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Abstract

Results by physicists on renormalization group techniques have recently sparked interest in the singular pertur-
bations community of applied mathematicians. The survey paper, [Phys. Rev. E 54(1) (1996) 376–394], by Chen et
al. demonstrated that many problems which applied mathematicians solve using disparate methods can be solved
using a single approach. Analysis of that renormalization group method by Mudavanhu and O’Malley [Stud. Appl.
Math. 107(1) (2001) 63–79; SIAM J. Appl. Math. 63(2) (2002) 373–397], among others, indicates that the technique
can be streamlined. This paper carries that analysis several steps further to present an amplitude equation technique
which is both well adapted for use with a computer algebra system and easy to relate to the classical methods of
averaging and multiple scales.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many different techniques exist for solving singular perturbation problems. Matched asymptotic ex-
pansions, the WKBJ method, the Poincaré–Lindstedt procedure, the methods of averaging and multiple
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scales, to name but a few, were all developed to solve special classes of singular perturbation problems.
These asymptotic methods illustrate the varied history of applied mathematics, since they each evolved
from the need to solve a specific type of problem of physical significance. The tendency to asymptotically
solve many different types of problems using many different techniques survives to this day, even though
more efficient and ubiquitous procedures may be available. This, unfortunately, gives the impression that
our arsenal of perturbation techniques forms an ad hoc collection of clever tricks practiced primarily by
the cognoscenti.

Chen et al. [4], present a renormalization group method which they use to solve many types of singular
perturbation problems, superseding the traditional methods of applied mathematics named above. Their
technique is based on generating a naive expansion from a regular perturbation procedure. Having obtained
the naive expansion, whose validity is generally limited to an O(1) time interval, they proceed to eliminate
“secular terms” in order to develop a more refined expansion which is uniformly valid on an appropriate
extended interval. Essentially, this is done by replacing the constant initial value of the naive expansion
with a slowly varying function that is asymptotically selected to cancel secularities and by making other
appropriate higher-order modifications. As a basic framework for solving singular perturbation problems,
this methodology is promising, though elucidating the underlying ideas requires improved exposition and
implementation.

Mudavanhu and O’Malley [13,14], analyze the renormalization group technique of Chen et al. for
weakly-nonlinear oscillators and show that it offers many benefits. The renormalization group technique
is equivalent to the methods of averaging and multiple scales [15] and closely related to the more efficient
use of amplitude equations or normal forms [5,21]. Mudavanhu and O’Malley also offer a simplification of
notation and a clarification of methodology to make the renormalization group technique more transparent.

This paper continues the work of [13,14]. We bypass the need to calculate the naive expansion and
proceed directly to a pair of equations to eliminate secular terms from the regular perturbation expansion.
In the case of weakly nonlinear oscillators, this optimized technique is analogous to averaging and multiple
scales. Indeed, the averaged equations and the amplitude equations coincide.

Secular terms often arise in the asymptotic solution of weakly nonlinear oscillators, causing the ex-
pansions to not be uniformly valid over (appropriately restricted) long time intervals. Uniform validity
can also be destroyed when two or more terms in the asymptotic expansion achieve the same asymptotic
order at large times, destroying the implicit assumption that successive terms in a perturbation series are
of increasing order with respect to an asymptotic sequence. For autonomous, weakly nonlinear pertur-
bations of harmonic oscillators, this most often occurs when terms proportional to sin(t) and cos(t) are
present in the forcings of the differential equations that define higher-order terms in the expansion. More
generally, resonance occurs when solutions of the leading-order linear operator are present in the forcings
of differential equations satisfied by later coefficients.

We begin our analysis by noting that we can transform the weakly nonlinear oscillator equation

ÿ + y + �f (y, ẏ, �) = 0

into the vector periodic standard form

ẋ = �F(x, t, �).

There, the only solutions of the limiting leading-order linear system are constants. Thus to remove secular
terms we must eliminate constants from the forcings for successive terms of the naive expansion for the
solution. The method of averaging was designed to do precisely this by integrating the forcings over a
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period and removing any nontrivial constant averages that remain. Thus averaging provides a means to
remove the troublesome secular terms. Our method refocuses attention on preventing secular terms and
allows generalization to equations with a nonperiodic forcing.

Having identified how secular terms arise, we proceed by first introducing a near-identity transforma-
tion. This transformation allows the leading-order dynamics to vary on a slower timescale, rather than
remaining constant. This new degree of freedom allows us to separate the secular dynamics in the resulting
partial differential equation. These secular dynamics correspond to the constants in a Fourier expansion of
F. The nonlinear, autonomous evolution equation for the secular parts, which we shall call the amplitude
equation, determines the primary evolution of the system on a slow timescale. Knowing how secular
parts evolve, the differential system determines successive, periodic corrections to these dynamics, thus
allowing the asymptotic expansion to remain uniformly valid on long time intervals.

2. Defining the amplitude equation method

Consider the first-order vector system in standard form,

ẋ = �F(x, t, �) (2.1)

on t �0 with a prescribed initial vector x(0) and an asymptotically small positive parameter �. Assume
that F is analytic in x, 2�-periodic in t and possesses an asymptotic series in �, so that Taylor series and
asymptotic power series expansions may both be used in our calculations.

Substitute the regular power series expansion

x�(t) = x0(t) + �x1(t) + �2x2(t) + · · ·
into (2.1) and collect terms involving like powers of �. Then the first few terms xj (t) must satisfy the
successive linear systems

ẋ0 = 0,

ẋ1 = F(x0, t, 0),

ẋ2 = (x1 ·%)F(x0, t, 0) + F�(x0, t, 0),

ẋ3 = 1
2 (x1 ·%)2F(x0, t, 0) + (x2 ·%)F(x0, t, 0) + (x1 ·%)F�(x0, t, 0) + 1

2 F��(x0, t, 0)

and so on, where the gradients are taken with respect to the components of x0. These equations can, in
turn, be integrated directly to yield

x0(t) = x(0),

x1(t) =
∫ t

0
F(x0(s), s, 0) ds,

x2(t) =
∫ t

0
((x1(s) ·%)F(x0(s), s, 0) + F�(x0(s), s, 0)) ds,
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x3(t) =
∫ t

0

(
1

2
(x1(s) ·%)2F(x0(s), s, 0) + (x2(s) ·%)F(x0(s), s, 0)

+ (x1(s) ·%)F�(x0(s), s, 0) + 1

2
F��(x0(s), s, 0)

)
ds.

Note that if any of the integrands contains secular terms, i.e., constants with respect to t, the resulting
integrals will become unbounded as t → ∞. These constants are eigenfunctions of the linear operator
d/dt , so their presence in the forcing causes a resonance, i.e., unboundedness of the solution. Since we
can often prove that the exact solution is actually bounded, the unbounded terms obtained via the regular
perturbation procedure are undesirable. Such unbounded asymptotic approximations give the incorrect
impression that the true solution is also unbounded.

Experience with multiple scales and averaging suggests that a better assumption is that the leading-order
term should not be a constant but instead a function of the slow time,

� = �t .

To account for this slow variation at leading order, we introduce the near-identity transformation

x�(t, �) = A�(�) + �U(A�(�), t, �) (2.2)

in place of the regular perturbation series. The function A�(�) is a slowly varying function intended to
replace the integration constant x(0) and U is a bounded correction. We shall require that U be analytic
in A�, 2�-periodic in t and possess an asymptotic series expansion with respect to �. We also ask that
A�(0) = x(0) so that U(A�(0), 0, �) = 0. The higher-order corrections will depend on the fast time, t , as
well as the slow time, �, through the amplitude A�(�). We shall also require an amplitude equation

dA�

d�
≡ H(A�, �), (2.3)

to be satisfied, for a yet to be determined function H(A�, �).
As with multiple scales, we will treat the two timescales � and t as independent variables. Substituting

ansatz (2.2) into system (2.1) and applying the chain rule then implies the partial differential equation

dA�

d�
+ �

�U
�A�

dA�

d�
+ �U

�t
= F(A� + �U, t, �). (2.4)

Substituting (2.3) into (2.4) and taking the average over 0� t �2� yields the integral equation

H(A�, �) = 1

2�

∫ 2�

0

(
F(A� + �U, s, �) − �

�U
�A�

H(A�, �)

)
ds, (2.5)

since dA�/d� is independent of t , while boundedness of U requires �U/�t to be periodic with a zero
average. Alternatively,

H(A�, �) = 1

2�

(
I + �

2�

∫ 2�

0

�U
�A�

(A�, s, �) ds

)−1 ∫ 2�

0
F(A� + �U, s, �) ds. (2.6)

This isolates the constants which, when integrated, cause resonance. We then deal with them separately
from the harmless, oscillatory remainder in (2.4).
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Next solve (2.4) for �U/�t , insert (2.3) and integrate from 0 to t to obtain a second integral equation,

U(A�, t, �) =
∫ t

0

(
F(A� + �U, s, �) −

(
I + �

�U
�A�

)
H(A�, �)

)
ds, (2.7)

which asymptotically provides the bounded, oscillatory correction U in (2.2) since H is the average of
the periodic function F− �(�U/�A�)H. We shall iterate in this coupled pair of integral equations to define
H and U asymptotically.

Assuming that H(A�, �) and U(A�, t, �) have series expansions

H(A�, �) = H0(A�) + �H1(A�) + �2H2(A�) + · · · (2.8)

and

U(A�, t, �) = U0(A�, t) + �U1(A�, t) + �2U2(A�, t) + · · · , (2.9)

F has the resulting expansion

F(A� + �U, t, �) = F0(A�, t) + �F1(A�, U0, t) + �2F2(A�, U0, U1, t) + · · · , (2.10)

where the terms on the right hand side are given by the standard Taylor coefficients in �. In particular, the
first three terms of (2.10) are

F0(A�, t) = F(A�, t, 0),

F1(A�, U0, t) = (U0 ·%)F(A�, t, 0) + F�(A�, t, 0)

and

F2(A�, U0, U1, t) = 1
2 (U0 ·%)2F(A�, t, 0) + (U1 ·%)F(A�, t, 0)

+ (U0 ·%)F�(A�, t, 0) + 1
2 F��(A�, t, 0),

where the gradients refer to the components of A� and the partial derivative �/�� refers to the third
argument of F.

Lastly, we define the secular part of a periodic function to be its average over a period. To make the
notation compact, we denote this value by

〈g〉 = 1

2�

∫ 2�

0
g(s) ds. (2.11)

Then substituting the power series (2.8)–(2.10) into the integral equations (2.5) and (2.7), averaging and
collecting terms with like powers of �, one finds to leading order that

H0(A�) = 1

2�

∫ 2�

0
F0(A�, s) ds = 〈F0(A�)〉 (2.12)

and

U0(A�, t) =
∫ t

0
(F0(A�, s) − H0(A�)) ds. (2.13)
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These are, of course, well-known results of the method of averaging [19,22]. Equating terms at O(�n), for
each n�1, we determine the convenient corresponding pair of recursion relations

Hn(A�) = 〈Fn(A�, U0, . . . , Un−1)〉 −
n−1∑
k=0

〈
�Uk

�A�

〉
Hn−k−1(A�) (2.14)

and

Un(A�, t) =
∫ t

0

(
Fn(A�, U0, . . . , Un−1, s) − Hn(A�) −

n−1∑
k=0

�Uk

�A�
Hn−k−1(A�)

)
ds. (2.15)

These relations asymptotically determine both bounded, higher-order approximations to the solution (2.2)
and higher-order terms in the amplitude equation (2.3). To completely succeed, all that remains is to solve
the nonlinear initial value problem

dA�

d�
= H(A�, �), A�(0) = x(0). (2.16)

To asymptotically solve (2.16), we insert a regular perturbation series for A�(�), i.e.

A�(�) = A0(�) + �A1(�) + �2A2(�) + · · · . (2.17)

The limiting problem,

dA0

d�
= H0(A0), A0(0) = x(0), (2.18)

is generally fully nonlinear. Wherever it can be solved, later terms Ak , for k�1, follow successively as
solutions of a sequence of linearized problems

dAk

d�
= �H0

�A�
(A0)Ak + �k(A0, A1, . . . , Ak−1), Ak(0) = 0, (2.19)

where �k(A0, A1, . . . , Ak−1) is known from inserting the regular perturbation series (2.17) into (2.16)
and Taylor expanding for small �. Using the fundamental matrix �A0/�x(0), we have

Ak(�) = �A0(�)

�x(0)

∫ �

0

[(
�A0(r)

�x(0)

)−1

�k(A0(r), A1(r), . . . , Ak−1(r))

]
dr , (2.20)

defined whenever A0(�) is. Its behavior as � → ∞ follows according to various stability hypotheses
on A0. By comparison with the related work of [18,20,21], we should expect the series for H and U to
diverge as Gevrey series.

If this regular perturbation method should be unsatisfactory, e.g., if some Aj (�) blows up, one may
instead attempt to rescale the independent and dependent variables. Such a rescaled problem may then
be solved using the regular perturbation method. As before, the rescaled amplitude equation will be
nonlinear, while remaining terms in the series will follow directly in turn from linear equations.

If neither the regular perturbation method nor the rescaling method gives satisfactory results, one could
instead integrate the approximate amplitude equation (2.16) numerically. Though typically a last resort
for many practitioners in perturbation theory, the numerical integration of (2.16) should be more effective
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than integrating the original equation directly because the amplitude evolves on a slower time scale. The
amplitude equation (2.16) and its truncations are, of course, the results of our analysis and were not
initially obvious.

We are only guaranteed to have a local solution to the limiting amplitude equation. This reflects the
well-known limitation that results found from multiple scales and averaging are generally restricted to
time intervals where � is finite. The possibility of performing further transformations on the amplitude
equation suggests that the solution, x�, might be obtainable on an even longer time interval where A�

thereby becomes defined.
Before proceeding, we want to point out one way to obtain the standard form (2.1) from a given

perturbed system of equations. Suppose one is given

ż = f(z, t) + �g(z, t, �), (2.21)

where both f and g are smooth. The basic existence theorem implies that when a solution for � = 0 exists,
it can be represented as

z = z(t, z(0)), (2.22)

where the parameter z(0) is the initial vector.
To transform (2.21), we exploit the nonlinear version of variation of parameters [16]. The essence of

this procedure is to assume that the integration constant, x, in

z = z(t, x) (2.23)

varies with time. This suggests a change of variables from z to x. Inserting (2.23) into (2.21), the chain
rule implies that

�z
�t

+ �z
�x

ẋ = f(z(t, x), t) + �g(z(t, x), t, �),

where the matrix, �z/�x, of first partial derivatives is (at least) locally invertible, due to uniqueness. Since
dz/dt = f(z, t), we obtain

ẋ = �

(
�z
�x

)−1

g(z(t, x), t, �),

which is in the standard form (2.1). Related osculating element techniques occur frequently in the classical
celestial mechanics literature [1].

3. Weakly nonlinear oscillators

The general autonomous, weakly nonlinear oscillator equation,

ÿ + y + �f (y, ẏ, �) = 0, (3.1)

is a differential equation for which the methods of multiple scales and averaging are well adapted. The
examples below show that our amplitude equation technique is at least as accurate as they. We shall,
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without loss of generality, use the initial values y(0) = 1 and ẏ(0) = 0. Josic and Peles [9], consider
synchronization of an array of such oscillators.

Before applying the amplitude equation method, we transform (3.1) to the standard form (2.1). This
can be accomplished either by utilizing the variation of parameters procedure already described or by
following van der Pol’s lead and changing to polar coordinates [8]. Choosing the latter, let

y = � cos(� + �), ẏ = −� sin(� + �), (3.2)

where � and � vary (slowly) with t and � ≡ (1 + �2�(�))t is a strained coordinate for the fast scale.
We will choose the coefficients of the power series �(�) = �0 + ��1 + · · · to ensure that higher-order
approximate solutions behave nicely at infinity. By enforcing the consistency condition (d/dt)y = ẏ and
using (3.1), one gets two first-order ODEs which are solved as a linear algebraic system. This yields an
equation

dx
dt

= �F(x, �, �), (3.3)

which is in standard form for x = (
�
�), where the forcing is given by

F(x, �, �) =
(

sin(� + �)
1

�
cos(� + �)

)
f (� cos(� + �), −� sin(� + �), �) − �

(
0

�(�)

)
. (3.4)

We note that the addition of the strained coordinate � necessitates only a small change in the solution
procedure. In particular, as a result of the chain rule, one must replace the recursion formula (2.15) with
the modified formula

Un(A�, �) =
∫ �

0

(
Fn(A�, U0, . . . , Un−1, s) − Hn(A�)

−
n−1∑
k=0

�Uk

�A�
Hn−k−1(A�)

)
ds −

n−2∑
k=0

Uk(A�, �) �n−k−2, (3.5)

when equating coefficients at O(�n) for n�2.
Consider as a first example the Duffing equation

ÿ + y + �y3 = 0. (3.6)

After transforming (3.6) into (3.4) for the polar coordinates � and � and applying the recursion formulas
(2.14) and (2.15), one finds that the corresponding amplitude, A� = (

R�
��

), evolves according to the system

dR�

d�
= O(�4), (3.7)

d��

d�
= 3

8
R2

� − �

(
�0 + 21

256
R4

�

)
− �2

(
�1 − 81

2048
R6

�

)
− �3

(
�2 + 6549

262144
R8

�

)
+ O(�4). (3.8)
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Solving the amplitude equations (3.7), (3.8) is particularly simple. Using R�(0) = 1, one finds that

R�(�) = 1 + O(�4).

Then substituting this into the phase equation (3.8), we find we must choose �0 = − 21
256 , �1 = 81

2048 and
�2 = − 6549

262144 in order to simplify the phase equation and ensure no more than linear growth in the phase
as � → ∞. This leaves the equation

d��

d�
= 3

8
+ O(�4),

whose solution with ��(0) = 0 is

��(�) = 3
8� + O(�4�).

Then using the corrections Ui(A�, �), for i = 0, 1, 2, we may define the attracting limit cycle to O(�3) as

y(t; �) = cos(� + ��) − �( 1
32 cos(� + ��) − 1

32 cos(3(� + ��)))

+ �2
(

23

1024
cos(� + ��) − 3

128
cos(3(� + ��)) + 1

1024
cos(5(� + ��))

)

− �3
(

547

32768
cos(� + ��) − 297

16384
cos(3(� + ��))

+ 3

2048
cos(5(� + ��)) − 1

32768
cos(7(� + ��))

)
+ O(�4), (3.9)

where

� + �� =
(

1 + 3

8
� − 21

256
�2 + 81

2048
�3 − 6549

262144
�4
)

t + O(�5t).

This approximation is valid for bounded � = �t , in precise agreement with the approximations found
using multiple scales or the Poincaré–Lindstedt method. The exact solution of the Duffing equation can
be expressed in terms of elliptic functions and is periodic with an �-dependent frequency. Because we only
approximate the frequency with a power series, we attain only orbital stability, rather than asymptotic
stability, as t → ∞.

As a second example, consider the van der Pol equation

ÿ + y + �(y2 − 1)ẏ = 0. (3.10)

After introducing polar coordinates and applying the recursion formulas, one finds that the amplitude,
A� = (

R�
��

), evolves as the triangular system

dR�

d�
= 1

2

(
R� − 1

4
R3

�

)
+ �2

(
− 5

128
R3

� + 17

768
R5

� − 37

12288
R7

�

)
+ O(�4), (3.11)

d��

d�
= −�

(
�0 + 1

8
− 11

32
R2

� + 21

256
R4

�

)
− �2�1 + O(�3). (3.12)
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The first correction term, U0(A�, �), defines the O(�) solution

� = R� + �(−1
4R� sin(2(� + ��)) + 1

32R3
� sin(4(� + ��))) + O(�2), (3.13)

� = �� + �(1
4 − 5

32R2
� − 1

4(1 − 1
2R2

� ) cos(2(� + ��)) + 1
32R2

� cos(4(� + ��))) + O(�2), (3.14)

where the amplitude equations may again be asymptotically solved by introducing a regular perturbation
series

R�(�) = R0(�) + O(�2). (3.15)

The amplitude equations (3.11), (3.12) are actually sufficient to define an O(�2) approximation (when we
also include U1, which is also needed to get the amplitude equations above), but we omit the extra algebra
as it adds little insight. Once we obtain R�, the phase �� will follow immediately by integration because
of the decoupling. Using R0(0) = 1, one finds that the limiting amplitude is

R0(�) = 2√
1 + 3e−�

, (3.16)

the solution of the limiting Bernoulli equation. Note that taking the limit of the right-hand side of (3.12) as
� → ∞ (equivalently, letting R0 → 2) implies that the phase will become unbounded unless we choose
�0=− 1

16 . Similarly, we determine �1=0 and the phase is then given asymptotically by ��=��1+O(�3�),
where

�1 = �(21
64(R2

0 − 1) − 1
8 ln(R0)). (3.17)

Substituting (3.15) and (3.17) into (3.13) and (3.14) provides

y(t; �) = R0 cos � + [(−11
64R0 − 7

64R3
0 + 1

8R0 ln(R0)) sin � − 1
32R3

0 sin 3�] + O(�2),

where

� = (1 − 1
16 �2)t + O(�4t).

This approximation agrees exactly with the multiple scales solution and is valid for bounded �.
Although no exact solution of the van der Pol equation is known, the solution asymptotically expo-

nentially approaches a stable limit cycle with radius R�(∞) = 2 + O(�2). This limiting periodic solution
can be approximated using the Poincaré–Lindstedt procedure. Because we only know the frequency
asymptotically, we will again have orbital stability as t → ∞.

A third, more intricate example is

ÿ + y + �(ẏ3 + 3�ẏ) = 0. (3.18)

Historically, (3.18) was introduced by Morrison [12] as a counterexample to the method of multiple
scales, which fails to capture the solution’s extremely slow decay to its trivial rest point. In [10, Section
4.2.4], Kevorkian and Cole acknowledge the method’s inability to effectively resolve such behavior when
the forcing, f , in (3.1) depends on �.
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Using polar coordinates and the recursions, one finds that the amplitude, A� = (
R�
��

), evolves according
to the decoupled system

dR�

d�
= −3

8
R3

� − �
3

2
R� − �2 45

4096
R7

� − �3 9

256
R5

� + O(�4), (3.19)

d��

d�
= −�

(
�0 + 45

256
R4

�

)
− �2

(
�1 + 27

32
R2

�

)
− �3

(
�2 + 9

8
− 6021

262144
R8

�

)
+ O(�4). (3.20)

We use the first correction, U0(A�, �), to express the solution as

� = R� + �R3
� (

1
4 sin(2(� + ��)) − 1

32 sin(4(� + ��))) + O(�2) (3.21)

� = �� + �R2
� (− 3

32 + 1
8 cos(2(� + ��)) − 1

32 cos(4(� + ��))) + O(�2). (3.22)

Using a regular perturbation series R(�) = R0(�) + �R1(�) + O(�2), the leading-order solution of the
amplitude equation (3.19),

R0(�) = 2√
3� + 4

,

decays algebraically to 0 as � → ∞. The first-order solution, R1(R0) = R3
0 − 1/R0, however, blows

up like
√

� because of the term 1/R0. This blowup, which is identical with the result given by multiple
scales, is unsatisfactory. If we now rescale the amplitude equations by introducing new variables

Z = �	R, 
 = ���

and use dominant balance arguments, we find the only consistent balance leading to a new timescale is
the choice 	 = −1

2 and � = 1. This implies the rescaled amplitude equations

dZ

d

= −3

8
Z3 − 3

2
Z + �4

(
81

128
Z3 − 9

256
Z5 − 45

4096
Z7
)

+ O(�5), (3.23)

d�

d

= −�0 − ��1 + �2

(
�2 + 9

8
+ 27

32
Z2 + 45

256
Z4
)

− �3�3 − �4�4 + O(�5), (3.24)

where we have redefined the phase as �(
) ≡ �(

� ). Now we solve the rescaled amplitude equations

using the regular perturbation series

Z(
) = Z0(
) + �4Z1(
) + O(�8).

The leading-order initial value problem is

dZ0

d

= −3

8
Z3

0 − 3

2
Z0, Z0(0) = 1√

�
.
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Its solution,

Z0(
) = 2√
(1 + 4�)e3
 − 1

,

decays exponentially to the trivial rest point as 
 → ∞. To eliminate unbounded growth in the phase, we
set �0 = �1 = �3 = �4 = 0 and �2 = −9

8 . Integrating (3.24) then implies that

�(
) = �2(15
64(Z2

0 − 1) + 3
16 ln(1

5(Z2
0 + 4))) + O(�6
).

We may then write the solution as

y(t; �) = √
�Z0(cos � + �2((33

64Z2
0 + 81

64 + 3
16 ln(1

5(Z2
0 + 4))) sin � + 1

32Z3
0 sin 3�) + O(�4)),

where

� = (1 − 9
8 �4)t + O(�8t).

The expansion is not singular in the � → 0 limit since
√

�Z0 is bounded. Since the solutions to the rescaled
amplitude equations decay exponentially to their trivial rest point, the approximation is valid for all t �0.
A more extensive discussion of rescaling in the asymptotic solution of systems of ordinary differential
equations is given in [17].

4. Oscillators with slowly varying coefficients

We now generalize the weakly nonlinear oscillator (3.1) by considering

ÿ + �2(�)y + �f (y, ẏ, �, �) = 0, (4.1)

where the frequency � is no longer constant, but rather a function of the slow time �= �t . We also require
�(�) > 0 to avoid turning points.

To apply the amplitude equation method, we first seek a new fast timescale  = h(t; �) to replace the
original fast time, t, so that the limiting system’s frequency becomes one on the -scale. Using  =h(t; �)
in (4.1), one obtains the traditional fast time

 = h(t; �) ≡ 1

�

∫ �

0
�(s) ds. (4.2)

On this timescale, (4.1) becomes

d2y

d2 + y + �

�2(�)

(
�′(�)

dy

d
+ f

(
y, �(�)

dy

d
, �, �

))
= 0, (4.3)

where the prime denotes differentiation with respect to �. Observe that  is nearly constant for bounded
t and that the change of timescale adds a small, linear damping in the equation. Eq. (4.3) can now be
put in the standard form and the amplitude equation method can be applied directly, though one must be
careful handling the two timescales  and � because the slow scale, �, is no longer simply � times the fast
scale, .
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More generally, consider the system

dx
d

= �F(x, , �, �), (4.4)

where F is smooth in all its arguments and 2� periodic in the fast scale  determined by a specified
�(�). The common situation where the frequency �(�) must be obtained asymptotically could be treated
analogously. To account for the “extra” �-dependence, we modify the near-identity transformation (2.2)
to read

x�(, �) = A�(�) + �U(A�(�), , �, �), (4.5)

where U is smooth and 2�-periodic with respect to . Substituting (4.5) into (4.4), we find the analog of
(2.4) for (4.5) to be

dA�

d�
+ �

�U
�A�

dA�

d�
+ �(�)

�U
�

+ �
�U
��

= �(�)F(A� + �U, , �, �), (4.6)

since d�/d = �/�(�), where U now has a separate, explicit dependence on �.
In this more general case, we seek a nonautonomous amplitude equation

dA�

d�
≡ �(�)H(A�, �, �) = �(�)(H0(A�, �) + �H1(A�, �) + · · ·), (4.7)

which reduces to (2.3) when �(�) = 1. Again, we take the average of (4.6) to define an integral equation
for the secular part, H. Next we solve (4.6) for �U/� and integrate to define an integral equation for the
correction U. The resulting linked pair of integral equation is

H(A�, �, �) = 1

2�

∫ 2�

0

(
F(A� + �U, s, �, �) − �

�(�)

�U
��

− �
�U
�A�

H(A�, �, �)

)
ds (4.8)

and

U(A�, , �, �) =
∫ 

0

(
F(A� + �U, s, �, �) − �

�(�)

�U
��

−
(

I + �
�U
�A�

)
H(A�, �, �)

)
ds. (4.9)

Again, U will be bounded since H is the average of

F − �

�

�U
��

− �
�U
�A�

H.

Lastly, we insert power series for U, F and H into (4.8) and (4.9). Equating coefficients, the leading-order
terms provide

H0(A�, �) = 〈F0(A�, �)〉, (4.10)

U0(A�, , �) =
∫ 

0
(F0(A�, s, �) − H0(A�, �)) ds. (4.11)
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Equating terms of O(�n) for n�1 again yields recursion formulae

Hn(A�, �) = 〈Fn(A�, U0, . . . , Un−1, �)〉 − 1

�(�)

〈
�Un−1

��

〉
−

n−1∑
k=0

〈
�Uk

�A�

〉
Hn−k−1(A�, �), (4.12)

Un(A�, , �) =
∫ 

0

(
Fn(A�, U0, . . . , Un−1, s, �) − Hn(A�, �) − 1

�(�)

�Un−1

��

−
n−1∑
k=0

�Uk

�A�
Hn−k−1(A�, �)

)
ds, (4.13)

which asymptotically specify the amplitude equation and the solution x�(, �) to any order in �.
As an example, consider the linear oscillator with a variable spring constant

ÿ + y − �y = 0. (4.14)

In this case �(�) = √
1 − �, so the new fast scale is  = 2

3�(1 − (1 − �)3/2), provided � < 1. In terms of
, the differential equation becomes

d2y

d2 + y − �
1

2(1 − �)3/2

dy

d
= 0. (4.15)

After introducing polar coordinates and applying (4.12) and (4.13), the amplitude, A� = (
R�
��

), evolves
according to

dR�

d�
= R�

4(1 − �)
+ O(�2), (4.16)

d��

d�
= −�

7

32(1 − �)5/2
+ O(�2). (4.17)

Moreover, the first correction, U0(A�, ), defines the O(�) approximation

� = R� + �

(
− R�

8(1 − �)3/2 sin(2( + ��))

)
+ O(�2), (4.18)

� = �� + �

(
R�

8(1 − �)3/2 (1 − cos(2( + ��)))

)
+ O(�2). (4.19)

Using R�(0) = 1, we find

R�(�) = 1

(1 − �)1/4 + O(�3�).

A direct integration shows that ��(�) = O(��), so the leading-order approximate solution is

y(t; �) = 1

(1 − �t)1/4 cos

(
2

3�
(1 − (1 − �t)3/2)

)
+ O(�). (4.20)
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This result is valid for all � = �t < 1, in exact agreement with that derived either with the WKBJ method
or multiple scales. The exact solution,

y(t) = �

[
Bi′(−�−2/3)Ai

(
�t − 1

�2/3

)
− Ai′(−�−2/3)Bi

(
�t − 1

�2/3

)]
,

involves the Airy functions, Ai(z) and Bi(z). Using their well-known asymptotic expansions for large
arguments, one recovers (4.20).

Chen et al. discussed this example in [4, Section II.C]. Using their renormalization group technique,
they derive the less satisfactory leading order amplitude equations dR�/d� = 1

4R� + O(�) and d��/d� =
− 1

2�� + O(�), in our notation, corresponding to

y(t; �) = e�t/4 cos(t − 1
4 �t2) + O(�). (4.21)

They find that no finite number of terms in a perturbation expansion can fully capture the large argument
behavior of the Airy functions. They are correct, when one uses the fast time t , but by using the fast time

 = 2

3�
(1 − (1 − �t)3/2) = t − 1

4
�t2 − 1

24
�2t3 + O(�3t4),

we avoid the difficulty that their renormalization procedure only determines the power series for 
termwise. Though the renormalization group procedure is able to determine any number of terms de-
sired, it is more labor intensive.

The exact solution is plotted against the two approximations (4.20) and (4.21) in Fig. 1 on the following
page. Notice that the amplitude equation solution remains an excellent approximation to the exact solution
until it approaches the turning point t = 1

� . In this region the approximation necessarily breaks down
because the turning point is a branch point of the amplitude. The renormalization group solution of [4],
however, fails to approximate the solution well after only an O(�−1/2) time, when the truncated expansion
for  becomes ambiguously ordered.

5. Systems with fast and slow dynamics

Consider the initial value problem for a system of ordinary differential equations that exhibits combined
fast and slow dynamics, i.e.,

ẏ = G(x, y, t, �), (5.1)

ẋ = �F(x, y, t, �). (5.2)

Such a system may arise when a nonlinear system is only partially reduced to the standard form (2.1).
Note that the small parameter could be moved to the other side of the differential system by introducing
the rescaled time T = t/�.

We defer a more complete discussion of asymptotic solutions for (5.1), (5.2) to a later paper, but note
that such problems may be separated into several important subclasses of immediate interest, two of
which are mentioned here. If G is strictly nonlinear in y and expected to have periodic solutions, then
one may use a multiple scales procedure [2,3,11]. If the fast dynamics G is linear or weakly nonlinear
in y and either periodic or decaying solutions are expected, we may solve system (5.1), (5.2) relatively
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Fig. 1. A comparison of the amplitude equation solution and the renormalization group solution of [4] for the oscillator with a
variable spring constant (� = 0.01).

easily with a hybrid version of the amplitude equation method. In this case the fast dynamics is initially
parameterized by the slow dynamics, so one can use the amplitude equation method in conjunction with
a multiple scales ansatz to solve the problem quite efficiently. We will show how this method proceeds
in the case of decaying solutions for a scalar example.

Consider the system

ẏ = −y + x2, ẋ = �(y + x cos2(t)), (5.3)

subject to the initial conditions x(0) = −1/4, y(0) = 1. This relates to the system ẏ = −y + g(x), ẋ =
�f (x, y), discussed in [6]. The � = 0 problem,

ẏ0 = −y0 + x2
0 , ẋ0 = 0, (5.4)

with the given initial conditions, clearly has the asymptotically stable rest point (x0(∞), y0(∞)) =
(−1/4, 1/16) in the phase plane. The existence of such a rest point leads us to anticipate that we will be
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able to successfully apply the amplitude equation method [7]. The general solution of (5.4),

y0(t) = x(0)2 + Ce−t , x0(t) = x(0),

shows how the slow dynamics parameterize the fast dynamics. Thus if we replace x(0) with a slowly
varying function, the fast dynamics will also vary on the slow timescale. Hence, we shall replace x(t)

using a near-identity transformation

x�(t, �) = A�(�) + �U(A�(�), t, �) (5.5)

and assume that y(t) follows the generalized multiple scales ansatz

y�(t, �) ≡ B(A�(�), t, �). (5.6)

We further introduce the amplitude equation

dA�

d�
≡ H(A�, �) (5.7)

and suppose H and U have the power series (2.8) and (2.9), respectively, and that

B(A�(�), t, �) = B0(A�, t) + �B1(A�, t) + �2B2(A�, t) + · · · . (5.8)

Substituting (5.5) and (5.6) into (5.3), we obtain the system of PDEs

�B

�t
+ �

�B

�A�

dA�

d�
= −B + A2

� + �2A�U + �2U2, (5.9)

dA�

d�
+ �

�U

�A�

dA�

d�
+ �U

�t
= B + 1

2
A� + 1

2
A� cos(2t) + 1

2
�U + 1

2
�U cos(2t). (5.10)

Thus, the leading-order fast dynamics, B0, must satisfy

�B0

�t
= −B0 + A2

� . (5.11)

The general solution of (5.11) is

B0(A�, t) = A2
� + C0(A�)e

−t , (5.12)

where C0(A�) is an “integration constant”. This solution could have been easily anticipated from the
reduced problem’s solution. Since x(0)=−1/4 and y(0)=1 imply that A�(0)=−1/4 and B0(−1/4, 0)=1,
we find C0(−1/4) = 15/16. To specify the evolution of C0(A�), we must eliminate secular terms from
the fast dynamics at the next order in �.

Now the leading-order slow dynamics from (5.10) will be

H0(A�) + �U0

�t
= A2

� + C0(A�)e
−t + 1

2
A� + 1

2
A� cos(2t). (5.13)

We shall proceed as before to equate its average and non-average terms. However, since the forcing in
(5.13) is no longer periodic, it is necessary to replace the periodic average (2.11) with the more general
KBM vector field average

〈g〉 = lim
r→∞

1

r

∫ r

0
g(s) ds, (5.14)
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(see [19, Chapter 3]) whenever this limit exists. Applying (5.14) to (5.13) we find the first term of the
amplitude equation

H0(A�) = A2
� + 1

2A�,

since 〈�U0
�t 〉 = 〈e−t 〉 = 〈cos(2t)〉 = 0. Integrating the remaining terms of (5.13) from 0 to t ,

U0(A�, t) = C0(A�)(1 − e−t ) + 1
4A� sin(2t),

since U0 is zero at t = 0.
Using the known forms of B0 and U0, the O(�) terms in (5.9) are

�B1

�t
+ B1 =

(
−2A�C0(A�) − dC0

dA�
H0(A�)

)
e−t + 2A�

(
C0(A�) − H0(A�) + 1

4
sin(2t)

)
.

(5.15)

Since e−t satisfies the homogeneous equation, B1 will contain secular terms unless we eliminate all
multiples of e−t from the forcing. Thus we require C0(A�) to satisfy the differential equation

dC0

dA�
H0(A�) + 2A�C0(A�) = 0. (5.16)

Using the initial condition C0(−1/4) = 15/16, we obtain

C0(A�) = 15

64(2A� + 1)2 .

Integrating what remains of (5.15), we then get

B1(A�, t) = 2A�(C0(A�) − H0(A�)) + 1
10A2

� (sin(2t) − 2 cos(2t)) + C1(A�)e
−t .

Now the initial condition B1(−1/4, 0) = 0 implies C1(−1/4) = 41/80. Having calculated B1 we may
proceed to calculate U1 and H1 from the O(�) terms in (5.10). For brevity the solution U1 is omitted,
however the second term of the amplitude equation is found to be

H1(A�) = 2A�(C0(A�) − H0(A�)) + dH0

dA�
C0(A�).

Next, we eliminate secular terms from the O(�2) fast dynamics to determine C1(A�), completing the
solution of (5.3) to O(�). All that remains is to solve the O(�) amplitude equation

dA�

d�
= H0(A�) + �

(
2A�(C0(A�) − H0(A�)) + dH0

dA�
C0(A�)

)
+ O(�2). (5.17)

Such calculations may readily be carried to higher order.

6. Summary

We have shown that the renormalization procedure of Chen et al. can be further simplified. The resulting
amplitude equation procedure can be applied to weakly nonlinear oscillators, oscillators with slowly
varying frequency and systems with both fast and slow dynamics.
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Though the underlying idea that integration constants should be replaced by slowly varying functions
is basic to other methods (e.g. the method of multiple scales), our amplitude equation procedure makes a
most efficient use of this assumption. With some additional extensions, our methodology can be applied
to two-point boundary-value problems and, we believe, to partial differential equations.
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