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Abstract

Our main result describes how to extend a matroid so that its ground set is a modular hyperplane of the larger matroid. This result
yields a new way to view Dowling lattices and new results about line-closed geometries. We complement these topics by showing
that line-closure gives simple geometric proofs of the (mostly known) basic results about Dowling lattices. We pursue the topic of
line-closure further by showing how to construct some line-closed geometries that are not supersolvable.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modular flats of matroids (that is, the flats X such that the modular equality r(X) + r(Y ) = r(X ∪ Y ) + r(X ∩ Y )

holds for every flat Y) have considerable structural significance. For instance, while relatively few results have been
obtained in the general theory of amalgams of matroids, the special case of generalized parallel connections [5,11], in
which matroids are glued together along a modular flat, is well developed; in turn, for example, this operation leads to
formulas that simplify the computation of Tutte polynomials [4]. A related property that is also relevant for this paper
is supersolvability, that is, having a maximal chain of flats, all of which are modular. The characteristic polynomial of
a supersolvable matroid has a linear factorization over the integers [12,13] that reflects a factorization of the broken
circuit complex [2].

Brylawski [5, Corollary 3.4] gave the following elegant characterization of the hyperplanes of a geometry (simple
matroid) that are modular. (Results about modular flats of geometries have counterparts for general matroids. We focus
on geometries since the statements of the results are slightly simpler in this context.)

Theorem 1.1. A hyperplane H of a geometry M is modular if and only if H has nonempty intersection with every line
of M.

Our main result, Theorem 2.1, is a simple description of how to extend a given geometry on a set S to a geometry
in which S is a modular hyperplane. Implications of this result in the case of line-closed geometries are presented in
Section 3, which also treats several complementary results about line-closure. In Section 4, we apply Theorem 2.1 to the
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construction of Dowling lattices; we also prove some basic properties of Dowling lattices to demonstrate the insights
that this perspective and line-closure offer. The last section develops and applies a technique to construct line-closed
geometries that are not supersolvable.

We assume knowledge of matroid theory. Specialized topics are reviewed as they arise. We consider all matroids of
finite rank, including infinite matroids. We recall the axioms for flats so that we may refer to them in the proof of the
main result. Recall first that for X and Y in a collection F of sets, we say that Y covers X if X�Y and there is no set Z
in F with X�Z�Y . A matroid M is a set S and a collection F of subsets of S such that

(F1) S is in F,
(F2) if X and Y are in F, then so is X ∩ Y ,
(F3) for all X ∈ F and a /∈ X, exactly one cover of X contains a, and
(F4) every chain in F is finite.

We use the terms points, lines, planes, and hyperplanes for the flats of ranks 1, 2, 3, and n − 1 in a matroid of rank n.
We let [n] denote the set {1, 2, . . . , n}.

2. Extending a matroid by a cocircuit

To motivate Theorem 2.1 and see that its hypotheses are necessary, let S be a modular hyperplane of a geometry N
on T. Note that N is determined by the restriction N |S and the set L of lines of N that are not contained in S: since S
is modular, for any flat Y of N of rank at least two, either Y is a flat of N |S or, for the flat Y ∩ S of N |S and any point a
in Y − S, we have

Y =
⋃

y∈Y∩S

cl({a, y}).

Note that each pair of elements of T, not both in S, is in exactly one line in L. Since S is modular, each line of L
intersects S in a point and each plane of N that is not contained in S intersects S in a line.

Theorem 2.1. Let M be a geometry on S, let T be a proper superset of S, and let L be a set of nonsingleton subsets of
T such that the following properties hold.

(E1) Each pair x, y of points of T, not both in S, is in a unique set �(x, y) of L.
(E2) Each set in L contains exactly one element in S.
(E3) For � ∈ L and a /∈ S ∪ �, the points �(a, y) ∩ S, with y in �, are collinear.

For each flat X of M and each element a of T − S, let Xa be given by

Xa =
{ {a} if X = ∅,⋃

x∈X�(x, a) otherwise.

Then the flats of M together with the sets Xa are the flats of a geometry N on T. The restriction N |S is M and S is a
modular hyperplane of N.

Proof. By condition (E2), T = Sa for any a /∈ S, so property (F1) holds.
The following statement (an exchange property) yields the only nontrivial case of property (F2), namely, intersections

Xa ∩ Yb that are not contained in S.

(EX) If b is in Xa − X, then Xa = Xb.

To prove assertion (EX), we prove Xa ⊆ Xb; the other containment then follows since a is in Xb − X. Since Xa ∩ S

is X, we need only consider elements c in Xa − S. If a, b, and c are collinear, then clearly c is in Xb, so assume this is
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not the case. Let �(a, b), �(a, c), and �(b, c) meet S in x, y, and z, respectively, which, by property (E3) are collinear.
By the definition of Xa , both x and y are in X. Therefore z is in X, so c is in Xb, as desired.

Assertion (EX) implies property (F3) when X is a flat of M and a /∈ S. In the only other nontrivial case of property
(F3), assertion (EX) implies that for b /∈ Xa , the unique cover of Xa that contains b is (clM(X ∪ c))a , where c is
S ∩ �(a, b).

Property (F4) holds since any chain among the sets X and Xa contains at most one more set than a chain of flats of
M. That N |S is M is transparent. The last assertion of the theorem follows from Theorem 1.1 and condition (E2). �

3. An application to line-closed geometries

This section treats the implications of Theorem 2.1 for line-closed geometries [9] and then presents results about
line-closure that are used in later sections. A set Z in a geometry is line-closed if for every pair of points x and
y in Z, the line cl({x, y}) is contained in Z. Flats are line-closed, but many geometries (e.g., the uniform ma-
troid U3,4) have line-closed sets that are not flats. A geometry is line-closed if the flats are precisely the
line-closed sets.

Theorem 3.1. Let S be a modular hyperplane of a geometry N. If N |S is line-closed, then so is N.

Proof. We must show that any line-closed set Z of N is a flat of N, that is, Z has one of the two forms discussed in and
before Theorem 2.1. If Z ⊆ S, then Z, as a line-closed set of N |S, is a flat of N |S. For Z�S, let X be Z ∩ S and fix
a ∈ Z − X. That Z is line-closed and S is a flat of N imply that X is line-closed in N |S, so X is a flat of N |S. Since Z is
line-closed, Xa ⊆ Z. For c ∈ Z − X with c �= a, let cl({a, c}) intersect the modular hyperplane S in the point d. Since
Z is line-closed, d is in Z. Therefore d is in X, so c is in Xa . Thus, Z is Xa , as needed. �

An immediate corollary of Theorem 3.1 is the following result of [9].

Corollary 3.2. Supersolvable geometries are line-closed.

The next theorem rests on the following lemma, which comes from the theory of matroid quotients [11, Section 7.3].
We offer a direct, elementary argument.

Lemma 3.3. Assume M and N are matroids of the same rank and on the same ground set. If every flat of N is a flat of
M, then M = N .

Proof. We need to show that all flats of M are flats of N. Since r(M) = r(N), no chain of flats of M has more flats
than a maximal chain of flats of N. Therefore, the hypotheses have two consequences: (i) clN(∅) = clM(∅) and (ii) if Y
covers Z as flats of N, then Y covers Z as flats of M. Let X be a minimal flat of M that we do not yet know to be a flat of
N. Since X is not clM(∅), it covers some flat X′ of M, which is a flat of N. For a ∈ X − X′, since clN(X′ ∪ a) is a flat
of M that contains X′ and a, we have X′�X = clM(X′ ∪ a) ⊆ clN(X′ ∪ a). Since clN(X′ ∪ a) covers X′ as flats of N,
conclusion (ii) shows that X is the flat clN(X′ ∪ a) of N. �

A line-closed geometry is determined by its points and lines since the flats are defined by the lines. The next theorem,
which is a stronger statement of this type, is a mild but useful strengthening of [8, Theorem 2.2].

Theorem 3.4. Assume geometries M and N have the same rank and ground set. If M is line-closed and each of its line
is contained in a line of N, then M = N .

Proof. The hypotheses imply that any flat X of N is line-closed in M; thus, since M is line-closed, X is a flat of M. The
theorem now follows by Lemma 3.3. �

Theorem 3.4 yields a brief proof of the following theorem from [3].
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Theorem 3.5. Assume the geometry M has a basis x1, x2, . . . , xn so that

(i) each line cl({xi, xj }) is a 3-point line, say {xi, xj , aij },
(ii) every point is on such a 3-point line {xi, xj , aij }, and

(iii) for all i, j, k, the points aij , aik, ajk are collinear.

Then M is isomorphic to M(Kn+1), the cycle matroid of the complete graph Kn+1.

Proof. Identify the edge {i, n+ 1} of Kn+1 with xi and, for 1� i, j �n, the edge {i, j} of Kn+1 with aij ; this identifies
the ground set of M(Kn+1) with that of M so that each line of M(Kn+1) is contained in a line of M. The conclusion
follows from Theorem 3.4 since M(Kn+1) is supersolvable and so line-closed. �

4. An application to Dowling lattices

This section uses Theorems 2.1 and 3.4 to give a self-contained development of Dowling lattices [7] and their
basic (mostly known) properties from the perspective of line-closure. We start with the construction. The
Dowling lattice Qn(G) depends on a group G and a positive integer n. The ground set Sn(G) of Qn(G)

consists of

(i) the joints, denoted by p1, p2, . . . , pn, and
(ii) the internal points, denoted by aij ; here, a ranges over G and the indices i, j are distinct and range over [n]; we

identify aji and (a−1)ij .

The lines of Qn(G) are of three types:

(i′) there are
(

n
2

)
coordinate lines �ij , one for each pair i, j of distinct indices, given by �ij := {pi, pj }∪{aij : a ∈ G},

(ii′) the transversal lines are the triples of the form {aij , bjk, (ab)ik} as a and b range over G, and i, j, and k are distinct
and range over [n]; and

(iii′) the trivial (two-point) lines, namely, the sets of the forms {pi, ajk}, where |{i, j, k}| = 3, and {ahi, bjk}, where
|{h, i, j, k}| = 4.

We first show, using Theorems 2.1 and 3.4, that these collections of points and lines uniquely determine a rank-n
geometry.

Theorem 4.1. For any group G and positive integer n, there is a unique geometry Qn(G) of rank n on Sn(G) whose
lines are given in (i′)–(iii′). Furthermore, Qn(G) is supersolvable.

Proof. We induct on n. The case n = 1 is trivial. It suffices to show that the lines in (i′)–(iii′) that are contained in
Sn(G) but not in Sn−1(G) satisfy properties (E1)–(E3) of Theorem 2.1, for then, besides having a well-defined geometry
Qn(G), this geometry is supersolvable and so line-closed, so Theorem 3.4 gives uniqueness. The only part that is not
completely obvious is property (E3) in the case of a transversal line, say {(ab−1)ij , bjn, ain}, and an internal point, say
ckn, where i, j, k, and n are distinct (Fig. 1). By (ii′), the lines spanned by {ckn, ain}, {ckn, bjn}, and {ckn, (ab−1)ij },
meet S in the points (ac−1)ik , (bc−1)jk , and (ab−1)ij , respectively. By (ii′) and the associative law, these points are
collinear, as needed. �

The simple computation at the end of this proof is the sole use of the associative law, and this issue arises only for
n > 3. As observed in [7], rank-3 Dowling lattices can be defined over Latin squares (quasi-groups). An immediate
consequence of Theorems 4.1 and 3.5 is the following result from [7]: the rank-n Dowling lattice based on the trivial
group is isomorphic to M(Kn+1).

Theorem 2.1 gives the flats of the extension N of M. This theorem and the inductive construction of Dowling lattices
yield the following result.
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Fig. 1. The sole nontrivial case when checking property (E3) of Theorem 2.1 for Dowling lattices.

Theorem 4.2. The flats of Qn(G) are the sets X for which there are disjoint subsets B0 (possibly empty) and
B1, B2, . . . , Bt of [n], with |Bh|�2 for 1�h� t , such that the elements of X are as follows:

(i) for 1� i�n, the joint pi is in X if and only if i is in B0,
(ii) for all i, j in B0 and all a in G, the internal point aij is in X, and

(iii) for h with 1�h� t and each pair i, j in Bh, there is exactly one element a in G with aij in X, and these points
satisfy the condition: for h with 1�h� t and each triple i, j, k in Bh, the points aij , bjk , cik of X are collinear.

Note that for X0 = {pi : i ∈ B0} ∪ {aij : a ∈ G and i, j ∈ B0}, the restriction Qn(G)|X0 is isomorphic to
Q|B0|(G). By Theorem 3.5, a restriction Qn(G)|Xh, where Xh is {aij : aij ∈ X and i, j ∈ Bh}, is isomorphic to the
cycle matroid M(K|Bh|). Thus, the restriction of Qn(G) to any flat is isomorphic to a direct sum of a Dowling lattice,
Qm(G), and cycle matroids of complete graphs.

We now show that our geometric view of the construction of Dowling lattices does not complicate other parts of the
basic theory. In what follows, we offer geometric insights into, and mild extensions of, some results from [7].

Let J be the set of joints of Qn(G). Each point of Qn(G) is in the complement of one or two hyperplanes of the
form cl(J − pi). By the symmetry of the construction, each hyperplane cl(J − pi) is modular and each restriction
Qn(G)|cl(J −pi) is isomorphic to Qn−1(G). Using Theorem 1.1, it follows that the simplification of any single-element
contraction of Qn(G) is isomorphic to Qn−1(G). Since arbitrary contractions are iterated single-element contractions,
we get the following result.

Theorem 4.3. The simplification of any rank-r contraction of Qn(G) is isomorphic to Qr(G).

The next result, which completes [7, Theorem 4] by providing a converse, identifies the modular flats of Dowling
lattices. The modular flats of M(Kn) are well known (see, e.g., [11, Corollary 6.9.11]), so we focus on nontrivial
groups.

Theorem 4.4. Assume G is not trivial. The modular flats of Qn(G) are the points and the flats cl(A) for subsets A of
J = {p1, p2, . . . , pn}.

Proof. Let X be a modular flat of rank m > 1 in Qn(G) and let B be a basis of Qn(G) for which B ∩ X is a basis of X.
Since X is modular, all elements in the contraction Qn(G)/(B − X) are in or parallel to elements of X, so by Theorem
4.3, it follows that Qn(G)|X is isomorphic to Qm(G). Thus, by Theorem 4.2, X is cl(A) for some subset A of J. The
remaining implications are consequences of the following results: points are modular in any matroid; the hyperplanes
cl(J − pi) are modular; and intersections of modular flats are modular [11, Corollary 6.9.8]. �

Theorem 4.5 is a mild extension of results in [7]; the proof follows those in [7].

Theorem 4.5. For n�3, the Dowling lattice Qn(G) is isomorphic to a restriction of Qn(G
′) if and only if G is

isomorphic to a subgroup of G′.
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Proof. If G is isomorphic to a subgroup G∗ of G′, then the restriction of Qn(G
′) to the set S={p1, p2, . . . , pn}∪{aij :

a ∈ G∗, 1� i, j �n} gives a rank-n geometry whose points and lines can be identified with those of Qn(G). Thus, by
Theorem 4.1, Qn(G

′)|S is isomorphic to Qn(G).
The converse is obvious if G is the trivial group, so assume G is not trivial and � is an isomorphism of Qn(G)

onto a restriction of Qn(G
′). Only joints are on more than one line with four or more points, so � maps the joints

of Qn(G) onto those of Qn(G
′); we may assume �(pi) = pi for i = 1, 2, . . . , n. Therefore, � induces three maps

�12, �13, �23 : G → G′ defined by �(aij ) = (�ij (a))ij . Since we identify aij and (a−1)ji , we have the equalities
(�ij (1))ij = �(1ij ) = �(1ji) = (�ji(1))ji , so

(�ij (1))−1 = �ji(1). (1)

For a, b in G, the points (�12(a))12 and (�23(b))23 are collinear with (�12(a)�23(b))13 as well as with (�13(ab))13
(since a12, b23, (ab)13 are collinear in Qn(G)), so

�13(ab) = �12(a)�23(b). (2)

Define � : G → G′ by �(a) = (�12(1))−1�13(a)(�23(1))−1. Since �13 is injective, � is injective. An easy computation
using Eqs. (1) and (2) shows that � is a homomorphism, which completes the proof. �

Note that in the last proof, if � is onto, so is �13 and hence �. Thus, we get [7, Theorem 8]: for n�3, the matroids
Qn(G) and Qn(G

′) are isomorphic if and only if the groups G and G′ are isomorphic. The next two results are also
from [7].

Theorem 4.6. Let x1, x2, . . . , xn be a basis of PG(n − 1, F ), the rank-n projective geometry over the division ring F,
and let S be

⋃{cl({xi, xj }) : 1� i < j �n}. The restriction PG(n − 1, F )|S is isomorphic to Qn(F
∗).

Proof. By viewing PG(n − 1, F ) as the simplification of the matroid on an n-dimensional (left) vector space over F,
we can treat elements of S as vectors, take linear combination such as xi + axj , and identify xi + axj and xj + a−1xi .

The elements of S are x1, x2, . . . , xn and xi + axj for a in F ∗. Thus, the map � : PG(n − 1, F )|S → Qn(F
∗) given

by �(xi) = pi and �(xi + axj ) = (−a)ij is a bijection on the ground sets. By the uniqueness assertion in Theorem
4.1, to show that � is an isomorphism it suffices to show that � identifies the lines of the two geometries. This is easy
to see since the lines of PG(n − 1, F )|S are given as follows:

(1) {xi, xj } ∪ {xi + axj : a ∈ F ∗} for {i, j} ⊆ [n],
(2) {xi + axj , xj + bxk, xi − abxk} for a, b ∈ F ∗ and {i, j, k} ⊆ [n],
(3) {xi, xj + axk} for a ∈ F ∗ and {i, j, k} ⊆ [n],
(4) {xh + axi, xj + bxk}for a, b ∈ F ∗ and {h, i, j, k} ⊆ [n]. �

Corollary 4.7. (i) For n�3, the Dowling lattice Qn(G) is representable over a division ring F if and only if G is
isomorphic to a subgroup of F ∗.

(ii) Let G be a finite group. For n�3, the Dowling lattice Qn(G) is representable over some field if and only if G is
cyclic.

The final (apparently new) result uses the Sylvester–Gallai theorem: every finite simple rank-3 orientable matroid
has a trivial line (see Proposition 6.1.1 of [1]).

Theorem 4.8. Let G be a finite group. For n�3, the Dowling lattice Qn(G) is orientable if and only if G has at most
two elements.

Proof. If G has at most two elements, then G is isomorphic to a subgroup of R∗; thus, Qn(G) is representable over R

and so is orientable. If G has more elements, then Q3(G)\{p1, p2, p3} has no trivial lines and so, by the Sylvester–Gallai
theorem, is not orientable; thus, Qn(G) is not orientable. �
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5. Line-closed geometries that are not supersolvable

By Corollary 3.2, supersolvable geometries are line-closed. This section focuses on constructing line-closed ge-
ometries that are not supersolvable. The geometries constructed are deletions of other line-closed geometries. We use
Lemma 5.1 to show that certain deletions of a line-closed geometry are line-closed.

Lemma 5.1. Let M be a line-closed geometry on S. For a subset Z of S, the deletion M\Z is line-closed if the following
properties hold:

(a) no line of M contains exactly one point of S − Z, and
(b) M|P is line-closed for each plane P of M\Z.

Proof. Let X be line-closed in M\Z and let X+ be
⋃{clM({y, z}) : y, z ∈ X}. Since X+ − Z is X, to show that X is

a flat of M\Z it suffices to show that X+ is line-closed in M. Let a and b be in X+ − X and let c be in clM({a, b});
say a ∈ clM({a′, a′′}) and b ∈ clM({b′, b′′}) with a′, a′′, b′, b′′ ∈ X. By property (a), clM({a′′, b}) and clM({a′′, c})
each contain additional points of S − Z, say w and u, respectively. By property (b), if x /∈ Z is in the closure of three
noncollinear points of X, then x is in X; thus, since w ∈ clM({a′′, b′, b′′}) and u ∈ clM({a′, a′′, w}), we get w ∈ X, and
so u ∈ X, and therefore, as needed, c ∈ X+. A similar (simpler) argument applies for a ∈ X+ − X and b ∈ X, and so
completes the proof. �

ByTheorem 1.1, a geometry is not supersolvable if, for every hyperplane, some line is disjoint from it.This observation
yields the following lemma.

Lemma 5.2. A restriction of PG(n − 1, q) in which the simplification of every single-element contraction is PG
(n − 2, q) and in which every hyperplane has fewer points than PG(n − 2, q) is not supersolvable.

It follows from Lemma 5.1 that, as Halsey showed in [9], the affine geometry AG(n−1, q), for q �= 2, is line-closed
but not supersolvable. We extend this result.

Theorem 5.3. Let q �= 2 be a prime power. The geometry PG(n − 1, q)\PG(k − 1, q) is line-closed for 1�k�n − 1
and not supersolvable for 2�k�n − 1.

Proof. The first assertion follows by checking conditions (a) and (b) in Lemma 5.1, where Z is a rank-k flat of
PG(n − 1, q). Condition (a) holds since each line of PG(n − 1, q) contains either 0, 1, or q + 1 points of Z. The
geometry M|P in condition (b) is PG(2, q), a single-element deletion of PG(2, q), or AG(2, q), all of which are
line-closed. The last assertion follows from Lemma 5.2. �

The uniform matroid U3,4, i.e., AG(2, 2), is not line-closed. Since any deletion PG(n − 1, 2)\PG(k − 1, 2) with
k > 1 has U3,4 as the restriction to some flat, the assumption q �= 2 in the last result is necessary.

For the next result, recall from the theory of the critical problem [6,10] that the image of a geometry M that can
be embedded in PG(n − 1, q) is disjoint from some hyperplane of PG(n − 1, q) if and only if q is not a root of the
characteristic polynomial of M; thus, whether such hyperplanes exist depends only on M, not on the embedding. Such
geometries are affine over GF(q).

Theorem 5.4. Let Z be a set of points in PG(n − 1, q). Assume

(i) each line of PG(n − 1, q)|Z has at most q − 1 points,
(ii) each plane of PG(n − 1, q)\Z has a line with q + 1 points, and

(iii) PG(n − 1, q)|Z is not affine over GF(q).

Then the deletion PG(n − 1, q)\Z is line-closed and not supersolvable.
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Proof. Condition (i) implies condition (a) of Lemma 5.1. Since lines with q + 1 points are modular in restrictions
of PG(n − 1, q), rank-3 restrictions with such lines are supersolvable, so condition (b) of Lemma 5.1 follows from
condition (ii) and Corollary 3.2. Thus, PG(n−1, q)\Z is line-closed. That PG(n−1, q)\Z is not supersolvable follows
from conditions (i) and (iii), along with Lemma 5.2. �

For restrictions of PG(n − 1, q) that are graphic, we get the following result.

Corollary 5.5. If q exceeds three and PG(n − 1, q)|Z is isomorphic to the cycle matroid of a graph with chromatic
number greater than q, then PG(n − 1, q)\Z is line-closed and not supersolvable.

This corollary applies, in particular, if PG(n − 1, q)|Z is isomorphic to M(Km+1), and if 4�q �m. Similarly,
restrictions of representable Dowling lattices can be used in place of graphic matroids. We close with one such result.
The proof uses the characteristic polynomial of a Dowling lattice, which, by [7, Theorem 5], is

�(Qn(G); �) =
n−1∏
i=0

(� − (1 + i|G|)). (3)

Corollary 5.6. Let G be a subgroup of GF∗(q) with 3|G| + 1�q. Fix an integer m with q �(m − 1)|G| + 1. If
PG(n − 1, q)|Z is isomorphic to Qm(G), then PG(n − 1, q)\Z is line-closed and not supersolvable.

Proof. We check conditions (i)–(iii) in Theorem 5.4. The inequality q − 1� |G| + 2 follows since q �3|G| + 1, so
condition (i) holds. The inequalities 3|G| + 1�q and q �(m − 1)|G| + 1 along with Eq. (3) imply that Q3(G) is
affine over GF(q) while Qm(G) is not. In particular, condition (iii) holds. Theorem 4.2 implies that each plane of
PG(n−1, q)\Z is isomorphic to an extension of a geometry PG(2, q)\W , where PG(2, q)|W is isomorphic to Q3(G);
since Q3(G) is affine over GF(q), each such plane has a line with q + 1 points, so condition (ii) holds. �
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