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Abstract Least squares is a robust and simple method in function approximation. Collocated Discrete
Least Squares (CDLS) is a meshless method based on least squares technique. In this paper CDLS is used
with a non-incremental projectionmethod for the solution of incompressible generalized Newtonian fluid
flow equations in the simulation of laminar flow of power-law fluids. The scheme is used to solve two
benchmark problems named lid-driven cavity flow and flow past a circular cylinder for the power-law
fluids.
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1. Introduction

Using a mesh or grid is a basic characteristic of the con-
ventional numerical methods for the solution of the partial
differential equations. During the recent years, considerable ef-
fort has been devoted to developing the so-called meshless
methods. The purpose of the methodology is to get rid of at
least the structure of the mesh and to approximate the solu-
tion using scattered nodes inside and on the boundaries of the
domain. A detailed review on the meshless methods has been
provided by Belytschko [1], Liu [2] and Liu and Gu [3]. Each effi-
cient numericalmethod should possess someproperties such as
strongmathematical basis, simplicity and efficiency. The math-
ematical basis of CDLS is the least squares technique. Since
the method enjoys symmetric and sparse matrices it is effi-
cient in computational cost. The main idea was adopted from
least squares technique in FEM. Afshar and Arzani developed
Discrete Least Squares (DLS) meshless method for the solution
of convection-dominated problems [4]. Afshar and Lashckar-
bolok used collocation points in DLS method and developed
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CDLS meshless method [5]. They also presented a posteriori er-
ror estimate and an adaptive refinement strategy in conjunction
with themethod. According to their research, collocation points
have significant effects on the performance of the method.
Recent research on CDLS method has focused on the solution of
incompressibleNavier–Stokes equations. In this field Firoozjaee
and Afshar used CDLS method for the solution of incompress-
ible Navier–Stokes equations in its primitive form [6]. They
proposed a semi-incremental fractional step method for the
temporal discretization of the incompressible Navier–Stokes
equations which can be applied to the solution of these equa-
tions using large time steps without any restrictions on satisfy-
ing the Ladyzhenskaya–Babuska–Brezzi (LBB) condition.

In the present study, the CDLS method is extended for
the solution of incompressible generalized Newtonian fluid
equations in the simulation of laminar flow of power-law
fluids. The Radial Point Interpolation Method (RPIM) is used
to construct shape functions. The proposed scheme is used to
solve lid-driven cavity flow and flow past a circular cylinder for
power-law fluids.

2. CDLS meshless method

Consider the following differential equation:

L(u) = f in Ω (1)
B(u) = g on Γt (2)
u = ū on Γu. (3)

Here, u denotes the unknown function. L and B are some proper
differential operators defined on the problem domainΩ and its
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Neumann boundaryΓt , respectively.Γu represents theDirichlet
boundarywith a prescribed value of ū and f is the source term in
the problem domain. The philosophy behind the least squares
method is to find an approximate solution that minimizes
the least squares functional to be defined later. As shown in
Figure 1, the problemdomain and its boundaries are discretized
by nodal and collocation points. Assume that np is the number
of nodes in the domain and on the boundaries. Beside the nodal
points, the collocation points are used in the problem domain
and on its boundaries. In this methodology in each nodal point
one collocation point has to be placed as shown in Figure 1.
Assume thatM is the number of collocation points.

The approximated value of the functionu at collocationpoint
k with coordinate xk, can be obtained through the following
interpolation:

u(xk) =

n̄
i=1

Ni(xk) · ui, (4)

where ui is the value of the unknown function at the ith nodal
point. n̄ is the number of nodal points that the kth collocation
pointwith coordinate xk, has in its domain. This idea of compact
support is shown in Figure 2. To set up such a domain for each
collocation point a radius ds is defined so that a specific number
of nodal points are placed into its support domain. In Eq. (4),
Ni(xk) is the value of the shape function of the ith node at the
kth collocation point. In this paper first the number of nodes
to support collocation points is defined as n̄. Then for each
collocation a radius (ds) is determined so that n̄ nodes are
placed in the domain of that collocation. Substitution of Eq. (4)
into Eqs. (1)–(3) leads to the differential equation residual
(Rd), the Neumann boundary condition residual (Rt) and the
Dirichlet boundary condition residual (Ru) defined as follows
respectively:

R(d)
k = L(u(xk)) − f (xk)

=

n̄
i=1

L(Ni(xk))ui + f (xk) (k = 1 ∼ M) (5)

R(t)
k = B(u(xk)) − g(xk)

=

n̄
i=1

B(Ni(xk))ui − g(xk) (k = 1 ∼ nt) (6)

R(u)
k = u(xk) − ū

=

n̄
i=1

(Ni(xk))ui − ū (k = 1 ∼ nu). (7)

In these relations, nt and nu are the number of collocation
points located on the nodal points in the Neumann and
Dirichlet boundaries, respectively. Now the following least
squares functional of all residuals at all collocation points can
be constructed as:

J =
1
2


M

k=1

[R(d)
k ]

2
+ α ·

nt
k=1

[R(t)
k ]

2
+ β ·

nu
k=1

[R(u)
k ]

2


. (8)

The parameters α and β in this equation represent the relative
weight of the boundary residuals with respect to the interior
residuals named as penalty coefficients.

Minimization of Eq. (8) with respect to the nodal parameters
ui leads to the following system of equations:

KU = F (9)
Figure 1: The domain discretized by nodal points and collocation points [5].

Figure 2: Compact support of kth collocation.

in which U is the vector of nodal parameters. The typical
components of the matrix K and the right hand side vector F
are defined as:

Kij =

M
k=1

L(Ni(xk)) · L(Nj(xk))

+ α

nt
k=1

B(Ni(xk)) · B(Nj(xk))

+ β

nu
k=1

Ni(xk).Nj(xk) i, j = 1, . . . , np (10)

Fi =

M
k=1

L(Ni(xk))f (xk) + α

nt
k=1

B(Ni(xk))g(xk)

+ β

nu
k=1

Ni(xk) · ū i = 1, . . . , np. (11)

The stiffness matrix K in Eq. (9) is symmetric even for non-self-
adjoint operators. The size of K just depends on the number
of nodal points (np) and the number of collocation points does
not increase the size of the final system of equations. It is also
sparse since a small number of nodes contribute to the function
evaluation for a collocation point. Therefore the final system of
equations can be solved using iterative procedures effectively.

3. Governing equations

Governing equations are comprised of continuity, momen-
tum and constitutive equations for two dimensional incom-
pressible flow of a generalized Newtonian fluid. They are in a
non-dimensional form and Cartesian coordinates given by

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
∂P
∂x

+


∂τxx

∂x
+

∂τxy

∂y


(12)



324 M. Lashckarbolok, E. Jabbari / Scientia Iranica, Transactions B: Mechanical Engineering 20 (2013) 322–328
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂P
∂y

+


∂τyx

∂x
+

∂τyy

∂y


(13)

∂u
∂x

+
∂v

∂y
= 0 (14)

τxx = 2η
∂u
∂x

(15)

τxy = τyx = η


∂u
∂y

+
∂v

∂x


(16)

τyy = 2η
∂v

∂y
, (17)

where u, v and P are velocity components in x direction, the
velocity component in y direction and pressure respectively. η
is the generalized Newtonian viscosity which depends on the
local shear rate (in isothermal condition). In Newtonian fluid η
is constant for the entire flow field. In this study an inelastic
power-law model is used to describe fluid behaviour. However
any other generalizedNewtonianmodel could also be used such
as the Carreau–Yasuda model. The dimensionless form of the
power-law model is given by:

η =
m · (γ̇ )

(n−1)
2

Re
, (18)

where γ̇ ,m, n and Re are second invariant of the rate of
deformation tensor, fluid consistency, power-law index and
Reynolds number respectively. γ̇ in the Cartesian coordinate
and Reynolds number are defined by

γ̇ = 2


∂u
∂x

2

+ 2


∂v

∂y

2

+


∂u
∂y

+
∂v

∂x

2

(19)

Re =
ρ0U2−n

0 ln0
m0

, (20)

where ρ0,U0, l0 and m0 are the reference values of density,
velocity, length and fluid consistency. Using constitutive
equations, Eqs. (12)–(13) will be:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
∂P
∂x

+


2
∂η

∂x
·
∂u
∂x

+
∂η

∂y


∂u
∂y

+
∂v

∂x


+ η


∂2u
∂y2

+
∂2u
∂x2


(21)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂P
∂y

+


2
∂η

∂y
·
∂v

∂y

+
∂η

∂x


∂u
∂y

+
∂v

∂x


+ η


∂2v

∂y2
+

∂2v

∂x2


. (22)

The above equations are analogous to the following vectorized
equation:

∂U
∂t

+ u ·
∂U
∂x

+ v ·
∂U
∂y

= −∇P +


A

∂U
∂x

+ B
∂U
∂y

+ C
∂2U
∂x2

+ D
∂2U
∂y2


+ E. (23)

Where:

U =


u
v


, A =

2
∂η

∂x
0

0
∂η

∂x

 ,
Figure 3: Boundary condition in lid-driven cavity flow problem [6].

Figure 4: Points distribution in lid-driven cavity flow problem.

B =


∂η

∂y
0

0 2
∂η

∂y

 , C =


η 0
0 η


,

D =


η 0
0 η


, E =


∂η

∂y
·
∂v

∂x
∂η

∂x
·
∂u
∂y

 .

4. Temporal discretization

Temporal discretization of the momentum equations in
their primitive form is carried out by the fractional step
method. Several fractional step methods have been introduced
in the literature. The non-incremental fractional step method
proposed by Chorin [7] is one of the popular methods. In
this method, a momentum equation is used to obtain the
intermediate velocities by neglecting the pressure terms. It
performs the advancement in time in three main steps; first,
the momentum equation is used to obtain the intermediate
velocity, in the next step, the pressure is evaluated using the
intermediate velocity. Finally, velocity is calculated using the
intermediate velocity and the pressure. The non-incremental
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Figure 5: Stream function counters for power-law indices n = 0.5 (a), n = 1 (b), n = 1.5 (c).
fractional step method does not require the satisfaction of the
LBB condition. This property makes this method suitable for
steady state problems [8]. In this paper the non-incremental
fractional step method is used in temporal discretization. As
described before, firstmomentumequations are solvedwithout
considering the pressure terms via an implicit Euler method. It
leads to the following equations:

U∗
− Uλ

∆t
+ uλ

·
∂U∗

∂x
+ vλ

·
∂U∗

∂y

=


Aλ ∂U∗

∂x
+ Bλ ∂U∗

∂y
+ Cλ ∂2U∗

∂x2
+ Dλ ∂2U∗

∂y2


+ Eλ (24)

in which U∗ and Uλ are velocities at the intermediate and
previous time step respectively. uλ and vλ are intermediate
velocities at the previous time step. To calculate the coefficient
matrix and right hand side vector, the operators L and f in
Eqs. (10) and (11) for Eq. (24) can be written as:

L(·) = (·) + ∆t · uλ
·
∂(·)

∂x
+ ∆t · vλ

·
∂(·)

∂y

− ∆t

Aλ ∂(·)

∂x
+ Bλ ∂(·)

∂y
+ Cλ ∂2(·)

∂x2
+ Dλ ∂2(·)

∂y2


(25)
f = Uλ
+ ∆t · Eλ. (26)

After calculating intermediate velocities (U∗), the pressure field
can be obtained using the Poisson’s equation for pressure.

∂2Pλ+1

∂x2
+

∂2Pλ+1

∂y2
=

1
∆t


∂u∗

∂x
+

∂v∗

∂y


. (27)

For Eq. (27), operators L and f can be written as below:

L(·) =
∂2(·)

∂x2
+

∂2(·)

∂y2
(28)

f =
1

∆t


∂u∗

∂x
+

∂v∗

∂y


. (29)

Using these pressure values, the velocity field can be updated
as follow:

uλ+1
= u∗

− ∆t


∂Pλ+1

∂x


(30)

vλ+1
= v∗

− ∆t


∂Pλ+1

∂y


. (31)
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Figure 6: Pressure counters for power-law indices n = 0.5 (a), n = 1 (b), n = 1.5 (c).
Table 1:Wake length of flow past circular cylinder for power-law index (n)
equal to 1.4 at different Reynolds numbers.

Re Present study Rao et al. [11]

50 0.42 0.41
100 1.01 1.05
120 1.25 1.28
140 1.51 1.48

5. Shape function construction

In this study RPIM is used to construct shape functions.
Detailed descriptions of the procedure are available elsewhere
[2,3]. In following numerical examples a multi quadratic radial
basis function augmented with polynomials of a completed
second order is used in the radial point interpolation method.
The multi quadratic radial basis function (q) used in this paper,
is given by:

qi(r) = (ds2 + r2)2.03, (32)

where ds is the radius of the compact support domain defined
earlier and r is the distance from the ith node. In the following
numerical examples ds is always chosen for each collocation
point so that 20 nodes are placed into the support domain of
that collocation.
Figure 7: u profile along vertical centre line.

6. Numerical examples

The ability of the scheme is shown by solving two bench
mark problems named lid-driven cavity flow and flow past
a circular cylinder. In temporal discretization dealing with
steady-state problems, it is favourable to use large time steps,
to reduce computational cost. But large time steps may lead
to an inaccurate solution because of the first order accurate
time discretization that is used here. Also large time steps
increase numerical diffusion which may smear the results. In
the following examples the time step size is chosen to be 0.01.
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Figure 8: v profile along horizontal centre line.

Regarding penalty coefficients, they should be large enough to
ensure boundary condition satisfaction. In this study, penalty
coefficients are chosen to be α = β = 107 for both problems.

6.1. Lid-driven cavity flow

One of the most popular benchmark problems in incom-
pressible steady-state flow simulation is the lid-driven cavity
flow problem. The problem is characterized by a square cav-
ity in which the driven force for the flow is the shear created
by the moving lid. The geometry and boundary conditions of
this problem are shown in Figure 3. In this example Re and m
are kept constantly at 100 and 1. Then the problem is solved
with three values of power-law indices (n) of 0.5,1 and 1.5. In
spatial discretization 2587 nodes and 11203 collocation points
are used. Point distribution is shown in Figure 4. The obtained
stream functions and pressure contours are shown in Figures 5
and 6. The horizontal and vertical velocity component profiles
at the mid-span of the cavity are plotted to make a compari-
son with Bell and Surana results [9] for the case of n = 0.5 and
n = 1.5. For the case of n = 1, comparison is made by Ghia
et al. [10] due to the fact that their work is known as one of the
most detailed investigations into the cavity flow problem. The
results are shown in Figures 7 and 8.
6.2. Power law fluid past a circular cylinder

As the second numerical example, the two-dimensional
flow of an incompressible power law fluid past a circular
cylinder placed symmetrically between twoparallel planewalls
is considered. Geometry and velocity boundary conditions are
shown in Figure 9. Regarding pressure boundary conditions
on all boundaries the derivative of pressure in the direction
normal to the boundaries is considered zero except for themid-
point of the exit boundary where the value of the pressure is
specified as zero. In this example power-law index (n) and fluid
consistency (m) are kept constantly 1.4 and 1. The problem
is solved for four different Reynolds numbers of 50,100,120
and 140. The Reynolds number calculation is based on the
characteristic length of cylinder diameter (D = 1.0) and the
characteristic velocity of free-stream velocity (u = 1.0). For
shear-thickening fluids (n > 1), the flow is steady up to Re =

140 for the given geometry [11]. So thanks to symmetry half the
problem is solved. On the boundary of symmetry the derivative
of the x-component of the velocity (u) in the direction normal
to this boundary is considered zero and the y-component of
the velocity (v) is set to zero. In spatial discretization 7619
nodes and 33081 collocation points are used. Point distribution
is shown in Figure 10. Obtained results of computed streamlines
are plotted under a close view in Figures 11 and 12. The
wake length for different Reynolds numbers, presented in
Table 1, is well comparable with the results of the reference
publication [11].

7. Computational costs

Since CDLS uses a local support domain in function
approximation, the produced matrices are sparse. Besides that,
the final coefficient matrices are symmetric. To show the
computational costs of the method, the main steps along with
their consumed times in solving problems 6-1 and 6-2 are given
in Table 2. Consumed times are obtained on one CPU with 3.2
GHz frequency. The system of equations is solved using the
DGBRTF routine in the LAPACK package [12].
Figure 9: Geometry and velocity boundary conditions in flow past a circular cylinder problem.
Figure 10: Points distribution in flow past a circular cylinder.
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Figure 11: Stream lines at Re = 50 (left) and Re = 100 (right) for n = 1.4.
Figure 12: Stream lines at Re = 120 (left) and Re = 140 (right) for n = 1.4.
Table 2: Solution steps and consuming times (seconds).

Stepnumber Description Consumed time for
problem 6-1.

Consumed time for
problem 6-2.

Remarks

1 Produce shape functions and their derivatives 10.1 21.7 This step need to be calculated just one time.
2 Solve the system of equations for u 0.06 0.27

These steps must be taken in every iteration3 Solve the system of equations for v 0.06 0.27
4 Solve the system of equations for p 0.06 0.27
8. Conclusions

In the present study CDLS was extended for the solution
of incompressible generalized Newtonian fluid equations.
The presented formulation can be used for any generalized
Newtonian model. However, in this paper it has been used
for simulation of the laminar flow of power-law fluids.
Two numerical examples are solved for different values of
power-law indices. The computed solutions showed acceptable
agreement with the solutions reported in the literature.
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