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Abstract

There are many tilings of the plain, some of them are periodic, others are aperiodic. A
chromatic number of a tiling is de,ned as the minimum number of colours needed to colour
the tiles in such a way that every two adjacent tiles have di.erent colours. Determining the
chromatic number of a periodic tiling is mostly easy but this problem has not been investigated
for aperiodic tilings yet. In this paper the problem is solved for one of the most known aperiodic
tiling called Penrose kite-and-dart tiling. This tiling is often used as a planar model for so called
quasicrystals. c© 2001 Elsevier Science B.V. All rights reserved.

1. Properties of Penrose tilings

Let us have two types of tiles, the socalled kites and darts (see Fig. 1). The lengths
of their edges are 1 and �, where �= (1+

√
5)=2 is the golden ratio; their vertices are

marked by black and white dots. We can put the tiles to each other with the whole
common edge only, and the colours of the vertices on the common edge must match.
These tiles with the above matching rules were discovered by Penrose [1]. He showed

that these matching rules admit the tiling of the whole plane (without holes and over-
laps) in in,nitely many ways and every such a tiling is aperiodic, i.e. it admits no
translation. Such tilings are called Penrose (kite-and-dart) tilings, for portions of these
tilings see Figs. 6 and 3.
Bickford [2] posed the question to determine the chromatic number of Penrose tilings.

The chromatic number is de,ned as the minimum number of colours we need to colour
the tiles in such a way that every two adjacent (i.e. with a common edge) tiles have
di.erent colours. There are in,nitely many Penrose tilings but this question has a
good sense because of the next property. Every ,nite portion of any Penrose tiling
is contained in every Penrose tiling, even in,nitely many times. This implies due to
compactness that the chromatic number is the same for all Penrose tilings.
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Fig. 1. Kite and dart.

Fig. 2. Orientation of tiles.

Fig. 3. Neighbourhood of tile ‘Z9’.

2. Three-colourability of Penrose tilings

In the previous section we have discussed that the chromatic number � do not depend
on the concrete choice of a Penrose tiling. The upper bound �64 follows from the
well known four-colour theorem for planar graphs or from the Brook’s Theorem. On
the contrary, the lower bound �¿3 is easy to see. Then, the problem is to determine
whether � = 3 or 4.

Theorem. The chromatic number of every Penrose kite-and-dart tiling is 3.
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Fig. 4. Generation of dart classes.

Proof. The main idea of the proof is a distribution of the tiles into 280 classes de-
pending on their neighbourhood and orientation and then trying to colour every tile in
one class with the same colour.
Every tile has one of the 28 possible neighbourhoods shown in Fig. 6. These cases are

denoted by capitals and small letters. Two neighbourhood classes, which are mutually
symmetrical, are indicated by the capital and small form of the same letter.
A generation of the neighbourhood classes is shown in Fig. 4 for darts and in Fig. 5

for kites. Every dart lies in one of the four closest neighbourhoods depending on one tile
on the left side and one tile on the right side. Two of these closest neighbourhoods are
chosen as classes (‘A’ and ‘a’), for the remaining two we explore wider neighbourhoods
as shown in the ,gure. Not every ,nite part of a tiling is extendable to the tiling of the
whole plane, for example if there exists a place where no tile can be placed correctly.
Such places are marked by question marks. If only one extension is shown for some
neighbourhood, then this extension is uniquely determined by the previous part. Simpler
non-extendable cases are not shown. The same principle is applied for a generation
of the kite classes. The small-letter classes u, v, w, x, y, z are symmetrical to the
capital-letter classes U, V, W, X, Y, Z and are obtained in the symmetrical way.
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Fig. 5. Generation of kite classes.

Every tile is oriented in one of the 10 directions, the orientation is determined by the
arrows drawn in the tiles in Fig. 2. The orientations are denoted by digits 0–9. By the
combination of 28 neighbourhoods and 10 orientations we have made 280 classes. Then,
every class is denoted by the combination of a letter and a digit (as a subscript). Fig. 7
shows the possible neighbours for every type of tile. The orientation is meant mod 10.
Again, all other possibilities cannot be extended to a correct tiling of the whole plane.
We can now try to assign every type of tiles with one of the three colours. This

assignment is shown in Fig. 8. It is not hard (but it is tedious) to check (with Fig. 7)
that this colouring is in good order with only one exception, that is the colour of the
class ‘Z9’.
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Fig. 6. Possible neighbourhoods of tiles.

How to colour the tiles of this class? In Fig. 3a the larger neighbourhood of the
tile of the class ‘Z9’ is shown. It is uniquely determined by its neighbourhood in the
de,nition (in Fig. 6). The colouring of such tiles is possible with some local changes
as shown in Fig. 3b.
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Fig. 7. Neighbourhoods of classes of tiles.

Fig. 8. Colouring of classes of tiles.

The colours outside the marked region are in harmony with Fig. 8, the colours inside
are changed to a correct colouring. It is easy to check that the tiles inside the marked
region and their neighbours are all of the di.erent classes, so the problematic regions
cannot overlap.
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Thus the proof is complete.

3. Remarks

The proof was made with the help of a computer. In every trial, I made a list of
classes (as in Fig. 6) and a list of neighbourhoods of classes (as in Fig. 7) — this
makes a graph. The computer program tried to colour properly such a graph with three
colours. I started with 20 classes and with the almost-proper colouring (with one error
for ‘Z9’) I obtained for 320 classes. Then, I reduced this number to the presented 280
classes.
Probably this method of the proof cannot be much shorter, at least a shorter proof

would demand a new idea.
There are many other aperiodic tilings for which the question of their chromatic

number has not been solved yet.
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