Biophysical Journal Volume 72 March 1997 1047-1069 1047

The Statistical-Thermodynamic Basis for Computation of Binding
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ABSTRACT Although the statistical thermodynamics of noncovalent binding has been considered in a number of theoretical
papers, few methods of computing binding affinities are derived explicitly from this underlying theory. This has contributed
to uncertainty and controversy in certain areas. This article therefore reviews and extends the connections of some important
computational methods with the underlying statistical thermodynamics. A derivation of the standard free energy of binding
forms the basis of this review. This derivation should be useful in formulating novel computational methods for predicting
binding affinities. It also permits several important points to be established. For example, it is found that the double-
annihilation method of computing binding energy does not yield the standard free energy of binding, but can be modified to
yield this quantity. The derivation also makes it possible to define clearly the changes in translational, rotational, configura-
tional, and solvent entropy upon binding. It is argued that molecular mass has a negligible effect upon the standard free
energy of binding for biomolecular systems, and that the cratic entropy defined by Gurney is not a useful concept. In addition,
the use of continuum models of the solvent in binding calculations is reviewed, and a formalism is presented for incorporating

a limited number of solvent molecules explicitly.

INTRODUCTION

The noncovalent association of molecules is of central im-
portance in biology and pharmacology. It underlies the
action of hormones, the control of DNA transcription, the
recognition of antigens by the immune system, the catalysis
of chemical reactions by enzymes, and the actions of many
drugs. Therefore, methods of predicting the affinity of such
noncovalent associations would be of great practical value.
For example, predictive computational models for the non-
covalent association of biomolecules and their ligands
would be useful in structure-based drug design and in the
redesign of enzymes. As recently reviewed (Cohen et al.,
1990; Kuntz et al., 1994; Balbes et al., 1994; Colman, 1994;
Greer et al., 1994; Rosenfeld et al., 1995; Ajay and Murcko,
1995; Marrone et al.,, 1997), many groups have invested
ingenuity and effort in the development of such models.
However, although the physical chemistry of these associ-
ation processes is rooted in statistical thermodynamics, few
models are explicitly derived from these underlying princi-
ples. This has led to a certain amount of confusion in the
field, as discussed below. The present paper therefore pre-
sents a statistical-thermodynamic derivation of the standard
free energy of binding, and uses this to review the under-
pinnings of methods for computing noncovalent binding
affinities.
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There exists an extensive literature on the statistical ther-
modynamics of association. The first important attempts to
characterize binding equilibria were mean field theories,
which were originally developed to treat ion pairing in
electrolytes (see, e.g., Pitzer and Schreiber, 1987; Laria et
al., 1990). Mean field theories depend upon a small number
of parameters that must be determined self-consistently.
They perform well for cases where specific terms in the ex-
pression for enthalpy, such as Coulombic interactions, provide
the dominant contribution to the binding free energy.

Modern liquid-state methods are based upon a systematic
perturbation expansion of the free energy of binding. Such
methods include both entropic and enthalpic contributions
to the binding energy in a manner that is, in principle, exact.
A formal extension of these methods to treat protein-protein
and protein-ligand association is presented in Hill
(1955a,b). The computation required to explicitly evaluate
the resulting formulas is, however, daunting. The associa-
tion of simple ligands can be studied with such methods by
resummation of the terms corresponding to strongly attract-
ing interactions (Stell, 1976; Andersen, 1973; Wertheim,
1984). Association between larger molecules can be treated
in closed form, either exactly or approximately, by the use
of correlation function methods (Chandler and Pratt, 1976;
Stell, 1976; Andersen, 1973; Hoye and Olaussen, 1980;
Wertheim, 1984). Such methods have been applied to a
range of systems that contain a small number of different
types of atoms (see, e.g., Chandler and Pratt, 1976; Hoye
and Olaussen, 1980; Wertheim, 1984; Stell and Zhou, 1989;
Zhou and Stell, 1995). However, for more complex systems,
the number of distinct correlation functions that must be
evaluated becomes prohibitively large. In particular, the
binding of biological molecules has not yet been treated in
any detail by liquid-state perturbation methods.



1048 Biophysical Journal

An alternative to perturbation expansions, and the ex-
haustive enumeration of configurations that they imply, is to
use molecular dynamics or Monte Carlo simulations to
sample the commonly occurring low-energy structures that
give the dominant contribution to thermodynamic quanti-
ties. Such simulations typically include an explicit repre-
sentation of the atoms of both the solutes and the solvent.
These sampling methods may be used with thermodynamic
integration or free energy perturbation methods to compute
the free energy changes associated with binding. Such free
energy simulation methods offer a microscopic picture of
solute and solvent structure. They have been used to com-
pute relative free energies for the binding of different li-
gands to a common receptor (Tembe and McCammon,
1984), as well as the binding free energy for a single ligand
and receptor (Jorgensen et al., 1988). Excellent reviews of
this material are available (Wong and McCammon, 1986;
Bash et al., 1987; Beveridge and DiCapua, 1989; Lybrand,
1990; Straatsma and McCammon, 1992; Kollman, 1993;
Warshel et al., 1994; Marrone et al., 1997). Free energy
simulations are time-consuming, and it is not always clear
that the results they yield are fully converged (Mitchell and
McCammon, 1991; Balbes et al., 1994). These methods are
likely to be most useful in the later stages of projects in
molecular design, when the goal is to optimize promising
lead compounds.

Another class of models of binding that is applicable to
biomolecules avoids the problem of conformational sam-
pling almost entirely. Instead, binding free energies are
estimated by the use of phenomenological scoring functions
applied to rigid or nearly rigid representations of the mol-
ecules that bind (see, e.g., Gurney, 1953; Chothia and Janin,
1975; Andrews et al., 1984; Erickson, 1989; Novotny et al.,
1989; Searle et al., 1992a; Horton and Lewis, 1992; Murphy
et al., 1993; Bshm, 1994; Weng et al., 1996). These scoring
functions take into account a number of distinct contribu-
tions to the binding free energy. For example, stabilizing
interactions may result from intermolecular hydrogen bonds
and hydrophobic contacts, while destabilizing interactions
typically include the entropic costs of restricting the relative
position and orientation of the two ligands. Such “energy-
component” models offer useful intuitions and are compu-
tationally tractable. On the other hand, they may be less
accurate than the more detailed free energy simulations
described above. Energy-component models are likely to be
most useful in the early, exploratory stages of projects in
molecular design.

As noted above, these and other computational models of
biomolecular binding are, in principle, founded in the sta-
tistical thermodynamic of condensed phases. However, a
number of models and methods in current use have been
presented without an explicit statistical-thermodynamic der-
ivation. In such cases, it is often difficult to discern what
approximations are being made, or indeed whether the
model is valid. Largely as a consequence, some uncertain-
ties in this area have risen to the level of controversy.
Notable examples include the computation of entropy
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changes upon binding by a formula for the entropy of
mixing (Kauzmann, 1959; Murphy et al., 1994; Holtzer,
1995), and the idea of an “absolute” binding free energy that
does not depend upon the standard concentration (Jorgensen
et al., 1988; Janin, 1996). Indeed, a recent paper appropri-
ately notes that there is “considerable confusion” regarding
the theory underlying the calculation of binding constants in
solution (Tidor and Karplus, 1994). It is perhaps surprising
that there should be confusion on this topic whose principles
have already been laid out in the theoretical literature (see
above). The problem appears to be that the relevant papers
are extremely general in scope, so that subtle technical
points must be resolved to apply them to biophysical
problems.

We therefore believe that many uncertainties in this area
can be resolved, and new controversies avoided, by an
accessible treatment of the statistical thermodynamics un-
derlying models of binding. The present paper provides an
accessible derivation of the standard free energy of binding
in terms of molecular properties, using elements gathered
from existing publications. This derivation is then used as
the basis for an examination of several important issues in
existing models of binding. A complete review of methods
for computing binding constants is beyond the scope of this
work, however.

The paper is organized as follows. ‘Statistical Thermo-
dynamics of Binding’ reviews the thermodynamics and the
classical statistical thermodynamics of noncovalent associ-
ation. The derivation of the standard free energy of binding
is for a system at constant pressure, because most experi-
ments are carried out under this condition. Particular atten-
tion is paid to the often-confusing issue of the standard state.
‘Free Energy Simulations with Explicit Solvent’ examines
the theoretical underpinnings of calculations of relative and
absolute binding free energies. The conditions under which
parts of the protein may be treated as rigid also are defined.
‘Other Representations of the Solvent’ reviews the theoret-
ical basis for implicit representations of the solvent in
binding calculations, and also presents new material on
hybrid implicit/explicit treatments of the solvent. Finally,
‘Entropy and Energy Components of the Binding Free En-
ergy’ analyzes the statistical-thermodynamic basis of energy-
component models for binding (see above). The literature
on entropy changes associated with binding is reviewed, and
the theory presented in the second section is used to define
and discuss changes in translational, rotational, configura-
tional, and solvent entropy. This section also analyzes the
influence of molecular mass upon binding free energies.

STATISTICAL THERMODYNAMICS OF BINDING

This section reviews the formula for a binding constant in
terms of the standard chemical potentials of the molecular
species involved. The concepts of the standard state and of
activity coefficients are discussed in detail. Then classical
statistical thermodynamics is used to derive expressions for
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the standard chemical potentials of the two ligands and the
bound complex. These expressions are combined to yield
an expression for the standard free energy of binding in
solution.

Thermodynamics and Standard States

The reaction of interest is the noncovalent association of
two ligands, A and B, to form a complex, AB:

A+ B=AB ()

In cases of biological interest, this reaction typically occurs
in a mixed solvent, usually an aqueous electrolyte. This will
be called the reaction solvent. The condition for equilibrium
is that

l-Lsol,A + p’sol,B = I“Lsol,AB7 (2)

where each p . ; is the chemical potential of species i = A,
B, or AB, in solution.
The chemical potential of species i in solution is given by

o YiCi
Mol; = Moo T RT In ceo 3)

where %, ; and C; are, respectively, the standard chemical
potential and the concentration of species i, R is the gas
constant, T is absolute temperature, vy, is the activity coef-
ficient of i, and C° is the standard concentration in the same
units as C,. For example, if C, is expressed in molecules/A>,
as may be convenient in discussing a molecular simulation,
then the usual 1 M standard concentration must be ex-
pressed as C° = 1 molecule/1660 A3. However, it is more
common to express C in molar units (M), in which case
C° = 1 M. Often, C” is not included explicitly in Eq. 3. In
such cases, it is implicit that the units of concentration, C;,
are “standard concentrations”; that is, C; is then the ratio of
the concentration to the standard concentration. Although
concentrations are sometimes reported as mole fractions, in
the present paper concentration will always imply a density
with dimension volume ~*. This point is discussed further in
the last section.

The standard chemical potential of A, B, or AB is its
chemical potential in its standard state. It is convenient to
define a hypothetical standard state in which each species is
at standard concentration in the reaction solvent, defined
above, but does not interact with other molecules of A, B, or
AB. The activity coefficients relative to this standard state,
¥;» approach unity as C; approaches zero in the reaction
solvent (Glasstone, 1947; Lewis and Randall, 1961a).

Equations 2 and 3 yield the following expression for the
standard free energy of binding:

AGHE = MloaB — Mioia — Miolp
o 4)
Yas C CAB) (
= —RTIn = —RTIn Kz,
('YA Y8 Ca Cg eq AB
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where ( )., implies a quantity at equilibrium. In this paper,
attention is restricted to the low concentration case, for
which vy, = 1 is a good approximation.

Because C° is not always written explicitly in the expres-
sion for the binding constant K 5, it might appear that K,
has units of volume. It is therefore worth reemphasizing that
K,p is a dimensionless quantity (Alberty, 1994; Janin,
1995; Atkins, 1994). When C° is not written explicitly, it is
implicit that the units of concentration are ‘“‘standard con-
centrations.” This occurs naturally when concentrations are
in M and the standard concentration is 1 M. This issue is
discussed further in Calculation of the ‘Standard Free En-
ergy of Binding.” Note, too, that C,z depends slightly upon
the geometric criteria used to define the complex, as dis-
cussed in ‘The Standard Chemical Potential of a Complex in
Solution.’

The Standard Chemical Potential of a
Molecule in Solution

The standard chemical potential (3G/dn, )y p of molecule A
in solution is given by:

QN,A(VN,A
VN,AC‘Q QN,O(VN,O)

A detailed derivation of this expression (Hill, 1985a), and
related material (McMillan and Mayer, 1945; Hill, 1986),
may be found elsewhere. Here Oy A(Vy o) is the canonical
partition function for a system containing a large number N
of solvent molecules and one solute molecule A at volume
Vna: Vna 18 the volume of this system when it is at
equilibrium at standard pressure P°, typically one atmo-
sphere. Similarly, Oy o( Vi o) is the canonical partition func-
tion for the N solvent molecules without the solute, now at
a different equilibrium volume Vy, that also corresponds to
pressure P°. In the rest of this paper, the volume for which
each canonical partition function, Q, is to be evaluated will
not be written explicitly, as it is in Eq. 5. Rather, it will be
implicit that the volume is the equilibrium volume of the
system for the specified pressure, unless otherwise noted.
Finally, V, = Vg — Vyno. This is the change in the
equilibrium volume when one molecule of solute is added to
N molecules of solvent. Therefore, for N > 1, \_/A is the
partial molar volume of the solute at infinite dilution in the
solvent (Hill, 1985a). The pressure-volume work associated
with this volume change is P°V,. The present expression for
K51 can be interpreted as the standard chemical potential
of the solute in the gas phase, plus the work of transferring
it to the solvent isobarically. It is worth mentioning that,
although Eq. 5 includes the standard concentration explic-
itly, the standard concentration is only implicit in the cited
formula (Hill, 1985a). Agreement with the cited formula is
achieved when the units of concentration are consistent with
those of volume. For example, in MKS units, a 1 M standard
concentration corresponds to C° = 1000 N, m >, where N
i1s Avogadro’s number.

woa = —RTIn ( ) +P°V,. (5
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Although the formulation of Eq. 5 differs from that of
Widom (Widom, 1963, 1982), the expressions are equiva-
lent in the thermodynamic limit (see Appendix B). The
present form is convenient here because it makes the influ-
ence of pressure explicit. Note also that the pressure-volume
term here is distinct from the volume-related contribution to
solvation energy that may be calculated with Flory-Huggins
theory (Kumar et al., 1995). The pressure-volume term
found in Equation 5 is typically very small at standard
pressure, because V, is typically small (Ben-Naim, 1992).
In contrast, the Flory-Huggins contribution may be large,
even when the partial molar volume of the solute is small.

We now proceed to simplify the ratio of partition func-
tions on the right-hand side of Eq. 5. To do this, we require
an expression for the energy of the system in terms of
conjugate momenta and coordinates:

Ma+Ms

H(pA9 Ps: r/’\9 rS) = E

i=1

p?
Z—;n-i + U(r/,\» rS)9 (6)

where M, and Mg are respectively the numbers of atoms of
the one solute molecule and the N solvent molecules; p is a
vector of the momenta of the M, + M atoms; p} is the
squared magnitude of the momentum of atom i; m; is the
mass of atom i; and U(r}, rg) is the potential energy as a
function of all the atomic coordinates. If it is assumed that
classical statistical thermodynamics is applicable (see dis-
cussion in last section), then (McQuarrie, 1973; Chandler
and Pratt, 1976)

i=1

Ono Mt Ms
2 m
UAJdpSJdrS e 2 rzmrur

Ma+M,
f ™ dpJ i ey | 3 Romev
N,A

(D

i=Ma+1

where B = (RT)™!, o, is the symmetry number of the
solute, and the symmetry numbers of the solvent molecules
have cancelled. Atoms i = 1, ... M, belong to the solute,
and atoms i = M, + 1 ... M, + Mg belong to the solvent.
The integral over each momentum component extends from
—o to oo, and the position integrals range over all configu-
rations that are consistent with molecules being intact and
within their container. Equation 7 neglects a prefactor that
does not contribute to the calculation of binding constants.

We now establish a molecular axis system that allows the
lab-frame coordinates of the solute atoms, rj, in Eq. 7 to be
separated into internal and external coordinates. Any three
atoms may be used to define the molecular axes. These
atoms may be numbered 1, 2, and 3 without loss of gener-
ality. Atom 1 becomes the origin of the molecular coordi-
nates. The vector joining atom 1 with atom 2 defines the
x-axis. The direction of the y-axis is given by the direction
of the vector joining atoms 2 and 3, minus the x-component
of this vector. The z-axis is constructed as the cross-product
of the x- and y-axes. The Cartesian internal coordinates of
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each atom may then be specified relative to this molecular
frame of reference. Note that, in internal coordinates, atom
1 is fixed at the origin; atom 2 always lies on the x-axis; and
atom 3 lies in the z = 0 plane. The six coordinates thus fixed
correspond to the external coordinates of the molecule.
Other definitions of the molecular frame are also possible.
The set of 3M, — 6 internal Cartesian coordinates will be
termed r,. The position of the molecular frame—really the
position of atom 1—will be termed R,. The three Eulerian
angles that specify the orientation of the molecular frame
relative to the lab frame—really the orientation of atoms 1,
2, and 3—will be termed £, ,, €4 5, £a 3. The complete set
of external coordinates will be termed £, = (Ry, €415 420
)

The integrals over the internal coordinates of the solute
and over the coordinates of the solvent do not depend upon
the position or orientation of the solute; viz., upon {,.
Therefore, the integrals over {, may be carried out at once
(Steinberg and Scheraga, 1963), yielding a factor of
871'2VN' a- In the classical approximation, the integral over
momentum for each atom i yields a factor of (2mm,RT)*>.
The momentum integrals for the solvent atoms cancel in Eq.
7, leaving only the momentum integrals for the solute at-
oms. Therefore, from Egs. 5 and 7, the standard chemical
potential of species A may be written as:

g M Zna _
o - _ pye N .
1 sola RTln(C°0'A [T@mm R Zro +P°V,;

t))
Ina= f e PUCeAs) dr, dr; C)]
ZN,O = J e_BU('S) drs . (10)

Here, Zy 5 and Zy , are configuration integrals.

The Standard Chemical Potential of a
Complex in Solution

Although Eqs. 8—10 apply directly to molecules A and B,
two complications arise for the complex, AB. First, it is
necessary to define the external and internal coordinates of
the complex. This may be accomplished by using the ex-
ternal coordinates of molecule A as external coordinates of
the complex. Then the external coordinates of B, {g, are
taken to be defined relative to molecule A, so that the
external coordinates of B become internal coordinates of
the complex. For simplicity of notation, these will still be
called {g = (Rp, £p.1> €82 €B3)-

Second, it is clear that configurations for which the two
ligands are far apart should not be included in the config-
uration integral of the complex. For most cases of interest,
this problem may be dealt with by restricting the configu-
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ration integral of the complex to configurations for which
the two molecules are, in fact, complexed (Hill, 1985b;
Chandler and Pratt, 1976). Mathematically, this restriction
may be implemented by including in the configuration
integral a step function I({y) that equals unity for complexed
configurations and zero otherwise.

Thus, the standard chemical potential of the complex is

gq? MatMe Z
° ap = —RTIn 2mRT)? A2
M 5ol AB C° O lﬂ ( T) ZN,O

_ 11
+ P°V,5; (1n

Zyag = J (L) e PUlrarelors) dr . dry d{g drs. (12)

Here M,z = M, + My is the number of atoms in both
solutes and J, is the Jacobian determinant for the Eulerian
rotation of molecule B relative to A.

It is now necessary to consider how the complex is to be
defined for computational purposes; that is, to specify the
range over which /({g) = 1. This is particularly simple
when B binds in a cavity of A. More generally, defining
I({g) is straightforward whenever the potential of mean
force (defined in the last section) for the interaction of A and
B is sharply peaked and negative in a small range of {g.
Then the stable configurations of the complex will dominate
the thermodynamic averages over a zone of configuration
space in which A and B are close together. Under these
circumstances, u3q ap Will be insensitive to the precise
range of configurations for which I({g) = 1. The region in
which I({g) equals one must satisfy the following two
requirements (Hill, 1955a): 1) The region should include all
configurations contributing significantly to the chemical
potential of the complexed state; i.e., those for which the
Boltzmann factor of the potential of mean force (see last
section) is large. 2) The region should not include so large
a phase volume of uncomplexed configurations that these
contribute appreciably to p$, ap-

It should also be pointed out that experimental measure-
ments of the binding constant K, are based upon a two-
state model in which solutes A and B are either complexed
or not. For this to be a good approximation, binding must be
strongly detected by a signal that changes when A and B
form a complex. Also, the signal must be negligible when B
is beyond the region around A dominated by the stable states
of the complex.

The following idealized case illustrates the insensitivity
of u$, ap for a tight complex to the range over which I({g)
= 1. Molecules A and B are taken to be structureless and
spherically symmetric. They bind each other with a square-
well potential of mean force that equals O at separations
greater than 4 A. Between 2 and 4 A, there is an energy well
of fixed depth wy,. The energy becomes infinite (hard wall)
at distances of less than 2A. The step function I({y) is set
equal to 1 for intermolecular distances less than some value
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r;, and zero otherwise. The sensitivity of the standard chem-
ical potential of the complex to the value of r; is examined
in Fig. 1. This plots the standard chemical potential of the
AB complex as a function of r;, for several different depths
of the well, w,,. The figure shows that the standard chemical
potential of the complex is insensitive to r;, so long as two
conditions are met. First, the binding must be reasonably
tight; here, this occurs for w, < 5 kJ/mol. Second, the entire
energy well must be included in the integral; this is satisfied
here when r, > 4 A. The same principles are expected to
hold for the association of real molecules. In fact, the
independence of the chemical potential upon the precise
volume of integration might be viewed as the defining
characteristic of a complex.

For loosely bound complexes, it becomes more difficult
to define the complex (Lewis and Randall, 1961b). In such
cases, a probabilistic definition of a bound complex may be
useful (Weist and Glandt, 1994); here the indicator function,
I({g), is generalized from a step function to an arbitrary
positive decreasing function. Another treatment of loosely
bound complexes assesses complexation through the reduc-
tion it causes in the computed osmotic pressure (Groot,
1992).

For completeness, it is worth considering whether the
binding of large molecules in solution may be treated by the
concept of “bound” states, which is used in the theory of
imperfect gases (Hill, 1956, 1986). A bound state of two
molecules is one in which their relative kinetic energy is
less than the work required to separate them. Bound states
are expected to be long-lived in the gas phase, where kinetic
energy is exchanged relatively slowly. However, in solu-
tion, the relative kinetic energy of solutes is likely to fluc-
tuate greatly because of collisions with the dense solvent.

-10.0

~20.0 4

0
-30.0

5

20

-40.0

T

Standard Chemical Potential (kJ/mol)

_50.0 1 ] 1
2.0 4.0 6.0 8.0 10.0
Cutoff Distance of Step Function (Angstroms)
FIGURE 1 The standard chemical potential of a hypothetical complex of

two spherically symmetric, structureless molecules that bind with a square-
well potential, as a function of the radius of integration, r; (see text). The
numbers indicate the depth, in kJ/mol, of the binding potential. The results
neglect a momentum term, but include a contribution of —RT In 87°/0C°,
where C° = 1660A 72, and ¢ = 2 for this symmetric complex.
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As a consequence, the lifetime of a complex probably is not
directly related to its instantaneous kinetic energy. There-
fore, the concept of a kinetic bound state does not appear to
be useful in this context.

The Standard Free Energy of Binding

The expressions derived above for the standard chemical
potentials of A, B, and AB in solution permit Eq. 4 for the
standard free energy change of binding to be written in
terms of molecular properties:

C_o O 0 Znas Zno
g 0ap ZnaZng

AG%s = —RTln( ) + PPAV,s,  (13)
where AV,z = V,g — Va — Vp. Note that all mass-
dependent terms have now cancelled. A similar cancellation
of mass terms was also observed in the context of the
insertion of helices in membrane bilayers (Ben-Shaul et al.,
1996). The issue of mass-dependence is discussed in the last
section.

FREE ENERGY SIMULATIONS WITH
EXPLICIT SOLVENT

The derivation in the previous section is now used to review
the statistical mechanical basis for the calculation of binding
free energies via free energy simulations with an explicit
treatment of the solvent. In these methods, some change in
the system is divided into a series of stepwise perturbations.
A molecular dynamics or Monte Carlo calculation is used to
evaluate the work of taking each step. The sum of these
work terms equals the overall change in free energy for the
change in the system.

The first subsection here briefly considers the calculation
of the relative binding constants of two different ligands B
and C for the same receptor A. The second subsection
considers in detail the calculation of the standard free en-
ergy of binding for a single ligand-receptor pair, A and B.
The third subsection considers the circumstances under
which parts of the protein may be treated as rigid in calcu-
lations of binding free energy.

Calculation of Relative Binding Free Energies

From Eq. 13, the difference between the binding free energy
of two different ligands B and C for the same receptor A is

Oap Z
AGC:\C - AGC;\B = _RT ln(”’A—B RAC

Oac Zu s

) + PO(VAC - ‘_/AB)
(04} ZN,C - -
(14)

The two pairs of terms on the right-hand side of Eq. 14
represent respectively the work of the “alchemical” trans-
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formations of B to C in the receptor A and the work of the
same transformation in solution (Tembe and McCammon,
1984). The use of multiconfiguration thermodynamic inte-
gration and free energy perturbation methods to compute
these quantities has been discussed in detail elsewhere
(Tembe and McCammon, 1984; Wong and McCammon,
1986; Bash et al., 1987; Beveridge and DiCapua, 1989;
Lybrand, 1990; Straatsma and McCammon, 1992; Warshel
et al., 1994), and is not reviewed further here. It is worth
pointing out, however, that the two volume changes in
parentheses in this equation are the changes in the equilib-
rium volume when B is mutated to C in the binding site of
A, and in solution, respectively. These volume changes are
small, so the associated pressure-volume work is negligible
at standard pressure. However, these contributions become
significant at pressures >~100 atmospheres, found in ul-
tracentrifuge cells and in deep ocean (Schade et al., 1980a,b;
Muller et al., 1981; Morild, 1981; van Eldik et al., 1989; Gross
and Jaenicke, 1994). Calculations of binding energies at
high pressure should therefore include these contributions.

Calculation of the Standard Free
Energy of Binding

Although relative binding affinities suffice for the under-
standing of many biochemical processes, it would clearly be
of interest to compute the free energy of binding for a single
ligand and receptor. Such a free energy calculation was used
in 1986 by Jan Hermans and Shankar Subramaniam to
compute the affinity of a cavity in myoglobin for an atom of
xenon (Hermans and Shankar, 1986). In that calculation, the
affinity was computed as the sum of two terms. The first
term was the work of reversibly replacing the interactions of
the xenon atom with the protein by an artificial harmonic
potential well that effectively trapped the xenon atom. The
second term was the work done when the pressure of the
trapped xenon was changed reversibly to a standard value of
1 atm. At 27 kJ/mol, the second term was not a negligible
quantity. As noted in the paper, the second term is required
if the simulation is to yield a standard free energy;i.e., a free
energy referenced to a well-defined standard state. A closely
related method has been used to compute the affinity of
water for a protein cavity (Zhang and Hermans, 1996).
These calculations for xenon and water were presented
without a derivation. However, a very recent paper eluci-
dates the statistical thermodynamic basis for such free en-
ergy calculations of the affinity of small molecules for
specific sites inside a macromolecule, and applies the re-
sulting formulas to water molecules in protein cavities
(Roux et al., 1996).

At the same time as work on the binding of small mole-
cules in protein cavities has progressed, a related set of
approaches has evolved for computing the free energy of
binding of larger molecules in protein binding sites. In
1988, the “double-annihilation” method (Jorgensen et al.,
1988) was proposed as a way of computing the standard free
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energy of binding for molecules in solution, and it has since
been used in a number of studies (Jorgensen et al., 1988;
Sneddon et al., 1989; Pranata and Jorgensen, 1991; Merz,
Jr., 1991; Miyamoto and Kollman, 1992, 1993a and b;
Mordasini Denti et al., 1996). The double-annihilation
method resembles the method used for xenon and myoglo-
bin, but it lacks the second term that corrects for the stan-
dard state. Moreover, it has been argued that the double-
annihilation method yields binding free energies that do not
depend upon the choice of standard concentration, and that
it therefore violates the law of mass action (Janin, 1996).
This is because the standard free energy of a reaction that
replaces two molecules by one complex must depend upon
the standard concentration, as reflected in the present ex-
pression for the binding free energy, Eq. 13. In contrast,
relative binding free energies (previous section) and solva-
tion free energies do not depend upon standard concentra-
tion, because these correspond to processes with fixed num-
bers of solute species.

The idea that the standard free energy of binding is
independent of the standard concentration might appear to
be supported by equations for the binding constant that do
not explicitly include standard concentration (Prue, 1969;
Justice and Justice, 1976; Chandler, 1979; Shoup and
Szabo, 1982; Pranata and Jorgensen, 1991). For example,
the following equation (Pranata and Jorgensen, 1991) re-
lates the “association constant” K, to a potential of mean
force w(r) (see ‘Entropy External, Internal, and Solvent’)
that depends upon the solute-solute distance r:

K, = 47TJ rPe P¥0dr, (15)

0

Here ¢ is a “cutoff limit ... that defines association”
(Pranata and Jorgensen, 1991). However, it can be shown
that equations of this type implicitly use a standard concen-
tration of 1 molecule/d>, where d is the unit of distance in
the integrals. Also, some equations yield not the binding
constant, but the ratio of the binding constant to that which
would be obtained for an ideal gas (Chandler, 1979). Such
ratios of binding constants do not depend upon standard
concentration.

This subsection examines the theoretical basis of the
double-annihilation method, and shows that it is indeed
incomplete. However, the double-annihilation method is a
very valuable step toward a method for directly computing
the standard free energy of binding. Therefore, the double-
annihilation formalism is the starting point for the develop-
ment of such a method, which is presented next. The present
“double-decoupling” method is consistent with and some-
what more general than existing methods of computing the
affinities of small molecules for specific sites in a macro-
molecule (Hermans and Shankar, 1986; Zhang and Her-
mans, 1996; Roux et al., 1996). Finally, published calcula-
tions with the double-annihilation method are discussed in
light of the present analysis.
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A double-decoupling method of computing the standard
free energy of binding

The thermodynamic analysis that underlies the double-an-
nihilation method is summarized in Fig. 2, which is from
Pranata and Jorgensen (1991) with minor changes in nota-
tion. The top reaction is the “annihilation” of the ligand, B,
from the solvated receptor-ligand complex, AB. The bottom
reaction is the “annihilation” of the ligand from solvent. The
free energy changes of the two reactions, AG, and AG,,
combine as shown to yield what has been termed the “ab-
solute free energy of binding,” AG,,, (Jorgensen et al.,
1988; Pranata and Jorgensen, 1991). The quantities AG, and
AG, are computed by the method of multiconfiguration
thermodynamic integration [see, for example, Straatsma and
McCammon (1992)] or of free energy perturbation [see, for
example, Lybrand, 1990)].

With either approach, “annihilation” is accomplished by
gradually turning off the interactions of the ligand with the
rest of the system: the receptor-solvent system for AG,, and
the solvent for AG,. A central observation of the present
discussion is that this procedure does not actually annihilate
the ligand; it merely decouples the ligand from its environ-
ment. In effect, “annihilation” converts the ligand into an
ideal-gas molecule. With this in mind, the thermodynamic
relation of Fig. 2 is redrawn in a more complete form in Fig.
3, where the subscripts (sol) and (gas) imply a species in
solution or in the ideal gas phase, respectively. The free
energies now bear a superscript that indicates a standard
quantity. If the free energy changes shown in Fig. 3 can be
computed, then the standard free energy of binding is their
difference, as written in the figure. These free energy dif-
ferences may be computed as follows.

The work of transferring the ligand from solution to the
gas phase, AG%, does not depend upon the choice of stan-
dard concentration, so long as the same standard state is
used for the two phases in comparing with experiment. This
work of transfer may be computed by existing free energy
perturbation or thermodynamic integration approaches, and
need not be discussed here. However, it is not immediately
obvious how to use computer simulation methods to find the
standard free energy change associated with transferring the
ligand from the receptor to the gas phase, AG9. This sub-
section therefore derives an expression for AG° in terms
suitable for evaluation by thermodynamic integration. Mi-

AB —_—— A A
B—— 0 Ac_
A + B——» 2B AGypg = AG, - AG

FIGURE 2 Thermodynamic analysis of double-annihilation method
(Pranata and Jorgensen, 1991).
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AB(80l) —— A(s0l) + B(gas) AG?
B(sol) ——» B(gas) AG;>
A(sol) + B(sol) —» AB(sol) AGy, = AG] - AGT

FIGURE 3 Thermodynamic analysis of “double-decoupling” method
(see text).

nor modifications would permit its implementation by the
method of free energy perturbation.

To begin, an expression is written for AG°,. From Fig. 3
and Eq. 4,

AGT = pSoa + I“L(;as,B = KSoLAB» (16)

where p%,;  is the standard chemical potential of B in the
ideal gas phase. From arguments analogous to those for a
molecule in solution (second section), this standard chemi-
cal potential is given by

Qop

I“";as.B = —RTIn W (17)

gm o
= —RT ln(—o [T @mmRT)* Zo_B), (18)
ogC

i=1

where the configuration integral Z, y is defined by

Zop = f e PVl gy (19)

Here Qg on the right hand side of Eq. 17 is the molecular
partition function of B, and V is the volume of the container.
The factor of V is cancelled by a factor of V in Q, 5 which
emerges when external and internal coordinates are sepa-
rated. Here Z, g is the configuration integral of B in the gas
phase, in internal coordinates.

Equations 8-12 provide expressions for m$, . and
Wioraps Tespectively. Combining these with Egs. 17-19
yields

87 Oag ZnaZop
C° o, 03

) + P°(Vy — Vap)
(20)

Now, the use of thermodynamic integration to obtain the
free energy difference between two states of a system re-
quires the creation of an artificial energy function that
interpolates smoothly between the energy functions of the
initial and the final states. The precise functional form of the
interpolation may be adjusted to optimize convergence of
the simulations. Typically, the interpolation is controlled by
a parameter A € [0, 1], where 0 and 1 correspond to the
starting and final energy functions, respectively. Here, the
initial state is AB(sol), and the final state is A(sol) + B(gas).

AGS = —RT ln(

ZN.AB
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Therefore, the artificial energy function U(A, rp, Iy, {5, I's)
must satisfy:

U(O9 rAv I'p, gB’ rS) = U(rA’ I, gB» l.S); (21)
U(1, ry, 1, {3, Ts) = U(ra, r5) + Ulrp). (22)

A free energy function g(A) is now constructed from the
artificial potential energy function:

g(A) = _RT ln j 1({8) J{Be_BU(/\-I'A‘rB‘lBJ'S) dl‘A dl‘B ng drs .
(23)

As in Eq. 12, Jyp is the Jacobian determinant of the inter-
molecular coordinates. When A = 1, the potential energy,
U, depends upon (r,, rg), ry, and {g separately, so the
integrals over these sets of coordinates can be separated.
Therefore, the change in g(A) when A goes from 0 to 1
becomes

g(1) — £(0)
 —RT I e~ BUtrars) ,—BU(rs) I(;B) J[B dr, drg dig drs
f I({B)JCB e-BU(rA'm'h’rS) dl'A drB ng dl's
24
Vi&Z,
= —RTIn 7"5‘2”"* %o, 25)
N.AB

The second line shows the simplification that results when
it is assumed that [ I({g) J,5 di{g = V; &, where V, and &
are from the integrals over position and orientation, respec-
tively. This assumption leads to a formula that is particu-
larly easy to interpret, but it is not actually needed to
implement the thermodynamic integration method proposed
here.

In the method of thermodynamic integration, g(1) — g(0)
is evaluated using a numerical approximation to the follow-
ing integral over A:

ag(A
8(1) — g(0) = f LGN (26)
aU(A’ rA7 rB’ gB? rS)>
= ax 27
J < oA Al(gs)=t

The subscripted angle brackets indicate a Boltzmann-
weighted average in the conformational distribution appro-
priate to a given value of A. In addition, from the definition
of g(A) in Eq. 23, it is clear that the integrals used in
computing this average range only over conformations for
which I({g) = 1, i.e., for which the ligand is in or near the
binding site. This is indicated by the second subscript on the
angle brackets. The Jacobian determinant, J,g, is implicit in
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the average, and is automatically accounted for by correct
molecular dynamics or Monte Carlo sampling.

Equations 20, 25, and 27 permit AG®, to be related to an
integral that can be evaluated numerically in a computer
simulation:

JU(A, ry, 1, (g, I
AGOl - j < ( AaAB gB S)> d)\
Al =1

TaB
~RT “‘(crA oB> 28)

+ RT In(C°V)) + RT In(&/877)
+ Po(‘—/A - VAB)

This is the chief result of this section. It states that the
standard free energy change associated with the decoupling
of the ligand from its binding site in solution may be
evaluated from a free energy integration in which the ligand
1s always constrained to occupy a region in the binding site
that is defined in the coordinate system of the receptor, even
as the ligand is gradually decoupled from the receptor and
the solvent. When the ligand is fully decoupled, it is a
molecule of ideal gas still constrained to occupy the region
where I({g) = 1. It therefore possesses a well-defined
chemical potential. The constraint can be implemented by
an additional Hamiltonian component that is zero when the
ligand is in the region where I({z) = 0, and that rises
sharply where /({z) becomes zero. [A harmonic restraining
potential could also be used (Hermans and Shankar, 1986;
Roux et al., 1996; Zhang and Hermans, 1996).] Once the
simulation is complete, however, it is necessary to correct
for the fact that the chemical potential of the constrained
ligand does not correspond to the standard concentration,
C°. Accordingly, the third term of Eq. 28 represents the
change in free energy when the constrained, gas-phase
ligand is allowed to expand to occupy a volume 1/C°. In Eq.
28, the form of this term is appropriate to a simulation in
which the ligand is restrained by a hard-walled potential
matching I({g). If the ligand is instead restrained in the
binding site by a harmonic potential with force constant k,
the corresponding term becomes —RT In [C°(QQwRT/k)*?]
(Hermans and Shankar, 1986; Roux et al., 1996). Similarly,
the fourth term in Eq. 28 represents the change in free
energy when the rotationally constrained ligand is allowed
to rotate freely. Again, a different form would be obtained
if the orientation of the ligand were restrained harmonically.
Thus, these two terms correct the thermodynamic integra-
tion for the standard state.

The last line of Eq. 28 contains the pressure-volume work
associated with the change in volume of the receptor-sol-
vent system when the ligand is decoupled from it. The
volume change V, — V,g represents the volume change of
the simulation box as A goes from O to 1 in a constant-
pressure simulation. This contribution is expected to be
negligible at normal pressures.
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It might appear that the results of the calculation pre-
scribed here will depend upon the definition of I({g). The
discussion in Standard Chemical Potential of a Complex in
Solution shows that this should not be the case, so long as
I{{g) meets certain rough guidelines. Nevertheless, it is
worth discussing this point in the context of simulation. As
the region where I({g) = 1 is made smaller, the two cor-
rection terms in Eq. 28 will become more negative. How-
ever, this change will be balanced by a larger work-integral,
because the ligand will not be so free during the simulation
to drift off into regions where (QU(A, r,, rg, (g, Is/
dA)x 1zB)~1 i small. Errors will occur only when the inte-
gration region defined by /({z) becomes so small that con-
formations that ought to make important contributions to the
work integral are missed. Errors will also occur if the region
where I({y) becomes so large that the simulation fails to
converge.

To summarize, the double-decoupling method, like the
double-annihilation method, requires two simulations. The
first, a transfer of the ligand from solvent to gas, yields
AG?%,. The second, just described, yields the standard free
energy change for decoupling the ligand from the binding
site of the solvated receptor. This yields AG once a cor-
rection for the standard state is incorporated. The standard
free energy of binding is then AG%z = AG% — AGS.

This methodology appears to be computationally feasi-
ble. In fact, as noted above, similar approaches have been
used to compute the standard free energy of binding of
Xxenon to a cavity in myoglobin (Hermans and Shankar,
1986) (see below), and to evaluate the thermodynamic sta-
bility of water molecules in protein cavities (Roux et al.,
1996; Zhang and Hermans, 1996). These studies used a
harmonic potential to restrain the ligand in the binding
cavity, rather than the hard-walled potential matching I({g)
considered here. Also, the present treatment differs in al-
lowing for an orientational restraint of the ligand. However,
the various approaches are based upon the same principles
and are equally valid, so long as they include the required
correction terms, which correspond to the third and fourth
terms of Eq. 28. Finally, the present analysis demonstrates
that the same approach applies even when the binding site is
not a sterically well-defined cavity. The constraint corre-
sponding to /({y) effectively defines the complex, and the
precise definition of the complex is unimportant so long as
binding is tight and all the energetically important regions
of the binding site are sampled during the simulation.

Review of Published Calculations with the Double-
Annihilation Method

It is of interest to consider the implications of the present
analysis for calculations that have used the double-annihi-
lation method. To review, the central observation of the
present analysis is that the “annihilated” ligand is a mole-
cule of ideal gas; that the computer simulation must give
this molecule a well-defined chemical potential; and that a
correction term is needed to account for the difference
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between the standard state and the state assigned by the
simulation. However, some calculations that use the double-
annihilation method do not yield an ideal-gas molecule with
a well-defined chemical potential, and none include a cor-
rection term, although the need for a correction term has
been noted (Miyamoto and Kollman, 1993a; Janin, 1996).
In contrast, the correction term has been included in the
studies of xenon and water in protein cavities (Hermans and
Shankar, 1986; Roux et al., 1996; Zhang and Hermans,
1996). In the double-annihilation method, the annihilated
ligand has been treated in three different ways.

First, the original double-annihilation calculation (Jor-
gensen et al., 1988) computed the potential of mean force
w(r) between two methane molecules as a function of the
distance separating them. A minimum in w(r) was found at
the contact distance of 4 A. Because the distances examined
ranged between 3.5 and 7.5 A, the potential of mean force
by itself did not yield the work of moving one methane from
infinity to contact with the other methane. This quantity was
obtained by a double-annihilation calculation in which a
methane was annihilated from the contact position, and then
from the bulk solvent. The resulting energy, —1.8 klJ/mol,
was referred to as the “absolute free energy of binding.”
This energy value, and the entire potential of mean force
w(r), are indeed absolute, and have no concentration term,
explicit or implicit. However, this single value of w(r) for
r = 4 A is not the standard free energy of binding, AG%p.
Obtaining AG% g from the potential of mean force w(r)
requires integrating over r for a range defining the bound
complex (see Egs. 15 and 49). In practice, the methane-
methane simulations converged slowly, and it was found
necessary to integrate the “absolute binding free energy”
while “reeling in” one methane toward the other. It is
therefore somewhat difficult to interpret the results. None-
theless, it is perhaps of interest that one can extract an
approximate standard free energy of binding for two meth-
anes by numerically integrating the potential of mean force
plotted in Jorgensen et al. (1988). The results range from
~2 to 4 kJ/mol depending upon whether one integrates over
one or both minima in the curve. We are not aware of
experimental data with which these results can be compared.

Second, some subsequent calculations allow the ligand to
move without any imposed restraint while its coupling to
the receptor and solvent is gradually decreased (Pranata and
Jorgensen, 1991; Merz, Jr., 1991; Miyamoto and Kollman,
1992). An advantage of this method, compared to a calcu-
lation in which the ligand is fixed in position, is that the
simulation can sample relevant intermolecular geometries.
However, a difficulty arises in the final stages of the sim-
ulation, when the ligand is weakly coupled to the environ-
ment. The problem is that the ligand would have to explore
the entire simulation box for the calculation to yield con-
verged values of (QU(A, rp, rg, {g, Is)/oA),. That the
calculations in fact do not converge is evidenced by their
irreversibility (Merz, Jr., 1991; Miyamoto and Kollman,
1992). On the other hand, if the decoupling ligand were, in
effect, to sample a volume comparable to 1/C° = 1660 A3,
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no special term would be needed to correct for the standard
concentration. Perhaps this explains why these calculations
show little systematic error relative to experiment despite
the lack of a correction term. However, because the calcu-
lations are unconverged, the results are not expected to be
stable as a function of the length of the simulation.

Finally, in some calculations the position of the ligand
has been restrained by artificial harmonic bonds to the
starting position of the ligand and/or to the receptor. The
restraints are left on as A goes to 1 (Sneddon et al., 1989;
Miyamoto and Kollman, 1993a, b; Mordasini Denti et al.,
1996). This approach permits the ligand to sample at least
part of the binding site, if the restraints are carefully de-
fined. Another advantage of this approach is that the chem-
ical potential of an ideal-gas molecule restrained by one or
more harmonic “bonds” is well-defined. Therefore it is
possible, at least in principle, to compute the standard-state
correction. In practice, it is often difficult to determine from
published work the precise form of the restraints. Nonethe-
less, it is striking that the reported “absolute binding free
energies” computed by this approach are uniformly more
negative (more favorable to binding) than measured stan-
dard free energies of binding. This is consistent with the
neglect of a correction term that opposes binding. Thus, the
computed absolute binding free energy of two formamide
molecules in water is —12.1 kJ/mol more favorable than the
measured standard binding free energy of two N-methyl
acetamide molecules in water (Sneddon et al., 1989), even
though the two systems are chemically similar. (On the
other hand, the bound conformation used in the simulations
might not be the predominant bound conformation of the
actual complex in solution. Therefore, the present compar-
ison is subject to some uncertainty.) Similarly, for the
binding of biotin with streptavidin, and of N-L-acetyltryp-
tophanamide with chymotrypsin, the computed absolute
free energies err with respect to measured standard free
energies by —12.1 and —16.3 kJ/mol, respectively (Mi-
yamoto and Kollman, 1993b). These systematic errors are
consistent with the theory presented here, and suggest that
calculations that account correctly for standard conditions
will yield improved agreement with experiment.

Treating Parts of a Receptor as Rigid

The configuration integrals in the equations presented so far
extend over all conformations of the two ligands. However,
in many important cases, non-native conformations of a
macromolecule are negligibly populated in both the free and
bound form. It is thus appropriate that actual free energy
calculations do not sample grossly non-native conforma-
tions of receptors. Furthermore, binding of a small ligand
may produce little or no change in the conformation of the
bulk of a large receptor. In other cases, binding may indeed
alter the conformational distribution of the receptor, but
substitution of one ligand for another in the binding site may
produce little change in conformation (Appelt et al., 1991).
In cases such as these, it is common practice to carry out
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calculations in which parts of the protein are treated as rigid.
This section examines the statistical thermodynamic basis
for such approximations.

The molecule to be treated as partly rigid will be desig-
nated the receptor, and will be labeled A. The internal
coordinates of this molecule are separated into those whose
probability distributions change upon binding r,, and those
whose probability distributions are unchanged by binding
r,. The latter will tend to correspond to chemical groups far
from the binding site, but may also correspond to rigid
domains that move relative to each other, or to stiff degrees
of freedom such as bond-lengths. The internal coordinates
and external coordinates of the ligand will still be rg and (g
(Fig. 4). With this notation, the binding free energy (Eq. 13)
may be written as

C° o408 Zy

AGS%s = —RT ln( ) + PPAV,p (29)

S K(Lp) Iy, e PUmIreders) g dr, d{ drg drg
~R J e FOErr gy dr, 1
(30)

Treating the degrees of freedom r, as rigid in this ex-
pression means fixing these degrees of freedom in some
conformation r¥, and eliminating the integral over r,:

C° os0p Zyo

AGAB = _RTln(S—'n'z —O'AB %

) + PPAV,p (31)

f 1(4‘3) J{s e—BU(ra.n‘,‘m‘ {8, T5) dl‘a dl drg drs
— RT ln f e_BU(r"‘er)dra rs (32)

Receptor (A)

Ligand (B)

FIGURE 4 Diagram of separation of internal coordinates of complex. r,:
internal coordinates of protein whose conformation distribution is assumed
unchanged by binding. r,: internal coordinates of protein whose distribu-
tion may change upon binding. rg: internal coordinates of ligand. {g:
position and orientation of ligand relative to protein.
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This will be a good approximation when

f e—B(U(ra.n’frs) dr, dry
[ e PVt ge dr, dr

In
f I(CB) J e (ruRrs.d.rs) dra ng drB drs
{s
lf I(ZB) Jpe (Farers dors) dla dra dlB drB drS
i

That is, the logarithm of the probability density for r must
be unchanged by binding. Crystallographic or other struc-
tural studies are essential to determining which parts of a
receptor meet this criterion and may therefore be treated as
rigid.

The present treatment can also accommodate certain sys-
tems in which the receptor undergoes a large conforma-
tional change when it binds ligands. For example, when
binding is associated with a hinge-bend conformational
change that causes two rigid domains to close the binding
site, it may be reasonable to include in r, only the torsion
angles in the hinge region. The internal coordinates of the
domains would then be fixed in conformation r¥. Accom-
plishing this requires a change of coordinates.

It may also be concluded that, if binding does not affect
the distributions of bond-lengths and bond-angles, it is
permissible to treat these internal degrees of freedom as
rigid also. This may be demonstrated formally if the Carte-
sian internal coordinates used here are replaced by internal
coordinates consisting of bond-lengths, bond-angles, and
torsion angles (Pitzer, 1946; Flory, 1988). It is worth em-
phasizing that the bonds and angles need not actually be
rigid in order for them to be treated as rigid in calculations,
so long as they are computationally held in a conformation
the logarithm of whose probability does not change signif-
icantly upon binding. [For a detailed discussion of the
separation of internal coordinates into “hard” and “soft”
degrees of freedom, see Go and Scheraga (1969).]

In some cases, the conformation of a receptor does
change significantly when it binds a ligand. Accounting for
such changes in computational models of binding is diffi-
cult. Even in such cases, however, the conformation of a
large part of the receptor may change little when one ligand
is substituted for another in the binding site. A straightfor-
ward extension of the present analysis shows that it is then
legitimate to keep that part of the receptor rigid when
computing the relative binding constant of the two ligands.

Finally, this analysis is helpful in understanding the case
where the receptor is tethered to a solid support, such as a
separation column. So long as the tether and the solid
support do not undergo conformational changes when the
ligand is bound, their coordinates may be lumped with the
r, internal coordinates of the receptor (above). Accordingly,
their integrals will cancel when the binding constant is
written, leaving a normal expression for the binding constant.

OTHER REPRESENTATIONS OF THE SOLVENT

Successes in the development of implicit, or continuum,
models of the solvent [see, e.g., Eisenberg and McLachlan
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(1986); Kang et al. (1988); Still et al. (1990); Honig et al.
(1993); von Freyberg et al. (1993); Stouten et al. (1993);
Simonson and Brunger (1994); Madura et al. (1994); Cra-
mer and Truhlar (1995); Gilson et al. (1995); Varnek et al.
(1995); Marrone et al. (1996)] raise the possibility of mak-
ing binding calculations more efficient by avoiding the
explicit treatment of the solvent. The first subsection here
reviews the statistical thermodynamic basis for the use of
implicit solvent models in binding calculations. In some
cases, it may be possible to make an implicit solvation
model more accurate by including a few explicit solvent
molecules. The second subsection therefore derives the
theory necessary for using such a hybrid implicit/explicit
solvent model in binding calculations.

Protein-ligand binding is often associated with the uptake
or release of protons. In such cases, the apparent binding
free energy is influenced by pH, and including the thermo-
dynamic linkage between protonation and binding may be
critically important. Therefore, the third subsection here
provides a framework for including protonation equilibria in
models of binding.

Implicit Models of the Solvent

The formalism presented above is now used to isolate the
chief effects of the solvent in a solvation energy term that
depends upon the conformation of the solutes. Formalisms
for separating solute and solvent degrees of freedom are
discussed in a number of publications [see, e.g., Lifson and
Oppenheim (1960); Ben-Naim (1975); Chandler and Pratt
(1976)1.

The standard free energy of binding in Eq. 13 contains
three configuration integrals that involve both a solute and
the solvent: Zy o, Zy g, and Zy op. These are of similar
form, and we focus upon Zy . To begin, the interaction of
the solute with the solvent for a given configuration of the
system is defined as

AU(ry, 15) = Ulra, 15) — Ulry) — Ulrg).  (34)
It is then straightforward to show that

Ma

87 _
Wian = —RTIn| == — [1@mm RT2 Z,| + PV (35)
A=

i=1

Z, = Zna _ j o~ FlUrA)+ WD) g A (36)

=Z_o

where
f e—BAU(rA,rs) e—BU(rs) dl's

f e—BU(rs) dl's

W(r,) = —RT ln( ) 37
The parenthesized ratio in Eq. 37 is essentially the pure-
solvent average of the Boltzmann factor for the solute-
solvent interaction potential, for a given conformation r, of
the solute. To within a small pressure-volume correction,
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W(r,) equals the work of transferring the solute in confor-
mation r, from gas phase to the solvent. The solvation term
W contains the most important effects of the solvent upon
the standard chemical potential of the solute. It is a function
of temperature and pressure, although this is not written
explicitly here. In computations of binding free energies,
W(r,) may be approximated by an implicit solvation model.

The standard free energy of binding given in Eq. 13 may
now be rewritten as

[«)
C®° op0p Zng

S YA

AGSs = —RT ln(

where Z and Z, 5 are defined in exact analogy to Z,. This
equation yields the binding constant in terms of integrals
over only the internal coordinates of the three solute species
A, B, and AB. It is worth pointing out that the methods of
thermodynamic integration and free energy perturbation can
be implemented with an implicit model of the solvent.

Hybrid Models of the Solvent

For calculations with simple implicit models of solvent, it
may be possible to improve accuracy by including a small
number of solvent molecules explicitly (Beglov and Roux,
1994). We now derive expressions that permit the explicit
treatment of a small number of solvent molecules that
interact noncovalently with the solutes.

A small number n <&< N of solvent molecules that interact
noncovalently with A, B, or AB may be included explicitly
by excluding these molecules from the N solvent molecules
treated with the solvation term, W, and including them
explicitly in the expression for the standard chemical po-
tential of a solute. Thus, if n, molecules are considered
explicitly along with A, the argument of the logarithm of Eq.
5 is multiplied and divided by Qy_,, . and ‘_/A = Vna —
Vi is rewritten as (Vy o — Vnon,,) + (VN—nyo — Vno) O
yield:

. Ona
Msora = = RT ln(VNvA ce QN—nA,O)
_ _ QN_I‘IA-O)
+ P°(Vyp = Vainuo) — RT1 (——
(Vna N-nr0) n Ono (39

+ Po(‘_/N—nA.O - i-/N,O)’

where Vy_,,  is the equilibrium volume of N — nj, mole-
cules of pure solvent at standard pressure.

The first line of Eq. 39 is recognizable, by comparison
with Eq. 5, as the standard chemical potential of an entity
consisting of the solute, A, together with n, molecules of
solvent. The second line of Eq. 39 is directly related to
the chemical potential of the solvent u, as shown by the
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following identity:

RT 1n<QN_""'°) + P°(Vn-npo = Vo)
Ono (40)
( QN i+, 0) g
= RT 2 + n, P°Vg
QN i,0

where VS is the partial molar volume of the solvent. The
second equality holds because each term in the sum is the
change in the Gibbs free energy upon removing one of the
N molecules of solvent, under conditions where n, << N. It
is worth emphasizing that p, is not the standard chemical
potential of the solvent, but its actual chemical potential.

The first ratio of partition functions in Equation 39 may
be treated in the same way as that in Eq. 5, except that now
the coordinates of n, solvent particles are treated explicitly
along with the coordinates of the solute. Thus,

ma+Mp,

IT @mmRT)"

i=1

8
Moa = —RT ln(m

j e~ BUrALsA) +W(rarsa)) dl'A drSA @D

+ Po(‘-/A + nA‘_/s) — Al = Moea — Aalks,

Here rg, represents all the coordinates of the n solvent
molecules associated with A, defined in the frame of refer-
ence of A; and M|, is the number of atoms belonging to the
na solvent molecules. The final line defines S ., the
standard chemical potential of the solute together with n
solvent molecules. Equation 41 demonstrates that a model
of binding can use an implicit model of solvent as an
approximation to W and still include some solvent mole-
cules explicitly. The only adjustment is that the cost of
removing these solvents from the bulk of the solvent, n, u,,
must be accounted for.

The standard free energy of binding may now be written
as

Na — np)is,
42)

where nug, n, and ng are the numbers of solvent molecules
included explicitly for AB, A, and B, respectively. This
formulation may be useful for calculations that combine an
implicit model of solvent with a few explicitly treated
solvent molecules. A disadvantage is that it requires inte-
gration over all possible placements of the explicitly treated
solvent molecules. However, in cases where only a few
solvent-sites contribute substantially, it should be possible
to restrict the range of the integrals.

AG° = Iu(«c:\B,nAB - I-L?A_nA - IJ/OB,nB - (nAB -

The Influence of Solvent pH

The noncovalent binding of ligands by proteins may be
associated with the binding or release of protons. As a
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consequence, the pH of the solvent can affect the apparent
binding constant. The treatment of binding presented above
cannot yet account for this linkage. Therefore, this subsec-
tion extends the treatment of binding to account for the pH
of the solvent. The resulting expressions are analogous to
those for the explicit treatment of a few solvent molecules.

The binding polynomial formalism (Wyman, 1965;
Schellman, 1975) provides a way to incorporate protonation
equilibria into the present treatment of binding. Suppose
that solute A exists in a number L of protonation states,
designated A, each having a standard chemical potential,
pf’Ap, given by Eq. 5. Then the overall standard chemical
potential of A, including contributions from all protonation
forms, Ap, is

L
M‘Z = —RTIn E e~ Blud,—8np pne) (43)
p=0

Here py+ is the chemical potential of the proton (not its
standard chemical potential) and An, is the difference be-
tween the number of protons bound in state A, and the
number bound in a reference state A;. Which protonation
state is designated A, is purely a matter of convenience
(Gilson, 1993). One possibility is the fully deprotonated
state; another is the predominant protonation state at the pH
of interest. The chemical potentials of B and AB may be
modified in the same way to account for protonation equi-
libria. This approach has the disadvantage of prescribing
direct computations of changes in free energy associated
with covalent binding of protons. Fortunately, it is possible
to avoid this difficulty by formulating the problem in terms
of changes in the ionization energies of titratable groups of
known initial pKa [see, e.g., Tanford and Kirkwood (1957);
Matthew et al. (1985); Bashford and Karplus (1990); Yang
and Honig (1993); Gilson (1993)]. Furthermore, if only a
single protonation state, p, g, r, is highly occupied for each
of A, B, and AB, respectively, then the standard free energy
of binding becomes

AGp = pas, — K, — Ifl’aq — An py-, (44)
where An is the number of protons taken up upon binding.
This formula is essentially the same as Eq. 42, except that
covalently bound protons are substituted for noncovalently

bound solvent molecules.

ENTROPY AND ENERGY COMPONENTS OF THE
BINDING FREE ENERGY

A number of models express the free energy of binding as
a sum of attractive interaction terms and unfavorable en-
tropy terms [e.g., Gurney (1953); Chothia and Janin (1975);
Andrews et al. (1984); Erickson (1989); Novotny et al.
(1989); Searle et al. (1992a); Horton and Lewis (1992);
Murphy et al. (1993); Weng et al. (1996)]. Such “energy-
component” models are simple and tractable. However, the
theory underlying the various free energy components often
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is unclear. In particular, a number of different theoretical
approaches have been used to estimate the change in en-
tropy associated with the loss of external freedom of two
molecules upon binding; i.e., the changes in translational
and rotational entropy. A major goal of the present paper is
to establish clear definitions of the entropy changes upon
binding. First, however, it is worth reviewing existing ap-
proaches to this problem.

One approach involves the use of the classical Sackur-
Tetrode equation for the translational entropy of an ideal gas
(McQuarrie, 1973) to compute the changes in translational
entropy due to binding of molecules in solution (Doty and
Myers, 1953; Steinberg and Scheraga, 1963; Page and
Jencks, 1971; Chothia and Janin, 1975; Janin and Chothia,
1978; Finkelstein and Janin, 1989; Erickson, 1989; Searle et
al., 1992b; Spolar and Record, Jr., 1994; Morton et al.,
1995; Janin, 1995). A rotational entropy contribution, based
upon ideal-gas formulas for rotational entropy, is often
included in such models. This ideal-gas approach to esti-
mating entropy changes is used without derivation in an
early discussion of the dimerization of insulin that implicitly
assumes that the translational entropy goes to zero upon
binding (Doty and Myers, 1953). A subsequent paper jus-
tifies the use of ideal-gas theory for binding in solution, and
points out that the translational entropy lost on binding is
partly replaced by contributions from degrees of freedom
internal to the complex (Steinberg and Scheraga, 1963). The
ideal gas formulas for entropy have been applied in several
different ways to compute binding entropies. Some appli-
cations yield entropy changes that depend upon the masses
of the molecules involved (Doty and Myers, 1953; Page and
Jencks, 1971; Chothia and Janin, 1975; Janin and Chothia,
1978; Searle et al., 1992b; Spolar and Record, Jr., 1994;
Morton et al., 1995). Other applications yield entropy
changes in which masses cancel out, leaving only effective
volume terms (Finkelstein and Janin, 1989; Erickson, 1989;
Janin, 1995). The existing literature does not contain a
definitive analysis of the application of ideal-gas formulas
to the problem of binding in solution. Moreover, current
papers offer conflicting views on whether entropy changes
upon binding depend upon molecular mass.

Another method of estimating the change in translational
entropy upon binding is associated with the concept of the
cratic entropy (Gurney, 1953; Kauzmann, 1959). In this
approach, the free energy of binding is expressed as a sum
of two contributions. The “unitary” contribution is related to
the favorable work of assembling the complex at a fixed
point in space, starting from two widely separated mole-
cules at fixed points. The “cratic,” or mixing, entropy is said
to correct for the fact that the molecules and the complex are
free to mix with solvent molecules. The mixing or cratic
entropy term depends not upon concentration or number
density of the solutes, but upon their mole fraction. This
approach has been used in a model of protein-protein asso-
ciation (Novotny et al., 1989). It has been argued, based
upon interpretation of experimental binding data (Murphy et
al., 1994), that it is superior to approaches based upon the
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Sackur-Tetrode equation. It has also been argued, based
upon a thermodynamic analysis, that the cratic entropy is
fallacious (Holtzer, 1995).

This section of the paper seeks to elucidate the statistical
thermodynamic basis of energy-component models of bind-
ing, and pays particular attention to the entropy compo-
nents. The first part of the section defines a partitioning of
the entropy change upon binding. Three major components
are identified: a contribution from the change in the external
freedom of the molecules; a contribution from the change in
the internal, or configurational, freedom of each molecule;
and a term associated with the change of entropy of the
solvent. It is also shown that the choice of interaction terms
to be included in an energy-component model of binding
depends upon which entropy terms are included. The second
part of the section discusses in detail the changes in entropy
that result from loss of external freedom of the solutes upon
binding, and includes discussions of the “cratic” entropy
term and the influence of molecular mass upon binding.

External, internal and Solvent Entropy
External Entropy

The translational and rotational contributions to partition
functions of molecules in the gas phase involve integrals
over both momentum and position (McQuarrie, 1973).
However, in classical statistical thermodynamics, the mo-
mentum parts of the partition functions cancel in the final
expressions for the free energy of binding (see above).
Thus, the purely classical treatment assumes that binding
does not restrict the freedom of the molecules in the mo-
mentum part of phase space, but only in the spatial part.
(Some of the physical limitations of this assumption are
discussed in the last section.) As a consequence, the terms
“translational” and “rotational” entropy are somewhat mis-
leading. Here, “positional” and “orientational” entropy will
be used instead. Together, these constitute the “external”
entropy. In order to define the change in external entropy, it
is necessary to rewrite the free energy of binding, AG%g, as
an integral over only the external degrees of freedom of one
of the molecules. This is accomplished by defining a po-
tential of mean force (Lifson and Oppenheim, 1960; Go and
Scheraga, 1969) for the interaction of the two solutes as a
function of their relative position and orientation, {g. When
the standard relationship between entropy and free energy
(McQuarrie, 1973),

(45)

AAG®
(32,
P

oT

is applied to the resulting expression for AG%g, the chain
rule yields the entropy of binding as a sum of contributions
from the external, internal, and solvent degrees of freedom.
The subscripted parentheses in Eq. 45 imply a derivative at
constant pressure.
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To begin, the in vacuo and solvent-mediated interactions
of A and B are defined respectively as

AU(r, Tg, L) = U(r,, 1p, {p) — U(ry) — U(rp); (46)
AW(ry, 1, L) = W(ry, rp, {p) — W(r,) — W(rg). 47

These terms give the energy of the complex in a specified
conformation, relative to the energy of the two solutes in the
same conformations but widely separated. An interaction
potential of mean force that depends only upon {g is now
defined by

W(lB) = _RT ln

I e PAUWB+AW(B)) ,~BUlra)+W(ra) +U(re) +W(rs)) dr, dry
f f e—B(U(rA)+W(rA)+U(rs)+W(rs)) dl'A dl'B

= —RT In(e” BOUrml) AW Lo)y s (48)
'ATB, ’

where the subscripted angle brackets indicate an ensemble-
average over r, and rg. This average is based upon the
conformational distributions of the two solutes when they
are far apart. Because AU(r 5, I'g, {g) + AW(r,, I'g, {g) goes
to zero as the solutes are widely separated, w({g) does also.
This potential of mean force is derived from an average over
all solvent and internal solute degrees of freedom, and is
directly related to the probability distribution of {z. Note
that w includes not only solvent contributions, but also
contributions from the direct interaction, AU, between the
two solutes.

The standard free energy of binding as given in Eq. 38
can now be expressed as an integral over only the external
degrees of freedom:

C° o, 0
A0 = —RT ‘"(W o j ‘“") e

- (49)
+ P°AV,g

This equation generalizes similar formulations that apply
only to rigid, spherical molecules (Prue, 1969; Justice and
Justice, 1976; Chandler, 1979; Shoup and Szabo, 1982).

Inserting the expression for AG® g in Eq. 49 into Eq. 45
gives

1 _
ASSs = _7- (AG%g — P°AV,p)
(50

1 ow({p) o
+ T(W(gB»AB - < oT > + ASSav»

AB

where, as in what follows, it is implicit that the derivatives
with respect to temperature are all at constant pressure.
The last term in Eq. 50, AS%Gqy = P(3AV,5/3T)p is the
temperature derivative of the very small pressure-volume
work associated with binding at constant pressure. For a
standard pressure of 1 atmosphere, it is expected to be
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negligible, and it will not be discussed in detail here. How-
ever, it is worth mentioning that this term is distinct from
what might be a much larger change in entropy if the
reaction occurred at constant volume. At constant volume,
changes in system pressure lead to changes in density and
thus, potentially, to reorganization of the solvent (Lazaridis
and Paulaitis, 1993; Yu and Karplus, 1988).

Equation 50 is now used to define the change in external
entropy upon binding. Intuitively, the change in external
entropy is that which results from the loss of positional and
orientation freedom upon formation of the complex. It is
thus the change in entropy that would result from the
interaction potential of mean force w({g) if the only degrees
of freedom in the system were the external coordinates (.
Assuming the absence of other degrees of freedom means
assuming that the temperature derivative of w({g) equals
zero and that AS 44y = 0. Therefore, the change in external
entropy is obtained by setting to zero the third and fourth
terms on the right hand side of Eq. 50:

1 - 1
AS o = T (AG%p — P°AV,g) + T(W@B))AB (51)

It is readily shown that, when AS%,,, is defined in this way,
it equals the standard entropy change upon binding that
would be obtained for two rigid molecules in the gas phase
with an interaction potential U({g) = w({g). Thus, theory
appropriate to two structureless molecules in the gas phase
can be used to compute changes in external entropy for
binding in solution, so long as the intermolecular potential
of mean force is substituted for the intermolecular potential
energy. It is also worth pointing out that the change in
external entropy depends upon the standard concentration.

Internal Entropy

Now the change in entropy associated with the internal
degrees of freedom of the solutes, AS%,, is considered.
Intuitively, the change in internal entropy results from
changes in the conformational freedom of the solutes upon
binding. That is, it is the change in entropy, over and above
the external entropy change, that results from treating the
internal degrees of freedom explicitly, but assuming that the
solvation term, W, has no entropic component. This means
assuming the temperature derivative of the solvation term to
be zero. A formula for AS<,, is obtained by expansion of the
temperature derivative of w({g) in Eq. 50:

() L

AB

1
+ ?RU(“’ g, {g) + W(rs, v, {))an

—(U(ra) + W(ra))a — (U(rs) + W(rp))s)

OW(r,, rp,lp) oW(r,) oW(ry)
(e ) o)

AB
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Assuming the temperature derivative of the solvation term to
be zero yields the following definition of the internal entropy:

1
ASG, = _T<W(§B)>AB

1
+ 2 [(U(Es, o, L) + Wi, Ts, £))an

~(U(ry) + Wlra))a — (Ulrg) + Wire))s]  (53)

When the entropy components are defined in this way, the
binding free energy change may be rewritten as:

AGp = <U(l'A, I'g, gB) + W(I'A, I'g, §B)>AB
—(U(ra) + Wr))a — (Ulrg) + Wirg)ys O
— TASS, — TASS, — TASSyy + P°AV,5.

This says that the free energy change upon binding equals
the sum of the changes in external and internal entropy, plus
the change in the mean of U + W upon binding, plus minor
pressure-volume terms. It can be shown that ASS,, + ASS,,
equals the standard entropy change upon binding for two
flexible molecules in the gas phase with a potential energy
function equal to U + W. Thus, an energy-component
model of binding that includes explicit external and internal
entropy contributions, but not solvent entropy contributions,
must use the solvent-modified interaction potential U + W
for the intra- and inter-molecular interactions of the solutes.
Also, this interaction potential must be Boltzmann-averaged
over the internal coordinates of the solutes, as indicated by
the angle-brackets in Eq. 54.

Solvent Entropy

Finally, it is clear from the above that the change in solvent
entropy upon binding is appropriately defined as

) (7))

AS‘:O]V° = _<

AB A

It can be shown from Eqs. 37, 54 and 55 that

AGp = (U(ra, 15, L, T's))ap
— (U(ta, t)a — (Ulrg Tes OO
— TASS, — TASS, — TASS,
— TASSyy + P°V,g,

where the potential energy terms U include contributions
from the solutes and the N solvent molecules. This says that,
when all three entropy contributions are made explicit, the
only other contribution to the free energy is the enthalpy;
i.e., the mean internal energy plus PV. This is as expected
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because, at constant pressure, AG = AH — TAS = AU +
PAV — TAS.

It is worth noting that the present analysis yields a way of
computing the change of entropy upon binding when an
implicit representation of the solvent is used. From Eq. 50
and 52,

AS%s z;((U*‘ Wiap = (U + W)y = (U + W)y
(57)

— AGS) - (<%‘;‘/>B B <%‘%/> B <(z’_‘;/>3)

where, for brevity, arguments have been omitted from U
and W and PAV terms have been neglected. The first quan-
tity in parentheses here is the entropy change of the solute
degrees of freedom, ASS, + S%,. The last quantity in
parentheses is the change in solvent entropy. In fact, be-
cause W is the solvation free energy for a solute in a fixed
conformation, Eq. 45 implies that —3dW/aT is the solvation
entropy of a solute in a fixed configuration. Thus, Eq. 57
shows that the contribution of the solvent to the overall
change in entropy upon binding is merely the change in the
mean solvation entropy upon binding. This shows how an
implicit solvation model that partitioned the solvation free
energy into entropy and enthalpy could be used in comput-
ing the overall change in enthalpy and entropy upon bind-
ing. Such calculations might be compared with calorimetric
results, for these yield both entropy and enthalpy. This
approach has been used in an analysis of the thermodynam-
ics of a-helix propensities (Wang and Purisima, 1996).

Discussion of Changes in Positional and
Orientational Entropy

The change in external entropy is now analysed further.
First, the concept of the volume of binding is discussed. It
is then demonstrated that the change in external entropy
depends upon the definition of the molecular coordinate
frame. The “cratic entropy” of Gurney (Gurney, 1953) and
Kauzmann (Kauzmann, 1959) is discussed briefly. Finally,
it is argued that classical statistical thermodynamics is a
good approximation for models of noncovalent binding and
that, as a consequence, the binding entropy is essentially
independent of molecular mass.

The Volume of Binding

The concept of the binding volume is illustrated by an
artificial system. It is assumed that the potential of mean
force, w({g), is a step-function having some negative value
w,, when the relative position and orientation of B relative to
A, {g, fall within regions of volume V, and angular volume
&, that are contained by the region where I({g) = 1. So long



Gilson et al.

as w, << —RT, as expected for strong binding, it will be a
good approximation that {(w({g))ag = W4, and therefore

§
AG%s = w, — RT In(C°V;) — RT ln(g—;;) (58)

and

_ o & <3W(§B)>
ASSs = RIn(C°V,) + R ln(87r2) “\ o7 " (59)

The expression for AG® consists of the free energy of
interaction, w,, along with terms clearly identifiable as
changes in positional and orientational—i.e. external—en-
tropy (Finkelstein and Janin, 1989; Erickson, 1989). It is
important to recognize that V,, and & are the volumes of the
region where w({g) = w,, not the volumes where I({g) = 1.
Thus, it is a physically meaningful interaction potential of
mean force that determines the binding volumes. The step
function that defines the complex, I({g), is not directly
related to the binding volumes.

It would clearly be of interest to establish realistic values
for the binding volumes V, and &, that determine the change
in external entropy. However, the external entropy can be
interpreted in terms of well-defined binding volumes only
when the interaction potential of mean force is a step
function. For real molecules in solution, w is a complicated
function of (g, so the binding volumes found here and
discussed elsewhere (Finkelstein and Janin, 1989; Erickson,
1989) are artificial constructs (Hill, 1985b). Still, the con-
cept is intuitively helpful, and it would be of interest to
establish approximate, or effective, binding volumes. It has
been suggested that the crystallographic thermal factors of a
bound complex provide information on the motions of one
molecule relative to the other (Finkelstein and Janin, 1989;
Janin, 1995). However, the position variations measured by
thermal factors relate to the coordinate system of the crystal
lattice. Thermal factors provide at best limited information
on the mobility of one atom relative to another. For exam-
ple, two atoms covalently bonded to each other may have
large thermal factors, even though the bond between them
sharply restricts their relative motion. Thus, thermal factors
do not offer much information on the changes in external
entropy that result from binding.

Ambiguity of the Change in External Entropy

The idea of a change in external entropy, although intu-
itively pleasing, is somewhat artificial. This is because the
change in external entropy depends upon how the internal
and external coordinates are defined. This ambiguity arises
even if both molecules are rigid, but is illustrated in an
extreme form by the case of a flexible linear ligand B of My
atoms, i = 1 ... Mg (Fig. 5). Atoms 1, 2, and 3 are bound
restrictively by another molecule A, as shown, leaving the
rest of the ligand mobile in solution. If the external coordi-
nates of the ligand are defined with respect to atoms 1-3
(see the second section), the drop in external entropy upon

Computation of Affinities 1063

s

FIGURE 5 Diagram of binding of a flexible polymer to a protein by its
first three atoms.

binding will be large, because these three atoms are tightly
restricted in the complex. In contrast, if the external coor-
dinates of the ligand are defined with respect to the atoms at
its other end, Mg—2, Mg—1, and My, the drop in external
entropy upon binding will be far less, because these three
atoms are not so tightly restricted in the complex. However,
the total change in entropy upon binding must be indepen-
dent of the choice of coordinates. It follows that this change
in coordinates must shift the attribution of the drop in
entropy associated with binding from external to internal
degrees of freedom. This is reasonable, because when the
polymer is bound to the protein, each accessible position
and orientation of atoms Mg—2, Mg—1, and Mg accommo-
dates only a limited set of internal coordinates that place
atoms 1, 2, and 3 in the binding site. Thus, models of
binding that include an explicit term for the change in
external entropy upon binding are incomplete unless they
specify the coordinate system.

The Cratic Entropy

It has been stated that the standard entropy of a dissolved
molecule equals the “unitary” entropy it possesses when it is
forced to remain at a fixed position, plus a “cratic” entropy
associated with its release that is given by

Scralic =-R ln X, (60)

where x is the mole fraction of the solute (Gurney, 1953;
Kauzmann, 1959). Because the concentration of liquid wa-
ter is 55 M, the cratic entropy of a solute at the standard 1
M concentration in water is ~—R In 1/55. This concept has
been used in models for binding, where the binding of
molecules A and B to form AB decreases the number of
solute particles from 2 to 1. This decrease in the number of
particles is said to be associated with a contribution to the
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standard free energy of binding of —RT In 1/55 = 10 kJ/mol
(Novotny et al., 1989; Murphy et al., 1994). The derivation
in the present paper suggests that the concept is unneces-
sary, because it is not required for a complete theoretical
treatment of binding; nor does it seem to emerge naturally
from this treatment. Thus, the present analysis in terms of
statistical thermodynamics is consistent with a recent cri-
tique that primarily used thermodynamics (Holtzer, 1995).

It is also worth noting that an uncritical use of cratic
entropy as a component of the free energy of binding leads
to the clearly incorrect result that the standard free energy of
binding for two molecules in the gas phase does not depend
upon the standard concentration. This is because the stan-
dard state in gas phase has each of the three molecular
species, A, B, and AB, at equal concentration C°, and no
solvent is present. Therefore, the mole fraction of each
species is 1/3, and the cratic entropy change is fixed at
R In 3, regardless of the value of C°.

Molecular Mass and the Free Energy of Binding

A number of papers consider binding constants to depend
upon molecular mass (Doty and Myers, 1953; Page and
Jencks, 1971; Chothia and Janin, 1975; Janin and Chothia,
1978; Searle et al., 1992b; Spolar and Record, Jr., 1994;
Morton et al., 1995). This supposed dependence upon mass
usually derives from the idea that binding “freezes out” the
translational freedom of molecule B relative to A. It is
sometimes assumed that the overall rotation of B also is
frozen out. However, it is not possible to freeze out any
degrees of freedom in classical statistical thermodynamics
because confining a particle in an increasingly narrow en-
ergy well costs infinite entropy. For example, the transla-
tional entropy of a classical monatomic gas, given by the
Sackur-Tetrode equation, decreases without limit as the
volume V of its container goes to zero. On the other hand,
when the Sackur-Tetrode equation is used to compute the
entropy change for a volume change from V| to some V, >
0, the entropy change does not depend upon mass, and is
simply R In (V2/V1).

Still, one may correctly use a mathematical device in
which binding is viewed as the “freezing out” of three
translational degrees of freedom, followed by the “adding
back” of three degrees of freedom internal to the complex
(Steinberg and Scheraga, 1963; Searle et al., 1992b; Tidor
and Karplus, 1994). This approach does not actually freeze
or neglect any degrees of freedom. Therefore, if the classi-
cal approximation to statistical thermodynamics is used, this
approach must still lead to cancellation of all mass-depen-
dence of the binding constant, and the results should be
equivalent to those derived in the present paper. However,
this freezing-out approach is more difficult to use mathe-
matically, because it dictates carrying out the phase space
integrals in an order that retains momentum contributions
until a final cancellation occurs. If the final cancellation is
not noted, the free energy of binding will be expressed as
the sum of a translational contribution that depends upon the

Volume 72 March 1997

molecular mass; a rotational contribution that depends upon
the rotational moments of inertia; and internal contributions,
often approximated with vibrational normal modes, that
also depend upon mass [see, for example, Steinberg and
Scheraga (1963); Tidor and Karplus (1994)]. When classi-
cal statistical thermodynamics is used, it is much more
convenient to eliminate the momentum integrals at the start,
as typically done in liquid theory (McQuarrie, 1973), and as
done here.

On the other hand, the approach of freezing out transla-
tional degrees of freedom and then adding back internal
degrees of freedom facilitates treating some degrees of
freedom quantum-mechanically rather than classically. This
approach is essential for treating covalent binding at room
temperature, because classical statistical thermodynamics
will be a poor approximation for the new vibrational modes
associated with the new chemical bond. In such cases, the
effects of mass upon the binding constant need not cancel.
This approach has been used in a computational study of the
entropy changes associated with the noncovalent dimeriza-
tion of insulin (Tidor and Karplus, 1994), in which normal
mode vibrations are treated quantum-mechanically. This
study appropriately separates the entropy contributions into
translational, rotational, and vibrational components that
individually depend upon mass, as noted above. Therefore
the net change in entropy upon binding appears to depend
strongly upon mass. However, the degrees of freedom that
need to be treated quantum-mechanically are precisely the
“hard” degrees of freedom that are expected to be perturbed
least upon noncovalent binding. Therefore, although
changes in mass would alter the individual changes in
translational, rotational, and vibrational entropy upon bind-
ing, the net dependence of these terms upon mass should
again largely cancel, despite the quantum-mechanical treat-
ment of the vibrations. The final results thus are likely to
depend only weakly upon mass.

More generally, whether it is important to treat the dy-
namics of individual atoms quantum mechanically is a
question that goes to the heart of the validity of classical
simulations of molecular systems. Fortunately, quantum
dynamical simulations of biomolecular systems suggest that
the errors that result from assuming classical dynamics are
modest (Zheng et al., 1988, 1989). Therefore, it is reason-
able to construct models for binding based upon classical
statistical thermodynamics. Still, for tight binding of some
small ligands, such as light ions and water molecules, mass
could be important. For these species, somewhat less en-
tropy might be lost upon binding than predicted by classical
statistical thermodynamics, because the quantization of vi-
brational motion limits the amount of entropy that can be
lost upon binding. Also, substitution of deuterons for pro-
tons in the binding interface of two ligands is expected to
strengthen hydrogen bonds somewhat (Chervenak and
Toone, 1994). Nonetheless, the relative motions of the bulk
of the molecules will not be significantly quantized because
of their large mass. Therefore, the net molecular masses do
not affect the binding constant.
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Experimental data that shed light upon the possible mass-
dependence of noncovalent binding are difficult to find,
because differences in molecular mass are usually accom-
panied by substantial chemical differences at the binding
interface. However, one could certainly imagine classes of
systems, such as biotinylated proteins of various masses,
that would permit these ideas to be tested experimentally.

SUMMARY AND CONCLUSIONS

This paper reviews the classical statistical thermodynamics
of noncovalent binding in solution and its relationship to
commonly used computational models of binding. A special
effort is made to define units and standard states clearly. In
order to provide a basis for the discussion of specific com-
putational methods, a fairly detailed derivation of the stan-
dard Gibbs free energy of binding is provided. The geomet-
ric definition of the bound complex is central to this
derivation, and we follow previous authors in arguing that,
for tight binding, the free energy depends only weakly upon
the precise definition of the complex, so long as two con-
ditions are met. The present derivation also makes explicit
the influence of pressure.

It is emphasized that all dependence upon atomic or
molecular mass has canceled in the final expression for the
standard free energy of binding. It is the classical approxi-
mation that causes this cancellation to occur; we argue that
this approximation is a good one for biophysical systems.
Accordingly, models for the noncovalent binding of mole-
cules in solution should not yield binding free energies that
depend upon mass. Some appear to, however, and the rea-
sons for this are analyzed.

The validity of the double-annihilation method (Jor-
gensen et al., 1988) for computing binding free energies has
been questioned recently (Janin, 1996). Here, the method is
reformulated, and it is argued that the method does not
actually annihilate the ligand. Rather, it decouples the li-
gand from its surroundings, effectively creating an ideal-gas
molecule. Obtaining a converged standard free energy of
binding requires that this ideal-gas molecule be restrained
by an artificial potential, and that a correction term be added
to the computed free energy. The resulting “double-decou-
pling” method is consistent with and somewhat more gen-
eral than existing methods (Hermans and Shankar, 1986;
Zhang and Hermans, 1996; Roux et al., 1996) for computing
the affinity of small molecules for protein cavities. These
methods already account correctly for the standard state.

Implicit solvent models, in which some or all solvent
degrees of freedom are suppressed, should allow more rapid
calculations of binding free energies. Therefore, the theo-
retical basis for the use of such models is reviewed here.
Treating parts of the solutes as rigid is another way of
speeding binding calculations, and the conditions under
which this is a good approximation are also reviewed.

Protonation equilibria are sometimes thermodynamically
linked with binding equilibria, and accounting for this link-
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age is important in such cases. Therefore, a binding poly-
nomial formalism for treating the linkage between binding
and protonation is presented.

Finally, a number of models yield binding free energies
as sums of specific free energy components. However, it
can be difficult to interpret the various components when
they are not derived from the underlying statistical thermo-
dynamics. The present derivation of the binding free energy
is therefore used to define several important free energy
components, including the commonly used translational and
rotational entropy, configurational entropy, and solvent en-
tropy. The present analysis also yields the following con-
clusions regarding the changes in entropy upon binding: 1)
Ideal-gas equations may be used to compute changes in
external entropy if the intermolecular potential of mean
force is used in place of the intermolecular potential energy.
2) The change in external entropy upon binding is ambig-
uous for flexible molecules, because it depends upon an
arbitrary choice of coordinate system. 3) The crystallo-
graphic thermal factors of a complex offer no direct infor-
mation about the entropy change upon binding. 4) The
concept of a change in cratic or mixing entropy upon
binding lacks a well-defined theoretical basis.

APPENDIX A: FREQUENTLY USED SYMBOLS

Here, B and C may replace A to indicate quantities appropriate to these
species.

B RD™
ce Standard concentration
C, Concentration of A.
Standard free energy of binding of A and B.
Ya Activity coefficient of A in the reaction solvent.
Kgg) Step function defining the complex.
I Jacobian determinant for the Eulerian external angles
of B.
Kup Equilibrium constant for binding of A and B.
M, The number of atoms in species A.
Mg The number of atoms in N solvent molecules.

Haasa Standard chemical potential of A as an ideal gas.
Kool A Chemical potential of A in the reaction solvent.
Riola Standard chemical potential of A in the reaction

solvent.
e Chemical potential of the solvent.
N The number of solvent molecules.
Ny Avogadro’s number.
P° Standard pressure.
Pa The 3M, momenta of A in the laboratory frame.
Ps The 3N momenta of the solvent in the laboratory
frame.
Ona Canonical partition function of N solvents and A, at
volume V4.
Qoa Gas-phase molecular partition function of A.
Ono Canonical partition function of N solvent molecules
at volume V.
R The gas constant.
R The three laboratory-frame external Cartesian
coordinates of A.
Ta The 3M ,—6 molecular-frame (internal) Cartesian
coordinates of A.
ra The 3M,, Cartesian coordinates of A in the laboratory
frame.



1066 Biophysical Journal

rg The laboratory-frame Cartesian coordinates of N
solvent molecules.
r, Those internal Cartesian coordinates of A treated as
mobile.
r, Those internal Cartesian coordinates of A treated as
fixed.
r, A specific fixed conformation of coordinates r,
N The symmetry number of A.
T Temperature (Kelvin).
U Potential energy as a function of atomic coordinates.
VNna Equilibrium volume of N solvent molecules and one
A at standard pressure.
Vio Equilibrium volume of N solvent molecules at
standard pressure.
Va Partial molar volume of A, V4 — Vyno.
f/s Partial molar volume of solvent in the solvent (sic).
w Solvation energy as a function of solute coordinates.

w({g) Potential of mean force for the interaction of A with
B.
Earts Ean éas The three Eulerian angles specifying the orientation A

relative to the lab frame.
Ca The six external coordinates of A, (Ry, &4 1, €40,
Exs).
Zn  ZnalZno
Zua Configuration integral in internal coordinates of A
and external coordinates of N solvents at volume
Vnoas
Zyo Configuration integral of N solvent molecules at
volume Vy .

APPENDIX B: FORMULATION OF THE
CHEMICAL POTENTIAL

This appendix demonstrates that Eq. 5 is equivalent to the constant-volume
expressions of Widom (Widom, 1963). Equations 1 and 2 of Widom
(1963) may be summarized as:

On = Wexp(—W/RT))On-, (61)
nlz = {exp(—V/RT)). (62)

Here, following the notation of Widom, Qy is the configuration integral for
a fluid of N identical particles in a volume V and at absolute temperature
T; n is the number density of particles; z is the activity of the particles,
defined to approach n as n — 0; and ¥ is the potential energy of interaction
with one particle with the other N — 1 particles.

As noted in the Widom paper, these equations also can be applied to
each molecular species in a mixture. Thus, we may consider the case of a
single solute molecule mixed with N solvent molecules. Then Eq. 61
becomes

Oni = V<exp(_\P/RT)>QN,0 (63)

where, as in the main text, the first subscript on Q indicates the number of
solvent molecules in the configuration integral, and the second indicates
the number of solutes. Note that both configuration integrals extend over
the volume V. With the definition of the activity z = exp(— w/RT), where
w is the chemical potential of the solute, Eqs. 62 and 63 yield

Q.
nVQno

The standard chemical potential, u°, is the chemical potential for the usual
hypothetical ideal solution at concentration C°, and at standard pressure.
The solution considered here will be highly dilute and effectively ideal so
long as N > 1. Therefore, the standard chemical potential of the solute in

w=—RTIn (64)
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a hypothetical ideal solution at concentration may be written as

o_ _ Oni (Vi)
K= RTIn oy  oe V) (65)

where, as in the body of this paper, Vy | is the equilibrium volume of the
system with N solvent molecules and 1 solute at the standard pressure P°.

For N large, the addition of one solute molecule is a small perturbation
of the system. Therefore,

RT In QN,O(VN,l) =RTIn QN,O(VN,O)

d(RT In On 0))
SR LY
N, N0 EY i~
(66)
and (McQuarrie, 1973)
d(RT In QN‘O)) B
(T o P°, 67)

when the derivative is evaluated for V = V,, Therefore, Eq. 65 may be
rewritten as

Ona (Vi)
C° Vni Ono(Vino)

This is the same as Eq. 5, which was to be shown.

I.Lo =RTIn + PO[VNJ - VN,O]' (68)

Note added in proof: A paper submitted by J. Hermans and L. Wang also
discusses the standard-state correction required in calculations of binding
free energies by thermodynamic integration.
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