechsler memory scale Wechsler adult intelligence scale</td>
<td>Definition: Raw cognitive scores were corrected for age and education and compared with data from a reference population. 52/149 patients (35%) had significantly lower cognitive performance in 5 out of 12 tests. Visual attention, verbal fluency and memory were the most affected domains. Not assessed.</td>
</tr>
<tr>
<td>Borson et al., 2008(^{29})</td>
<td>Case-control study (pilot)</td>
<td>(N = 18) patients with COPD (Severe, very severe) 9 healthy controls</td>
<td>Raven Progressive matrices Verbal fluency Verbal memory Albert’s test Copying drawings Wechsler Sentence construction Wide range achievement test 3 Wechsler memory scale Wechsler adult intelligence scale</td>
<td>Definition: Not described. Patients with COPD differed significantly from healthy controls in some of the intelligence ((p < 0.03)) and memory ((p < 0.05)) tests, but not in all. Lower scores in patients with oxygen-dependent COPD vs. non-oxygen-dependent patients on cognitive measures.</td>
</tr>
<tr>
<td>Crews et al., 2001(^{16})</td>
<td>Descriptive study</td>
<td>(N = 47) patients with COPD (Severe, very severe)</td>
<td>Raven Progressive matrices Verbal fluency Verbal memory Albert’s test Copying drawings Wechsler Sentence construction Wide range achievement test 3 Wechsler memory scale Wechsler adult intelligence scale</td>
<td>Definition: Test scores were more than one standard deviation (SD) below their respective normative means. In 2 out of 24 cognitive tests, over 52% of the patients with COPD were impaired (Selective Reminding Test — that refers to memory). In all other tests, 0–44% of the patients had impaired cognitive function.</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Sample: COPD</th>
<th>Cognitive tests</th>
<th>Definition of cognitive dysfunction/Occurrence and severity of cognitive dysfunction</th>
<th>Relationship between severity of COPD and cognitive dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix et al., 1982<sup>25</sup></td>
<td>Descriptive study</td>
<td>N = 66 patients with COPD (Severe)</td>
<td>Wechsler adult intelligence scale
Benton visual retention test
Trail marking test
Speech sounds perceptions test
Strauss color word test
Seashore rhythm test
Trail making test
Story recall
Stroop color word test
Seashore rhythm test</td>
<td>Definition: Not described.
Mild, but not significant, cognitive impairment in 6 out of 16 cognitive tests, compared to normal range.</td>
<td>3 out of 13 tests correlated significantly.</td>
</tr>
<tr>
<td>Liesker et al., 2004<sup>15</sup></td>
<td>Case-control study</td>
<td>N = 30 patients with COPD (Severe) 20 healthy controls</td>
<td>Halstad–Reitan test battery for adults
Trail making test
Aphasia screening test
Wechsler memory scale
Wechsler adult intelligence scale
Seashore rhythm test
Stroop color word test
Seashore rhythm test</td>
<td>Definition: Not described.
Patients with COPD scored significantly worse than healthy controls in 3 (speed and coordination, attention, and intelligence) out of 9 cognitive tests.</td>
<td>Patients with lower FEV₁ (<50% pred.) tended to score worse than those with higher FEV₁ (>50% pred.), but this was only significant in 1 out of 9 tests. Cognitive dysfunction was correlated with resting partial pressure of oxygen.</td>
</tr>
<tr>
<td>Prigatano et al., 1983<sup>27</sup></td>
<td>Case-control study</td>
<td>N = 100 patients with COPD (Severe) 25 healthy controls</td>
<td>Halstad–Reitan test battery for adults
Trail making test
Aphasia screening test
Wechsler memory scale
Wechsler adult intelligence scale</td>
<td>Definition: Not described.
In 26 out of 40 cognitive tests, patients with COPD were significantly impaired, compared to healthy controls. The most affected domains were; Speed and coordination, memory and learning, intelligence and attention.</td>
<td></td>
</tr>
<tr>
<td>Shimet al., 2001<sup>31</sup></td>
<td>Case-control study</td>
<td>N = 17 patients with COPD (Severe) 6 hypercapnia/11 non-hypercapnia 21 healthy controls</td>
<td>Wechsler Memory Scale-Revised
Color Trail test
Grooved Pegboard Test</td>
<td>Definition: 2 SDs below the standardized values.
Mean values for patients with COPD were below standardized values for all 9 cognitive parameters. But only in three tests (general- and verbal memory, and delayed recall), the COPD patients were 2 SDs below the standardized values.</td>
<td>No significant correlation.</td>
</tr>
<tr>
<td>Stuss et al., 1997<sup>28</sup></td>
<td>Mixed descriptive study</td>
<td>N = 18 patients with COPD (Severe)</td>
<td>Dementia rating scale
Wechsler adult intelligence scale revised
Aphasia screening test
Boston naming test
Animal Name fluency test
Finger tapping test
Wechsler memory scale
Wisconsin Card sorting test</td>
<td>Definition of dementia: the cutoff mean scores for dementia are 123.
In the Dementia Rating Scale, 1 out of 18 patients were below cutoff mean score. In the rest of the 31 tests, there were no significant differences.</td>
<td>Significant relationship between blood gases and cognitive measures of memory and attention capacity.</td>
</tr>
</tbody>
</table>
measurements. However, when initiating a study, it is necessary to decide which variables should be considered for evaluation of cognitive function, and more importantly the definition of the “dysfunction” and the statistical data analysis methods to be used.

When one examines the literature, the crucial step in finding a significant neurocognitive deficit is in determining the definition itself. The definition of a significant deficit varies, and the lower the threshold of “deficit” is determined to be, the larger number of patients will be that have a deficit. Only the studies by Antonelli-Incalzi and colleagues presented a specific definition of “cognitive dysfunction”, which was “defective performance of more than four components of the mental deterioration battery”.11,12,26

The clinical relevance is also important to discuss. In some of the studies reviewed, only some of several tests was found to be significantly altered. Statistically significant differences between groups may not be clinically relevant, and the consequences are also difficult to evaluate in terms of the patient’s daily life, including daily activities, self-care behavior, anxiety, and depression. A difference of just a few seconds in the performance of neuropsychological tests may be statistically significant due to a large study group, but is may be of no clinical importance. In most patients, the deficit may not matter in functional terms. Apparently, many activities of daily living do not require the level of performance called for during neuropsychological testing. The discrepancy between decline in test performance and functional decline is also apparent in the methodological difficulties of defining a cognitive deficit or dysfunction.8

Accordingly, it is still not possible to conclude that a detected deficit in cognitive function is related to a clinical disability in performing self-management and self-care.

Only one study, by Antonelli-Incalzi and colleagues (2008), focused on the consequences of the patients’ cognitive dysfunction for daily living, as assessed by Basic Activities of Daily Living (BADL) scales and Instrumental Activities of Daily Living (IADL) scales. In this study, with 149 patients with severe COPD in three clusters—a high, middle, or low level of cognitive functioning, based on 11 neuropsychological scores— the authors found an association between cognitive dysfunction and need for support in basic daily activities, such as medication, getting dressed, and managing money. The majority of patients who were enrolled were around 65 years old, and 135 out of 145 patients were men. Overall, there was dependency in at least one BADL domain in 39.6% of patients and in one IADL domain in 65.8% of patients. Altogether, 27.5% were dependent in one or more IADL domains, but not in BADL; from this, the authors concluded that the patients were able to live at home with some support. Altogether, 16.1% were dependent in one to five IADL domains but not in any BADL domain, which corresponds to a greater need for support. Finally, about one in every five patients was dependent on external help in one to five IADL domains and in more than one BADL domain, and needed support for several hours a day.

But the association between cognition and activities are still weak, and a causal relationship has not yet been demonstrated. In COPD patients, IADL are more likely to be affected by deconditioning, systemic inflammation and
dynamic hyperinflation, than cognition. In addition, 135 of
the 145 patients were men; this is not comparable with the
distribution of these patients in general, where women
account for at least 50% of the total.

The most affected cognitive domains in this review were
memory and attention, but also speed, coordination and
learning abilities were reduced in COPD patient. This
impairment might have important clinical and healthcare
implications in patients with COPD. Therefore, the level of
cognitive functioning of these patients must be taken into
consideration before self-care can be planned and tailored
toward the patient’s individual capability and needs. Cognitive
dysfunction could result in a risk of acute exacerbation, and reduced function in several basic activities
of daily living. 9–11, 39 McSweeny and colleagues 17 also
found that cognitive dysfunction was more closely related
to impaired functioning in daily life than to emotional
functioning in patients with COPD. This is in line with Orth
et al. who discovered that the frequency of accidents in
simulated driving situations is significantly increased in
patients with COPD, 40 which might influence future legis-
lation regarding driving licenses.

Conclusions

This systematic review has shown that cognitive function is
impaired in patients with COPD as compared to healthy
controls, but the level of functioning appears to be better
than in patients with Alzheimer’s disease.

We found an association between severity of COPD and
cognitive dysfunction in patients with severe to very severe
COPD.

The clinical importance of the cognitive impairments is
difficult to gauge due to the heterogeneity of outcome
measures and lack of consistent definition of cognitive
dysfunction in the reviewed studies. Future studies should
concentrate on the consequences of cognitive dysfunction
for daily living in these patients. Also, in patients with
severe and very severe COPD, solutions involving a high
degree of self-care might require special support.

Conflict of interest

The authors report no conflicts of interest to disclose. The
authors alone are responsible for the content and writing of
the paper. All authors have read and accepted the
manuscript.

Acknowledgments

This study was supported financially by “The Tryg Foundation”
and “The Health Insurance Foundation” (non-
commercial).

References

1. National Institute of Health U. Global Initiative for chronic
obstructive lung disease. Pocket guide to COPD diagnosis,
2. Wilkinson TM, Donaldson GC, Hurst JR, Seemungal TA,
Wedzicha JA. Early therapy improves outcomes of exacer-
bations of chronic obstructive pulmonary disease. Am J Respir
g og samfund – Forudsætninger for det gode forløb. Copen-
Psychological characteristics of patients with chronic
obstructive pulmonary disease: a review. J Psychosom Res 2005
Dec;59(6):429–43.
5. Lezak MD, Howieson DB, Loring DW. Neuropsychological
6. American Thoracic Society. Standards for the diagnosis and
care of patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med 1995;152:77–120.
7. Ortampamuk H, Naldoken S. Brain perfusion abnormalities in
chronic obstructive pulmonary disease: comparison with
8. Antonelli-Inc, Corsonello A, Trojano L, Acanfora D, Spada A,
Izzo O, et al. Correlation between cognitive impairment and
dependency in hypoxemic COPD. J Clin Exp Neuropsychol 2008
9. Carone M, Bertolotti G, Anchisi F, Zotti AM, Donner CF,
Jones PW. Analysis of factors that characterize health impair-
ment in patients with chronic respiratory failure. Quality of life
in Chronic Respiratory Failure Group. Eur Respir J 1999 Jun;
10. Allen SC, Jain M, Rabag S, Malik N. Acquisition and short-term
retention of inhaler techniques require intact executive
function in elderly subjects. Age Ageing 2003 May;32(3):
299–302.
11. Incalzi RA, Gemma A, Marra C, Capparella O, Fuso L,
Carboni P. Verbal memory impairment in COPD: its mecha-
12. Antonelli-Inc, Corsonello A, Pedone C, Trojano L, Acanfora D,
Spada A, et al. Drawing impairment predicts mortality in
13. Grant I, Prigatanp GP, Heaton RK, McSweeny AJ, Wright EC,
Adams KM. Progressive neuropsychologic impairment and
hypoxemia. Relationship in chronic obstructive pulmonary
14. Inc Antonelli, Marra C, Giordano A, Calcagni ML, Cappa A,
pulmonary disease—a neuropsychological and spect study. J
Neurol 2003 Mar;250(3):325–32.
15. Liesker JJ, Postma D, Beukema RJ, ten Hacken NH, van
der MT, Riemersma RA, et al. Cognitive performance in
16. Crews WD, Jefferson AL, Bolduc T, Elliott JB, Ferro NM,
Broshek DK, et al. Neuropsychological dysfunction in patients
suffering from end-stage chronic obstructive pulmonary
17. McSweeny AJ, Grant I, Heaton RK, Prigatanp GP, Adams KM.
Relationship of neuropsychological status to everyday func-
tioning in healthy and chronically ill persons. J Clin Exp Neu-
18. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”.
A practical method for grading the cognitive state of patients
19. Kozora E, Filley CM, Julian LJ, Cullum CM. Cognitive func-
tioning in patients with chronic obstructive pulmonary disease
and mild hypoxemia compared with patients with mild Alz-
heimer disease and normal controls. Neuropsychiatr Neu-
20. NHS Center for Reviews and Dissemination UoY. Undertaking
systematic reviews of research on effectiveness — CRD’s
Guidance for those carrying out or commissioning reviews.
Cognitive dysfunction in patients with COPD

1081