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1. Introduction 

I intend to discuss a number of interesting 2-locals in sporadic groups and show 

how code loops, which are certain Moufang loops, may be used to describe the sub- 

groups abstractly. Existence proofs of parabolic subgroups of sporadics which are 

independent of the existence proofs of the sporadics have not existed in every case. 

When available, some such demonstrations of existence have been ad hoc. This 

paper partially alleviates that problem. It is, I believe, the first systematic attempt 

to describe some of the more complicated parabolics by a unified theme. I was 

moved to attempt this by Conway’s use of a loop invented by Parker to describe 

a parabolic of shape 22+ l1 +22 (S, xM~~) in the monster [8]. The first direct con- 

struction of this parabolic is due to J. Tits, whose notes (see [35], especially III 

and IV, and preprint of [37]) were circulated months before Conway’s work was 

publicized. They may well have influenced Conway’s construction of the monster, 

though they do not contain the loop concept. 

Extension-theoretic matters arise naturally in the course of the discussion. In par- 

ticular, nonsplit extensions are often relevant here. By contrast, the parabolic sub- 

groups of groups of Lie type are split extensions because of the Levi factors and one 

can obtain many of their properties easily because of the (B,N)-structure. 

For some time, I have been fascinated by the connection between sporadic groups 

and exceptional degree 1 and 2 cohomology. It is a pleasure to acknowledge Jack 

McLaughlin’s many observations which directed my attention to aspects of this 

phenomenon and his mastery of cohomology of groups. 

In Section 2, I review basic matters about code loops and set up notation to study 

maps on them. 

In Section 3, I discuss a few results about generic behavior of cohomology groups 

for naturally defined families of groups and modules and examples of nonvanishing 

cohomology in sporadic groups. 
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In Section 4, the important example of the loop Q6 is discussed. Its occurrence 

as a double basis of the Cayley numbers has been well known for some time. The 

group Aut(0,,) is a nonsplit extension of an elementary abelian 2-group of order 

8 by GL(3,2). Basic structure information about this group is surprisingly easy to 

obtain from the loop point of view. 

In Section 5, a general nonsplitting result for subgroups of Aut(L), for L a code 

loop, is obtained. Other nonsplitting results for group extensions are discussed. 

In Section 6, the extensions of GL(3,2) over Zi which occur as maximal 2-locals 

in sporadics are analyzed. Since Alperin’s early results on these extensions were 

never published, I give a proof of his result and include additional details about the 

nonsplit extension. 

In Section 7, constructions of several other sporadic parabolics as maps on loops 

are achieved. I believe that this style of construction will apply to other cases. 

A basic reference for parabolics in sporadic groups is [29]. 

2. Code loops 

In this section, we review some basic definitions and results about code loops, the 

class of Moufang loops of interest. 

Definition. A loop is a set L with binary composition L x L + L such that there is 

an identity and for all XE L there is y E L such that xy =yx= 1. 

Definition. The loop L is Moufang if one (hence all) of the following identities holds: 

(a) xy . w = (x . yz)x, 

(b) (XY . Z)Y = ~0). ZY), 
(c) x(y . xz) = (xy . x)2 

for all x,y,zEL. 

The nonzero real Cayley numbers from a Moufang loop. 

We are interested in loops which are extensions of elementary abelian 2-groups 

by Z2. There are two equivalent formulations, (I) and (II) below. The first is due 

to R. Parker and the second to this author in [22], where the equivalence of the two 
procedures was demonstrated. I call such a loop a code loop. 

First some notation. If V is a vector space over lFZ and 0 : Vx I/--+ F2 a function 

satisfying @(O, x) = @(x, 0) = 0 for all x E X, we make P= lFZ x V’ into a loop by defin- 

ing (c,x)(d,y)=(c+d+@(x,y),x+y). Use bars for the map P-I’, (c,x)+x. Let 

p : V-+ [F, be a function with p(0) = 0 and identify [F2 with [F, x 0 < f. Define 

N(x,, . . . . X,)’ c p(c~R~+-**+c,&). 
(C,)EF;1 

Note that N&i, . . . ,x,) = 0 if {X,, . . . , xm} is independent. Write [x, y] for the com- 

mutator (yx)) ‘(xy) and [x, y, z] for the associator (x. yz)) '(xy . z). Consider the con- 

ditions 
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6) x2=N(x). 

(Cl Lx, Yl = N-G Y) . 

(4 1x9 Y, zl = Nx, Y, z) . 

(I) Let VE F,” for some nr0 and let 9 c V * = V- (0) have characteristic func- 

tion p. Assume the evenness condition: C,, w p(x) = 0 whenever WI V, dim Wr 4. 

There exists a Moufang loop L satisfying (S), (C) and (A). 

(II) Let V be a doubly even binary code and let p(x) = +lxl ( = $ the weight of x). 

There exists a Moufang loop L satisfying (S), (C) and (A). 

The evenness condition is automatically satisfied by doubly even codes; see [22]. 

We call 9 the set of odd vectors or odd codewords. 
We want to define certain groups of maps on loops for use in Section 7. Write 

P(A), P,!?(A) for the vector space of subsets, even subsets, respectively, of the set A. 

Notation. A an alphabet and C a code in P(A); M a code loop based on the code 

&?f; V* denotes Hom(l/ IF,) for a vector space V over IF,; ( , > denotes the pairing 

of Vx V* or V*x V into F,; (S, T) = IStl TI(mod 2) for S, TEP(A). 

Define maps 

x(4 d), i E P(A), deM; 

Y(A PO, A EP(A), jlEi@*; 

?I, It E P(A) 

on ML = Maps(L, M), for L c A, by declaring the image of (ak), k E L, to be (bk), 

where 

bk = 
akd, (i,k)=l, 

ak7 =o; 

in the respective cases. Since N(a, b, c) is trilinear, we may write bfI c for the linear 

functional a -N(a, b, c). We are identifying P(A) with P(A) *. 

We now restrict ourselves to the case where iE C, C is doubly even, A EPE(A), 

v E P(A) of the form inj, i, j E C. Let X, Y, 2 be the groups generated by, respective- 

ly, all x(i, d), y(A, p), z,. Then YZ = Y x Z is abelian and ZI ZYI ZYX is a central 

series. 

We record a few elementary calculations. 

(2.1) 

(2.2) 

zAzp=zA+,. 

[z,I, Hi, d)l = 1, [ZA , Y (P, v)l = 1. 
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(2.3) ~$1, p) is linear in each variable, Yz:PE(A)@M*. 

(2.4) x(i, d)x(j, e) : (ak) + (bk) where 

ak 

: 

if (i,k)=O, <j,k)=O, 

bk= 2; 
= 1, =o, 

k =o, =l, 
ak . dez Ma 3 4 d = 1, =l. 

Proof. Straightforward, using (A) on the fourth line. 

(2.5) x(i, d)2 = z;““. 

(2.6) [x(i, d), x(j, e)] = 2~~“. 

(2.7) The commutator subgroup of X is Z= (zs 1 B = ifl j for some i, j E C) 

if M is noncommutative. 

3. Some generic behavior of cohomology and exceptional behavior within sporadic 

groups 

Many individuals have observed that cohomology of a family of groups tends to 

have a regular pattern, except at the beginning of the series. Early examples of this 

may be seen in the work of Schur [31,32] and Steinberg [33,34]. 

It is hard to say who first articulated this general observation. McLaughlin had 

done so by the late 1960’s. In [5], credit is given to [6] and [27] (Landazuri was a 

student of McLaughlin). 

I am aware of the following general results which are relevant to the above situa- 

tion. The first concerns behavior as the rank increases and the second as the field 

increases. 

Theorem 3.1 (Friedlander, 1976 [15]). Let k be a field with more than 2 elements 
and let G,(k) be one of GL, , SL,, U, , 0, , Sp,, , SO, over k and let q be a prime, 
q + char k. Then, the natural map 

Hi(G, (k), z/qz) + H;(G, + 1 (k), z/qz) 

is an isomorphism for certain specified values of i (when G, = GL,, SL, or U,, 

is 2n implies isomorphism). 

Theorem 3.2 (Cline-Parshall-Scott-van der Kallen, 1977 [5]). Let G be a semisimple 
algebraic group defined and split over FPb, p> 0. Let q =p”‘, G(q) the [F,-rational 
points of G, V an irreducible G-module and V(e) the module obtained from V by 
twisting with the eth power of the Frobenius x+x4. Then, for q+O and e%O, 

H”(G, V)=W(G(q), V(e))=H’(G(q), V). 
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See also a result of Friedlander-Parshall [16]. 

Theorem 3.1 is the only general result I know of which suggests that the pheno- 

menon of cohomology stabilizing as the rank increases is general. Here is a sample 

of evidence. 

1, hd=(2,2”), n22, (3,2); 
dim ff’(SLh 41, F,“) = o L otherwise 

dim ff2(SW, d, F,“) = 
1, (n, 4) = (3,2), (4,2), (5,2), (393 “), n 2 2, (3,V; 
o 

9 
otherwise 

Cf. [25], [4], [12]; see Proposition 6.2. 

A third sort of stability may be observed from this example (and others), that of 

stability as the characteristic increases. I do not know of any theoretical result ex- 

pressing the general nature of such a phenomenon. 

Examples of exceptional behavior (in the above senses) may be found in sporadic 

groups. If En denotes the nonsplit extension of GL(n, 2) by IF;, n = 3,4,5, we find 

that E3 is a maximal 2-local in G,(K), for any field K of characteristic not 2, E4 is 

a maximal 2-local in .3 and E, (the Dempwolff extension) is a maximal 2-local in 

F,. See Section 6 for more on E3. 

Certain nonsplit extensions (2, lt2”)QE(2n,2) of extraspecial 2-groups by the 

natural subgroup of index 2 in the outer automorphism group occur as centralizers 

of involutions in certain simple groups for n<4. The list is the following. 

(n, E) = (1, +): 

(1, -): 

(2, +): 

(2, -): 

(3, +): 

(3, -): 

(4, +): 

(4, -): 

A63 

none, 

PSD(4,3), 

Jz, 53, 
none, 

suz, 

.l, 
none. 

These extensions E are nonsplit over O,(E) modulo the center if and only if II 2 4 

or (n, E) = (3, ->. In general, more than one type of nonsplit extension exists. See an 

appendix of my Montreal article [24] for a discussion of these extensions. 

See [23, Section 131, for a different discussion of exceptional cohomology and 

finite simple groups. 

4. The loop O,, and nonsplit 23GL(3,2) 

If L is the code loop afforded by the code L, a base of L means a set of elements 

x1, *.*, x, whose images xi, . . . 
-. 

,x, m 1 form a basis for e. When this happens, 

xi, . . . ,x,, form a set of generators for L if and only if L is not an elementary 
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abelian 2-group. In this section, we write (+- 1) instead of [F, for the kernel of 
L-tL. 

An important code loop is a subloop of the nonzero Cayley numbers. It is based 
on the unique binary Hamming code H with parameters [7,4,3]. One representation 
is the span of ((1111000),(1100110),(1010101)} in IF:. We call this loop 0,6 and 
observe that 016=D16/Z(0)16)~H and if x,Y,zE(D,~, then: 

Note that ai6 contains the quaternion group Qs as any subloop of index 2. 
I remark that 0i6 forms a double basis for the Cayley numbers. Form the 

algebra fR[a,,] with basis Qi6 and let (z>=Z(0,,). Define C= R[~),,]/(z+ 1). 
Then dim C= 8, C has an involution * fixing 1 and - 1 based on x-+zx= -x if 
XE~,~-(Z). Then (ab)*=b*a*, cc*>0 if c#O and CC*ER, for all a,b,c. Thus, C 
is a normed real division algebra, and is in fact the Cayley numbers [lo]. 

A pleasant way to write 0i6 is the following. The elements are f 1 and fx, 
where x ranges over the days of the week. Define Monday. Tuesday = Thursday and 
require the multiplication to be preserved by the natural 7-cycle on the days of the 
week. The rest of the multiplication table follows from centrality of f 1 and the 
rules (S), (C) and (A); it is given in Table 1 below. 

I thank George Glauberman for explaining this to me and pointing out the 
reference [lo]. 

Call an automorphism o of a code loop L diagonal if it is trivial on L. This means 
that a may be identified with /3 E Horn@, IF,) by (c,x)* = (c+p(x),x). The group of 

Table 1. Multiplication in O,, 

Let 1, . . ,8 represent 1, Monday,Tuesday, . . , Sunday. Thus, D ,6 = { f 1, + 2,. . , + 8). The (i, j)-entry 

below represents the product of i and j. For example, Tuesday. Monday= -Thursday and Satur- 

day. Tuesday = - Friday. 

1 2 3 4 5 6 7 8 

2 -1 5 8 -3 7 -6 -4 

3 -5-l 6 2-4 8-7 

4 -8 -6 -1 7 3 -5 2 

5 3-2-7-l 8 4-6 

6 -7 4 -3 -8 -1 2 5 

7 6-8 5-4-2-l 3 

8 4 7 -2 6 -5 -3 -1 
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diagonal automorphism is denoted Diag(L) or Inn(L) and is a normal subgroup of 
Aut(L). 

Lemma 4.1. (i) Let X1,X2,X3 be a base Of 0r6. Every element of aI6 has a unique 

expression f xp’xpx3e], where eiE {0, l}, i= 1,2,3. 

(ii) If x1,x2,x3 and y,,y,,y3 are bases of D16, then *x~‘x~x~+ fyf’ypy;3, for 
eiE (0, l}, i= 1,2,3, is an automorphism of (D16. 

(iii) If a~Aut(or~) and Ial =2, there exists a base xI,x~,x~ of (D,G such that 

(a) a :x1 +-x1, x,+x,, x3 +x3 if a is diagonal; 

(b) 0:x1-+x2, x3-+x3 if a is not diagonal. 

Proof. (i) is obvious. As for (ii), one only needs (i) and to observe that (S), (C), (A) 
and centrality of (& 1) form a set of defining relations for 0r6. In (iii), if 0 is non- 
trivial on Or6 := 0r6/Z(Or6), there is a basis xt,X2,x3 of Or6 with a :X1 *X5, X3 ~2~. 

Lift K, to xl E Or6 and define x2=x;. If a lift x3 eOr6 of R3 satisfies x:75x3, 
xf=-x3. Note that (x~x~)~=x~x~ =-x1x2. SO, we replace x3 by ~1~2x3 to get (iii). 

Theorem 4.2. Aut(O16) is a non-split extension 23. L,(2). 

Proof. Let Z= Z(Or6)zZ2, A =Aut(0,6) and K the kernel of the natural map 
A + Aut(O16/Z). Then K= Hom(Q/Z, Z) G Z:. 

From Lemma 4.1, A/K= L,,(2). Lemma 4.1 implies that every involution of 
A -K is conjugate in A. However, a split extension X= 23. L,(2) has two classes of 
involutions outside O,(X) since the Jordan canonical form of such an involution, 
t, in its action on O,(X), is 

1 1 0 
0 1 0, 
0 0 1 

whence H’((t >, O,(X))s Z2. 

A variation on the loop Or6 is 5? = Or6 x z2, which is a code loop afforded by the 
code Eic I$ spanned by our binary Hamming code Hc IF: c IFi and (1 1 1 1 1 1 1 1). 

Lemma 4.2. (i) Z(9) z Z, x Z,. 
(ii) A = Aut(9) contains Aut Or6 and has structure O,(A) = (Z:)2 x z2, A 2 

(Aut Or6)xZ2 and A” = {SEA la is trivial on Z(9)}2:Aut(O16) and 02(A”) is a 
direct sum of two modules, each isomorphic to O,(Aut (Dr6). 

(iii) A does not contain a copy of GL(3,2). 

5. Nonvanishing degree 2 cohomology 

I have been interested in ways to find nonsplit extesions, both because of my 
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general interest in group extension theory and my wish to understand subgroups of 

finite simple groups. The code loop situation provides new applications. Just for 

fun, I will review my criteria. 

(I) (‘The permutation trick’, 1970 [19]). Let G be a subgroup of 2, and suppose 

that G has an involution t which moves 4 (mod 8) letters and lies in every subgroup 

of index 2 in G. Then, the preimage G of G in a covering group of .X,, is nonsplit; 

in fact, if Z=Ker(G+G), Z~G’EZ(G), so that G has Schur multiplier of even 

order. 

In fact, one has a similar result by replacing 2, by O(n, R) and the hypothesis on 

letters moved by the requirement that t have 4 (mod 8) eigenvalues - 1. R. Steinberg 

explained this to me; it is implicit in Schur [32]. See the paper of Garrison and 

Gagola [17] for an interesting discussion of these ideas and related ones. 

(II) (‘The extraspecial trick’, 1973 [20]). Let G50E(2n,2), an orthogonal group 

on V= Ep. Suppose that there are t E G, It I= 2 and a 2-dimensional subspace W 

such that 

(a) t fixes w E W, w f 0 nonsingular; 

(b) W is nonsingular and t interchanges the two vectors in W- (w); 

(c)if H={gEGI f g ixes w}, then t lies in every subgroup of index 2 in H. 

Then H2(G, V) is nonzero. In fact, the natural extension of G on I/ given by 

Aut(2i+2”) is nonsplit. 

(III) (‘The Chevalley group trick’, 1979 [18]). Suppose that pr5, that pi ICI, 

where G 5 G(K), where K is a field of characteristic p and G is a Chevalley group 

functor. Let M be the adjoint module for G(K). Then H2(G,M)#0. 

To prove this, we may assume jGI =p and G(K) is untwisted. Then consider the 

extension of G(K) by A4 obtained by constructing G(R) where R is a local ring with 

J= rad(R), J2 = 0 #J, R/JzK and J=pR. The result follows by an easy induction 

argument. The analogous statements for p= 2 and 3 are false for A,(2) and A,(3), 

respectively. 

The smallest case (III) applies to give H2(G,M,) 20 where G =A,(5) is the sim- 

ple group of order 60 and where we write Mk for an irreducible module of dimen- 

sion k= 1,3 and 5; these are all the 1F,G-irreducibles. Since M, is the Steinberg 

module and the Schur multiplier of G has order prime to 5, H2(G,Mk) =0 for 

k#3. On the other hand, Shapiro’s lemma implies that if the prime q divides the 

order of the finite group H, there exists an irreducible N in characteristic q such that 

H*(H,N)#O. For H=G and q=5, we have found that N=M,. 

(IV) Let G be a subgroup of Aut( V) where V is a doubly even binary code. 

Assume the existence of t and Was in (II) and replace ‘nonsingular’ by ‘odd code 

word’. Then H2(G, V)#O. In fact the extension of G given by Aut(@, where P is 

the code loop afforded by V, is nonsplit. 
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The proof of (II) with little change carries over to a proof of (IV). This criterion 

gives a different proof of Theorem 4.2 and, with the following argument, it proves 

that Aut( @ ) = 2r2M2, and CAut(g ,(Z( @ )) = 2l *M24 are nonsplit; here ‘$J is the Golay 

code. An ‘odd vector’ in g is a dodecad and a doecad stabilizer in Aut( % ) = M24 

is the simple group M,,. Let D be a dodecad and write D= @, + O,, 0; octads, 

i= 1,2. Let T= B,n f12, a 2-set and Sj= Bi- T, six-sets, i= 1,2. In M24, Stab(D)= 

M12, Stab(D)nStab(T)=&. 2 and Stab(S,)n Stab(S,)n Stab(T)=&. Letting 

W= { @, @,, 8,, D} and t an involution in Stab(T)n Stab(D) - Stab(&), we may 

apply (IV). 

6. A theorem of Alperin 

In the late 1960’s and early 1970’s, work on simple groups of low 2-rank was of 

great importance in the classification of finite simple groups. Extensions of GL(3,2) 

by faithful modules ZiO were of special interest here since 2-locals in several finite 

simple groups are of this shape. A basic result about such extension was announced 

by Alperin [l], but he did not publish details. We do so here. Note that O’Nan re- 

quires them in his paper [28] on the simple group of order 29345 . 73s 11. 19.31. 

Some results in this section may be covered in the recent work [38]. 

Lemma 6.1. Let G be a group, V a G-module and f: G-t V a I-cocycle, i.e., a func- 
tion which satisfies f (xy) = f (x)Y + f (y). Then 

(0 f (1) = 0, -1 
(ii) f(xpl)=-f(x)X , 

(iii) f(x”) = Ci:A f(x)“k =f(x)E(n), where n>O and E(n)= ci;Ax”. 

Proof. Trivial. 

Proposition 6.2. Hk(GL(3, 2), Fi) z F,, k = 1,2. 

Proof. This is a well-known result. Probably the easiest way to do this from scratch 

is to write out the projective indecomposables for [F2GL(3,2) and the beginning of 

a projective resolution of [F,, then compute cohomology with it. For a description 

of these projectives, see [3, p. 2161. 

Lemma 6.3. Let iJ+ V be a unipotent subgroups of PSL(2,q). 
(a) The set of elements of UV which are unipotent is UU V. 
(b) sUj.FpOSe U],U,,Uj,U4EU, Vl,V2E Vand u]v1u2=ujv2&,. Then Vl=V2 and, if 

v,#l, u,=u3 and u2=u4. 

Proof. (a) Without loss we may take 

u= [(:, :)I%] and V= i(: y)ItelF,]. 
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Then 

(: :)(: Y)=(Y :> 

is unipotent only if its trace is 2, i.e., tu=O. 
(b) The equation implies that 

-1 u; lu, ur = u2zQu2 and U2U4 U3 -’ ~‘U,U~=(U4U~‘)-‘U2(U4U~‘). 

Since the right side is unipotent, (a) implies that ur = 1 or UZU~ ‘~3 ‘ur = 1. If u1 = 1, 

u~EUI~V=~. If urfl, u~EV~IV’~~~’ implies that u~u~‘ENU(V)=I or U2=U4. 

At once, u1 = u2 and uI = u3 follow. 

Proposition 6.4. Let R be the 2-adic integers, I an ideal of R, Gr L,(2) and let M 
be a 3-dimensional irreducible F2G-module. 

(i) There is a unique module U for RG, free over R = R/I, of rank 3, whose 
reduction mod&o 2R is isomorphic to A4. 

(ii) If V is a four group in G, the (complex) character of V on U (for I= 0) is 
Q- I, where Q is the character of the regular representation. 

(iii) If S is a Zj subgroup of G, S/S’ inverts C&S’) = R. 
(iv) On U/2”U, the fixed point set of V is isomorphic to Z1 or Z2 x Uz. 

Proof. (i) For I= 0, this is part of the well known general theory of correspondence 

between representations of RG and (R/2)G. See [13,14] for instance. For ZfO, we 

argue by induction on n, where I= 2”R. Without loss, n> 1. Write R = R/2”R, 
l? = R/2”-‘R. Let I?J be the unique i?G-module which lifts M. Let 0 : G-t GL(u) be 

the associated representation. Choose a free E-module P such that V/2”Vz 0 as 

R-modules, and let G, be the inverse image of G@ in GL((7). The kernel K of 

rc : G, + G@ is abelian and is isomorphic to Hom(M, M) as an [F,G-module. This 

module is isomorphic to [F, @ S, where S is the Steinberg module. Thus, n is a split 

epimorphism, and the splitting is unique up to conjugacy. The induction is now 

complete. 

(ii) This follows from (i) and the complex character table of G. 

(iii) Let (h) = S’, t E S- S’, I= 0. Then [U, h] is a free R( t)-module of rank 2 over 

R. So, t has eigenvalues 1 and - 1 on [U, h]. Now use (ii) and the t-stable decomposi- 

tion U = [U, h] x C,(h). 
(iv) In G there are two conjugacy classes of four-groups, represented by V,, V2, 

say, where C,( V,) = Z2 and C,( V2) E z2 x z2. Let U= U/2”U. If the statement is 

false for V., C,(l/i)zZ2, for some r>2, if i=l and CO(V)~EZ,X~~,~ for some 

rz2 if i=2. Without loss, n=r. Define (t.+,)=C~(V;)r)Cg(h), where hENo( 
Ihj =3. Then luOl =2”. Say i= 1. Let XE V,*. There is u E 2U such that x inverts 

uue. Without loss, x inverts (k) z Z3 and u E [2U, k]; see (iii). Thus (uue)) l(uuO)X = 

uXu forces up1 = ux and ~40’ =ui, a contradiction to n =rz2. Say i= 2. Then, 

taking h as above, we see that h = rr2 implies that h acts trivially on C&V,), a 

contradiction. 
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Theorem 6.5. (a) Let G = GL(3,2) and let V, be the G-module of Proposition 6.4(i) 

(so that V,,=Z& as abelian groups). Then Hk(G, V,)=iZ,, k= 1,2 and all n2 1. 

Furthermore 
(b) the natural epimorphism of G-modules V,, + V,_ 1 induces the O-map 

H’(G, V,,)+H’(G, V,-,) and an isomorphism H2(G, V,,)-+H2(G, V,_,); 
(c) the natural inclusion V,,_, + V, of G-modules induces an isomorphism 

H’(G, V,_,)-H’(G, V,) and the O-map H2(G, V,pl)+H2(G, V,). 
(d) Let A,,, B, represent the split and nonsplit extensions of G by V,,, for all 

n 2 1. There are natural inclusions i,, : A,, -+ A,, + 1 extending the natural inclusions 

v,- vn+l and natural epimorphisms qn : A,, + A,, _ , extending V,, + V, _ 1. Further- 
more, there exist embeddings j,, : B,, -+ A,, , which extend i,, 1 vn. They satisfy 

Wi,)Imdi,) =A,+ I and B, _ , q,, P B,, _ 2, for n 2 3. If m z n, there is no inclusion of 
B, in B,. For m < n, there is an embedding B,-+A,. 

Proof of (a), the case k = 1. We use induction on n. For n = 1, use Proposition 6.2. 

We henceforth assume that n > 1. We have a natural epimorphism p : V, -+ V, _ I of 

modules and we get H’ V, * H’ V, 1. 

We argue that p*= 0. Let B be a subgroup of order 21 in G. Let f be a 1-cocycle, 

f: G+ V, . We may assume that f IB= 0 since (IBI, 1 V, I) = 1. Since f(xy) = 
f(x)“+f(y), f is constant on right cosets of B. Take ge G- B, lgl=7, and set 

u =f(g). For nr 1 define E(n) = CF,Ag”. Lemma 6.l(iii) implies that f(g”) = uEt”). 
If v=O, f=O since G=(B,g). 

Assume loI= 2’, rz 2. We shall derive a contradiction, proving that if u # 0, 

IuI = 2. Then p* = 0 follows. 

So, we assume r<2. Define S:= {oE(@lk= 1,...,7}; then ImCf)=SU{O}. We 

shall prove several properties of S. 

We claim that SB = S. This is clear from the equation f (xb) = f (x)b + f (b) = f (x)b. 
Let (u) be a Sylow 7-group of B. Then (u) is transitive on S since ISI = 7 and u fixes 

no nonzero vector of V,. Thus, the stabilizer in B of an element of S has order 3. 

Take an integer mE(l,..., 6). Lemma 6.l(ii) implies that f(g-m)=-f(gm)smm. 
There are unique integers p, q E (0, . . . ,6} so that f (g-“) = vu’ and f(g”) = uu4 
whence v uPg”u -4 = - u. Set x = z./ggmzCq. Then x,, =xmz implies m, = m2 by Lemma 

6.3(b). Thus we have produ:ed six distinct elements in H:= {YE G / (u>-“= lo)}. By 

considering V,/Q,- 1( V,), we see that H is contained in a & subgroup of G and 

since 3 / IHI and we have six distinct elements which invert (o}, we get Hz&. 
Since H’ is generated by elements of order 3 and Aut(u) is a 2-group, v H = ( + u} , 
+ S = uG and H’S C(o). This contradicts Proposition 6.4(ii). 

Since p* = 0, the long exact cohomology 

‘*=O HIV;,-,, 
sequence applies to 0-t V, + V, -+ 

V,-,-0 gives O+HIV1-tH’Vn- or H’ V, = H’ V, P Z2, proving (a) 

for k= 1. 

Proof of (a), the case k = 2, We may assume n 5 2, by Proposition 6.2. The long 

exact sequence for 0 -+ V, J+ V, -5 V, ~ 1 -+ 0 gives 
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i’ 1 6’ i2 
O+H1V,-H1~/,~H’V,~,-H2V,-HZV,~HZV,_,. 

From the above, p’=O and by Proposition 6.2, 6’ is an isomorphism Z2-+Z2. 

Therefore, i2 = 0. By induction, H2V, # 0. 

Using (a) for k= 1 and O+ Vi+ I/n+,+ V,-+O, we get 

Let L, and L, be nonconjugate complements to V, + 1 in a split extension V, + I >a L, . 

Since p’ = 0, their images in V, x L, under the natural map become conjugate. On 

the other hand, k’, x L, does have complements not conjugate to L, . Consider one 

and then its preimage J in V, + I x L, . Then Jtl V, + , = 2 V, + , and J does not split 

over 2Vn+r since H’(2 k’,+ ,) z:H’ V,, E Z, and we have already accounted for the 

complements. Therefore, we have H21/,#0, proving (a) for k= 2. 

Statements (b) and (c) follow from points made in the proof of (a). 

To prove (d), let nr 1 and define B, as follows. Since the natural map 

H’(G, V,, ,) +H’(G, V,) is 0, there is a complement C to Vi in A, not conjugate to 

the image of A,, I in Vi under q = qn+ 1 q,, *+. q2. Define B, = Cq ‘. The rest is an 

exercise. 

It is well known that the two types of extension of Zi by GL(3,2) (nontrivial ac- 

tion) occur as maximal 2-locals in sporadic groups. The split one occurs in the 

Higman-Sims group and the nonsplit one occurs in the O’Nan group. It seems 

worthwhile to display this nonsplit extension as an explicit matrix group, in fact as 

a subgroup of GL(3,2/8Z), and record some properties. 

Proposition 6.6. Let G = GL(3,2). 

(a) The matrices 

in GL(3,Z/872) have orders 7, 2 and 3, respectively. 
(b) (t, y) zZ~ and (x, y) is nonabelian of order 21. 
(c) x,y and t satisfy ~‘=y~=y-‘xyx-~=t~= 1 =(_~t)~=(xt)~. 

(d) (x, y, t > = (x, t > = G via the natural map GL(3, U8Z) -+ GL(3,2) ‘reduction 
modulo 2’. 

(e) Up to conjugacy in GL(3,2/2”Z), for any nz 1, there is a unique subgroup 
isomorphic to G. 

(f) Define 

s=x5ytx= 
-0 0 7. 
3 0 4 

_5 5 1 

EG. 
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Then P, = (s2, t > and P2 = (s2,st > are four-groups. 

Proof. It is straightforward to check (a), (b) and (c). From [9, p. 2161, we get that 
(c) implies (d). 

Define G, : = GL(3,2/2”2) and let @,,. be the natural map G, + G,, for m 2 n. 

Set K,, ,, :=Ker @M,n. Then, as a module for Gi, K,,,. : = K,,“/K,,.+ 1 is isomorphic 
to the space of 3 x 3 matrices with Gi acting by conjugation. This module is the 
direct sum of the trivial module and the Steinberg module, which is projective and 
injective. To get existence, we quote Proposition 6.4(i) or use induction on m. 
Namely, we observe that H2(Gl,Z?m,n)zH2(G1, [F,)z IF, but that the nontrivial ex- 
tension of G, does not arise here. If it did, we would have a subgroup H= SL(2,7) 

of G,, and, by induction, the involution ZE Z(H) acts by a scalar Q = 1 + 2”-‘. 
Then det z = (r3 = a # 1, whereas H is perfect. To get uniqueness up to conjugacy, 
we useH’(G1,Rm,.)=O for n=l,..., m-l. 

The proof of (f) is straightforward. 

Proposition 6.7. Let n 11 and let G, = G,,,, G, = G,,. represent the two isornor- 
phism types of extensions of GL(3,2) over V=Z&, with G, split over V. 

(i) G;/@(V) is split if and only if i = 1. 
(ii) In Gi, let T be a Sylow 3-group and let S, E Syl,(N(T)). Then S,,= D2”+1. In 

particular, Gi - V contains involutions. 
(iii) Let F be the inverse image in Gi of a Z, subgroup of Gi/V* Then F splits 

over V if and only if i = 1. In the nonsplit case, if x E F maps to a generator of 
F/VZ.&,X~EV-@p(V). Thus,theexponentofG,is4.3.7ifn=land2”=3.7 
ifnr2andtheexponentofG2is2”+2.3.7ifnz1. 

Remark. (i) contradicts a result in [2]. 

Proof. (i) We use the proof and notation of Theorem 6.5. Let @, : V, + V,_ I be the 
natural epiomorphism. Then (&)* : H2V,,+ H’V,_ 1 is an isomorphism. By taking 
composites, we get (i). 

(ii) Set (u,)=C,~(T). Then IS,:<u,)l=2. Let s,,E&-(u,). The groups 
{(u, > 1 n 2 l} form an inverse system. Let c, E 2/2”;2 be defined by v$ = c,, u, , Then 
the class of (c,, c,, . . . , ) in the 2-adic integers is - 1, so there is an integer no > 0 such 
that n, >no implies c,=- 1 (mod 2”l). 

Given our integer n, we take nl > max{n, no}. Since (u, >, sn is the image of (u,), 
S n,, respectively, under natural maps G,,, --t G,, , we get c, = c,,i = - 1 (mod 2”). To 
get (ii), all we need to do is show that S, splits over (v,). Let m = min{n 1 S, is non- 
split over (v,>} and assume rn<m. For any k, s~EQ~(<u~)). So, si+i=l and, 
applying the natural map Gi,+ , + G,, , we get si = 1, a contradiction which 
proves (ii). 

(iii) It suffices to assume n = 1. Let G = G, 1 and let 0 # u E V= O,(G), Q = C,(o). 
Then IO,(Q)1 =25 and Q/O,(Q)E&; if h 6 Q, Ihl=3, Co(h)=(u) x (h). By (ii), 
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G - V contains involutions, whence 02(Q/(u)) is elementary abelian. Taken an in- 

volution x E Q - O,(Q). Without loss, hX = h ‘. Since V/(u) is an injective (/2,x)- 

module, there is a complement W/(o) to V/(o) in 02(Q)/(u). 

We claim that Wis quaternion. If false, [ W, h](h,x) complements Vin Q, making 

G split, a contradiction. Thus W is quaternion, whence W(x) is semidihedral of 

order 16 and so contains a unique Zs subgroup, W,. We may take F to satisfy 

F/V= W, V/V. If F were split over V, F would contain no element of order 8, 

which is incompatible with W, 5 F. 

A representation of the nonsplit Alperin extension by matrices 

Denote by Alp, the unique nonsplit extension of GL(3,2) by Zj. We give Alp as 

a subgroup of GL(4,Z/8Z) contained in the subgroup Q consisting of all matrices 

of the form 

(1 O*O 0). 

Such a matrix has the form 

where c is a column vector of height 3. We may denote such a matrix by (c 1 M) or 

(r 1 M) where r =t~. The rules for a product are 

(cIM)(c’jM)=(c+Mc’]&C~f’) and (rIM)(r’IM’)=(r+r”MIMM’). 

We have O,(Q) = {(r I I) I r E Z’,} and we take V:=AlpnOz(Q)=02(Alp) to be 

{ (2r 1 I) 1 r E Zi>. Write [i, j, k] for ((i, j, k) 1 I) E O,(Q). Set 

We define x= (0 IX), y = (0 I Y) and t = (r. 1 T), w h ere t is chosen to satisfy y’=y-’ 

(which requires r, to have the form r,= (k, k, k)) and to make ytx have order 16 

(which requires k to be odd); ro=(l, 1,l) works. 

The 168 Alperin matrices are listed in Table 2 in the following order: first, the 

21 matricesx’yjfor i=O,..., 6 and j = 0, 1,2 in the order (i, j) = (0, 0), (0, l), . . . , (6,2); 
second, the 147 matrices x’yJtxk for i, k = 0, . . . , 6 and j = 0,1,2 in the order (i, j, k) = 

(O,O,O),(O,O,~),...,(O,~,O),(O,~,~),..., (6,2,6). The Alperin matrices are therefore a 

system of coset representatives for Oz(Alp) in Alp, where Alp is a particular sub- 

group of GL(4,Z/8Z) isomorphic to the nonsplit extension Zi. GL(3,2). The fact 

that (x, y, t) is this extension follows from Theorem 6.5 (the proof of (a) for k = 2), 
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Table 2. The Alperin transversal 
Transversal element is below and to the right of its label (1 to 168) 

1 2 3 4 5 6 
1 0 0 0 1 0 0 0 1000 1 0 0 0 1 0 0 0 1 0 0 0 
0 1 0 0 0010 0 0 0 1 0 2 5 3 0 3 2 5 0 5 3 2 
0 0 1 0 0 0 0 1 0 1 0 0 0 5 3 2 0 2 5 3 0 3 2 5 

0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 

7 8 9 10 11 12 

1000 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 1 0 1 0 0 0 5 3 2 0 2 5 3 0 3 2 5 
0 3 2 5 0 5 3 2 0 2 5 3 0 5 5 5 0 5 5 5 0 5 5 5 

0 2 5 3 0 3 2 5 0 5 3 2 0 0 1 0 0 0 0 1 0 1 0 0 

13 14 15 16 17 18 
1 0 0 0 1000 1 0 0 0 1000 1000 1000 
0 3 2 5 0 5 3 2 0 2 5 3 0 5 5 5 0 5 5 5 0 5 5 5 
0 0 0 1 0100 0 0 I 0 0100 0 0 1 0 0 0 0 I 
0 5 3 2 0 2 5 3 0 3 2 5 0 3 2 5 0 5 3 2 0 2 5 3 

19 20 21 22 23 24 
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 
0 0 0 1 0 1 0 0 0 0 1 0 1 7 4 4 1 6 7 5 1 4 3 0 
0 2 5 3 0 3 2 5 0 5 3 2 1 4 4 7 1304 1 2 7 1 
0 5 5 5 0 5 5 5 0 5 5 5 1 4 7 4 1 7 1 2 1 5 6 7 

25 26 21 28 29 30 
1 0 0 0 1 0 0 0 1000 1000 1 0 0 0 1 0 0 0 
1 7 5 2 1127 1 3 3 7 1 4 0 7 1 4 4 7 1304 
1047 1 I 5 6 1 5 2 7 1 3 7 3 1 4 7 4 1 7 1 2 
1 7 3 3 1 0 4 3 1 7 4 0 1 2 7 5 1 7 4 4 1 6 7 5 

31 32 33 34 35 36 
1000 1 0 0 0 1 0 0 0 1 0 0 0 1000 1000 
1 2 7 1 1 0 7 4 1 7 5 6 1 5 2 I 1 3 7 3 1 4 7 4 
1 5 6 7 1 7 3 3 1 0 4 3 1 7 4 0 1 2 7 5 1 7 4 4 
1 4 3 0 1 7 5 2 1 1 2 7 1 3 3 7 1 4 0 7 1 4 4 7 

37 38 
1000 1000 
1 7 1 2 1 5 6 7 
1 6 7 5 1 4 3 0 

1304 1 2 7 1 

39 
1 0 0 0 
1 7 3 3 
1 7 5 2 
1 0 7 4 

45 
1000 
2 1 3 2 
2 4 0 1 
1 4 3 0 

40 41 42 

1 0 0 0 1 0 0 0 1000 
1043 1740 1 2 7 5 

1127 1 3 3 7 1407 

1 7 5 6 1 5 2 7 1 3 7 3 

43 44 
1 0 0 0 1000 
2 6 1 7 2 0 1 4 
2 7 6 1 2 5 5 1 
1 7 4 4 1 6 7 5 

46 47 48 
1 0 0 0 1000 1 0 0 0 
2 3 6 1 2 5 1 5 2441 
2144 2 2 1 3 2 4 5 0 
1 7 5 2 1127 1 3 3 7 
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49 50 51 52 53 54 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 1 0 0 0 

2 5 0 4 2 1 7 6 2 3 2 1 2 1 5 5 2 0 4 5 2 1 4 0 

2 1 3 6 2 6 1 7 2014 2 1 3 2 2 3 6 1 2 5 1 5 

1407 1 4 4 7 1304 1 2 7 1 1 0 7 4 I 7 5 6 

55 56 57 58 

1 0 0 0 1 0 0 0 1000 1 0 0 0 

2 6 1 3 2 4 1 4 2 7 6 1 2 5 5 1 

2 4 4 1 2 5 0 4 2 1 7 6 2 3 2 1 

1 5 2 7 1 3 7 3 I 4 7 4 1 7 1 2 

59 60 

1 0 0 0 1000 

2 4 0 1 2 I 4 4 

2 I 5 5 2 0 4 5 

1 5 6 7 1 7 3 3 

61 62 63 64 

1 0 0 0 1 0 0 0 1 0 0 0 1000 

2 2 1 3 2 4 5 0 2 1 3 6 1 4 4 7 

2 1 4 0 2 6 1 3 2 4 1 4 2 1 7 6 

1 0 4 3 1 7 4 0 1 2 7 5 2 6 I 7 

65 66 

I 0 0 0 I 0 0 0 

1 3 0 4 I 2 7 1 

2 3 2 1 2 1 5 5 

2 0 1 4 2 1 3 2 

67 68 69 70 

1 0 0 0 1000 I 0 0 0 1 0 0 0 

1 0 7 4 1 7 5 6 1 5 2 7 I 3 7 3 

2 0 4 5 2 1 4 0 2 6 1 3 2 4 1 4 

2 3 6 1 2 5 1 5 2 4 4 1 2 5 0 4 

71 72 

1 0 0 0 1 0 0 0 

1 4 7 4 1 7 1 2 

2 7 6 1 2 5 5 1 

2 I 7 6 2 3 2 1 

73 74 75 76 77 78 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 1 0 0 0 

1 5 6 7 1 7 3 3 1 0 4 3 1 7 4 0 1 2 7 5 I 7 4 4 

2 4 0 1 2 1 4 4 2 2 1 3 2 4 5 0 2 1 3 6 2 6 1 7 

2 1 5 5 2 0 4 5 2 1 4 0 2 6 1 3 2 4 1 4 2 7 6 1 

79 80 81 82 83 84 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

1 6 7 5 1 4 3 0 1 7 5 2 1127 I 3 3 7 1 4 0 7 

2 0 1 4 2 1 3 2 2 3 6 1 2 5 1 5 2 4 4 1 2 5 0 4 

2 5 5 1 2 4 0 1 2 1 4 4 2 2 1 3 2 4 5 0 2 1 3 6 

85 86 87 88 89 90 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

2 7 6 I 2 5 5 1 2 4 0 1 2 1 4 4 2 2 1 3 2 4 5 0 

7 3 3 3 7 0 0 7 7 7 0 0 7 6 3 5 7 0 7 0 7 3 5 6 

1 4 4 7 1 3 0 4 1 2 7 1 1 0 7 4 1 7 5 6 1 5 2 7 

91 92 93 94 95 96 

1000 1 0 0 0 I 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

2 1 3 6 2 6 1 7 2 0 1 4 2 1 3 2 2 3 6 1 2 5 1 5 

7 5 6 3 7 3 3 3 7 0 0 7 7 7 0 0 7 6 3 5 7 0 7 0 

1 3 7 3 1 4 7 4 1 7 1 2 1 5 6 7 1 7 3 3 1 0 4 3 



97 98 99 100 101 102 

1 0 0 0 1 0 0 0 1000 1000 1 0 0 0 1 0 0 0 
2 4 4 1 2 5 0 4 2 1 7 6 2 3 2 1 2 1 5 5 2 0 4 5 
I 3 5 6 7 5 6 3 7 3 3 3 7 0 0 7 7 7 0 0 7 6 3 5 
1 7 4 0 1 2 7 5 1744 1 6 7 5 1 4 3 0 1 7 5 2 

103 104 105 106 107 108 

1000 1000 1000 1 0 0 0 1 0 0 0 1000 

2 1 4 0 2 6 1 3 2 4 1 4 2 1 7 6 2 3 2 1 2 1 5 5 

7 0 7 0 7 3 5 6 7 5 6 3 1 4 7 4 1 7 1 2 1 5 6 7 

1127 1 3 3 7 1 4 0 7 2 7 6 1 2 5 5 1 2 4 0 1 

109 110 111 112 113 114 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 1 0 0 0 

2 0 4 5 2 1 4 0 2 6 1 3 2 4 1 4 2 7 6 1 2 5 5 1 

1 7 3 3 1 0 4 3 1 7 4 0 1 2 7 5 1 7 4 4 1 6 7 5 

2 1 4 4 2 2 1 3 2 4 5 0 2 1 3 6 2 6 1 7 2 0 1 4 

115 116 117 118 119 120 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 1000 

2 4 0 1 2 1 4 4 2 2 1 3 2 4 5 0 2 1 3 6 2 6 1 7 

1 4 3 0 1 7 5 2 1127 1 3 3 7 1 4 0 7 1 4 4 7 

2 1 3 2 2 3 6 1 2 5 1 5 2 4 4 1 2 5 0 4 2 1 7 6 

121 122 123 124 125 126 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 1 0 0 0 

2 0 1 4 2 1 3 2 2 3 6 1 2 5 1 5 2 4 4 1 2 5 0 4 
1304 1 2 7 1 1 0 7 4 1 7 5 6 1 5 2 7 1 3 7 3 
2 3 2 1 2 1 5 5 2 0 4 5 2 1 4 0 2 6 1 3 2 4 1 4 

127 128 129 130 131 132 

1000 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 

7 3 3 3 7 0 0 7 7 7 0 0 7 6 5 3 7 0 7 0 7 3 5 6 
1744 1 6 7 5 1 4 3 0 1 7 5 2 1 1 2 7 1 3 3 7 

2 1 7 6 2 3 2 1 2 1 5 5 2 0 4 5 2 1 4 0 2 6 1 3 

133 134 135 136 137 138 
1 0 0 0 1000 1000 1 0 0 0 1 0 0 0 1000 

7 5 6 3 7 3 3 3 7 0 0 7 7 7 0 0 7 6 3 5 7 0 7 0 

1 4 0 7 1 4 4 7 1304 1 2 7 1 1 0 7 4 1 7 5 6 
2 4 1 4 2 7 6 1 2 5 5 1 2 4 0 1 2 1 4 4 2 2 1 3 

139 140 141 142 143 144 
1 0 0 0 1 0 0 0 I 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 
7 3 5 6 7 5 6 3 7 3 3 3 7 0 0 7 7 7 0 0 7 6 3 5 
1 5 2 7 1 3 7 3 1 4 7 4 1 7 1 2 1 5 6 7 1 7 3 3 
2 4 5 0 2 1 3 6 2 6 1 7 2 0 1 4 2 1 3 2 2 3 6 1 
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145 146 147 148 149 150 
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 1000 
7 0 7 0 7 3 5 6 7 5 6 3 1 4 7 4 1 7 1 2 1 5 6 7 
1 0 4 3 1 7 4 0 1 2 7 5 2 6 1 7 2 0 1 4 2 1 3 2 
2 5 1 5 2 4 4 1 2 5 0 4 7 3 3 3 7 0 0 7 7 7 0 0 

151 152 153 154 155 156 
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 

1 7 3 3 1043 1 7 4 0 1 2 7 5 1 7 4 4 1 6 7 5 
2 3 6 1 2 5 1 5 2 4 4 1 2 5 0 4 2 1 7 6 2 3 2 1 

7 6 3 5 7 0 7 0 7 3 5 6 7 5 6 3 7 3 3 3 7 0 0 7 

157 158 159 160 161 162 
1 0 0 0 1 0 0 0 1000 1 0 0 0 1 0 0 0 1 0 0 0 

1 4 3 0 1 7 5 2 1127 1 3 3 7 1 4 0 7 1 4 4 7 

2 1 5 5 2 0 4 5 2 1 4 0 2 6 1 3 2 4 1 4 2 7 6 1 

7 7 0 0 7 6 3 5 7 0 7 0 7 3 5 6 7 5 6 3 7 3 3 3 

163 164 165 166 167 168 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1000 1 0 0 0 

1304 1 2 7 1 1 0 7 4 1 7 5 6 1 5 2 7 1 3 7 3 

2 5 5 1 2 4 0 1 2 1 4 4 2 2 1 3 2 4 5 0 2 1 3 6 

7 0 0 7 7 7 0 0 7 6 3 5 7 0 7 0 I 3 5 6 7 5 6 3 

Proposition 6.7(ii) and the facts that when n = 1, two nonconjugate complements 

to O,(G,) in the split extension Gt meet in a group of odd order (of order 21, in 

fact) and that a pair of conjugate complements meet in a &-subgroup. 

7. Descriptions of sporadic parabolics by loops 

Our purpose here is to make a few loop-theoretic descriptions of certain sporadic 

2-locals. We concentrate on a few nontrivial examples and do not attempt an ex- 

haustive treatment. We use notation of Section 6. 

The group Aut 0i6. This occurs as a maximal 2-local in G,(K), where K is any 

field of characteristic not 2. 

The group 2. Aut 0r6. This occurs as a nonmaximal 2-local in McL. Its socle is 

Z, x V, as a GL(3,2)-module and the quotient 

Aut Q,/[Aut C&, O,(Aut Q,))] = SL(2,7). 

Parabolics of shape &GL(3,2) in HiS and O’Nan 

We have already discussed the two isomorphism types of such 2-constrained 

groups; see Section 6. The split one occurs as a maximal 2-local in the Higman-Sims 

group and the nonsplit one as a maximal 24ocal in the O’Nan group. 

Write V, z Zzn and let A,, B,, be the split and nonsplit extensions of GL(3,2) by 
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V,; see Theorem 6.5. We show how to describe A, and B, with automorphisms of 
a loop. We have below two natural epimorphisms (solid arrows) and we let 9, be 
the pullback, i.e. {(4b)~U,x~~~la~=b~}: 

u,= V,xZ,,A Vi 

(x9 Y) px(mod @(I’,)). 

Here, Z, z ZX”. Define A,* : = {CT E Aut( U,,) x Aut((D,,) 1 TV fixes 9” and induces an 
element of our GL(3,2) on U, /Z,, E V, } and R, : = {o E A,* 1 (T induces 1 on U,, /Z,, } . 
Then R, = V~xD, where Vz=Hom( V,, Z,) and DzDiag(ai6); see Section 4. So, 
R,=Z$ x 77:. Certainly, A,* maps onto Aut(0i,) but, A,*/D=.A,. For n 22, we 
get B,*_,rA,* corresponding to B,_, <A, as in Theorem 6.5(d). Let Do be the 
diagonal A,*-submodule of Q2, (V,*) x D. 

We claim that B,*_ I/Do is nonsplit. If not, let X<B,*_ ,, XI&,, complement 
V:xD modulo Do in B,!_, . Using Theorem 6.5(d) on the inclusion of X into 
B,*_ ,/D, we see that X contains a subgroup Y= GL(3,2). However, since Aut(oi,) 
is nonsplit, Y acts trivially on the second factor, whence so does A,*, a con- 
tradiction. 

The parabolic 23 ” GL(3,2) in Rudvalis’ group, Ru 

The subgroup P satisfies: O,(P) has class 2, Z = Z(O,(P)) is a 3-dimensional ir- 
reducible for P:= P/02(P)zGL(3, 2), O,(P)/Z is the Steinberg module for p. If 
we go to the covering group G we find that O,(P) has class 2 and that O&‘= 
Z(O,(p)) is the direct sum of a 3- and a l-dimensional module for GL(3,2). Fur- 
thermore, P= 02(P)L^, L^tl O*(p) = Z(O,(P)) and L^= Z2 x Aut 0i6. See [21], [7] 
for details. 

Lemma 7.1. Let G =GL(3,2), S the Steinberg module for F,G. Then SOS= 
P, 0 P3 @ P3, @ Ps 0 Ps @ Ps, where (Pi or Pi,) is the projective cover of an irredu- 
cible Vi (or Vi,) of dimension i and where P3 and P3, are dual modules; S= Ps. 

Also, d,=dimHom(/12S,V~)=1 fork=l,3,3’and8. 

Proof. From the action of G on 3 x 3 matrices of trace 0, we get d, >O and d,>O. 
Recall that dim Pk- = 8,16,16,8 for k = 1,3,3 ‘, 8. Since V, = P8 is absolutely irreduci- 
ble, dl I 1. Since V, is self-dual, d3 = d3,. Since Rudvalis’s group exists d3 = d3, > 0. 
Since S is projective, so is S@S, whence S@S is a direct sum of various Pk’s. 
Above comments and a dimension count, together with the isomorphisms 
T,:=S@SzT,:=(x@x/x~S)zT~:=(x@y-y@xIx,y~S), T,/T,=A2SsT,, 
T,/T,zS, force the required answer. 



210 R. L. Griess 

Lemma 1.2. There is a unique group P with the following properties: 
(i) Q := O,(P) has class 2 and order 2”. 

(ii) P/Q E GL(3,2). 
(iii) Z(Q) is the faithful 3-dimensional module V, for P/Q and Q/Z(Q) is the 

Steinberg module. 
(iv) If LrZ(Q) complements Q mod&o Z(Q) in P, the isomorphism type of L 

is given (i.e. either split or nonsplit 23 . GL(3,2)). 

Proof. Let S be the Steinberg module for F,G, G=GL(3,2). Let 1 -+R+F-+S+ 1 

be a free presentation for the group S and let 

R,=(F’nR)<x21xER) and R,=[R,F](x~IxER) 

Then RrR,rR,, R/R,ES and R/R,gA’S@S. 
We may lift the action of G on S to the action of a group G1 on F/R,, where 

G, /02(G1) 3 G and 02(Gt) z Hom(S,/12S@ S) as G-modules. Since S is projective 

and injective so is Hom(S, A2S @ S), which implies that Gt contains a copy of G, 

unique up to conjugacy. The construction of a group Q as above is equivalent to 

choosing R2 5 R, I R to satisfy 

(a) R, is G-invariant and R/R3 = V3, 
(b) F’R,=R. 

How unique is this choice? Certainly, R, fl R’ is determined, by Lemma 7.1, so we 

need only study R/R, fl R’, which looks like 23+8is = (23 x 28)28 or 23Zi. The group 

R3 corresponds to a central G-chief factor of shape 2’ in this and so R3 is uniquely 

determined. We take Q = F/R,. 
Condition (iv) is easy to handle, given Q and G<Aut(Q). 

Lemma 1.3. Let G z GL(3,2) and Van indecomposable 6-dimensional [F,G-module 
with composition factors V3 and V,,. Then dim H2(G, V) = 1 and if f: sot V+ V is 
the inclusion, and g : V-+ V/sot V the quotient, H2(G, f) is the O-map and H’(G, g) 
is an isomorphism. 

Proof. Set M= V@iF2, a permutation module for G on the cosets of HIG, 
H=&. By Shapiro’s Lemma H2(G, M) z H2(H, jF2) = Et. Since H’(G, E,) = [F,, we 
get H2(G, V)z [F2. Similarly, H’(G, V)z [F,. 

Using the long exact sequence for cohomology (H”= H”(G, -)), applied to 

0 + 3 * V+ 3’+ 0 (representing 0 -+ sot Vf. VA V/sot V-O) we get 

H03’+H13+H1V-*H’3+H23+H2V+H23’ 

dimensions: 0 1 1 1 1 1 1 

maps : 0 2 0 iz 0 z , 

proving the lemma. 

We now propose a realization of P via loop maps. We use the notation and results 
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of Section 2. Let H be the Hamming code on the index set m = Ei - (0) and con- 
sider F: = { (ak) 1 k E !2, ak E U&}. The group G = Aut(0i6) acts on Q and (I&, hence 
on this set. Here, at6 is based on the ‘code’ H* in which all nonzero vectors are 
declared ‘odd’. We may identify Q with H*- (0). 

Define maps x(i, d), ieH, do 0i6, by x(i, d) : (a,+ (a;) where a; = akd if 
(k,i)= 1 and aL=ak if (k,i)=O. Then (ak)X(i,d)x(‘e)=(a;) where 

a;=akd. e if (k,i)=l, (k,j)=l, 
=a,d =l, =o, 
=ake =o, =l, 

ak =o, =o. 

Therefore, N(4e) [x(i, d), x(j, e)] = zinj . We have x(i, d)x(i, e) =x(i, de)y(i, dfle) and 
x(i, d)x(j, d) = x(i +j, d)z,Fj. In the notation of Section 2, XY.Z/Y.Z = HO H* as G- 
modules, where we make the additional restriction that A EH; see (2.8). We are 
interested in X0 YZ, where X0 is generated by all products n,x(i,,d,) with 
C, (i,., d,) = 0. Since (XYZ)‘= Z, XYZ/Z is abelian and X0 YZ/YZ= S is projective 
and injective as G-modules, we get a subgroup Q,, ZI QO<XO YZ such that Q0 Y = 
X0 YZ. In fact, Q0 is uniquely determined by these conditions since YZ/Z=:@H, 
of shape (3’ 3 3’)‘, involves only composition factors not isomorphic to S. 

We argue that Qh = Z. Certainly, Qi is a G-submodule of Z=PE(H), of shape 
(3 3’)t. In the group R=XYZ we define R,zQ,, by R,/Qo=CRlQo(G)zZ2. By 
considering the G-action on the Lie rings associated to R, and Q,, one sees that it 
suffices to prove Ri = Z. 

For i, d, let ((j, d) E R. satisfy <(j, d) = x(i, d)y, for some y E YZ. Take a basis 
{z,} for Z. We claim that [<(i, d), <(j, e)] = &zE+~~, where there exist scalars 
a,, b, such that p,=a,iV(d, e) and qa= b,N(d, e,f) for some f E Q& The claim 
follows from the formulas of Section 2. 

Observe that there is an a such that a,= 1. For instance, [x(i, d)x(j,e)] =z$ye) 
implies that some a,#O. We now claim that, for any such (Y, z, E Ri. If false, 
p,(d, e) + qa(d, e) = 0 for all d, e or that N(d, e) is linear in d and e, which is false. 
We conclude that zinj E Qi. High transitivity implies that ZI Q& 

Let A =Aut(0t6) and let A act on L by geA,g : (ak)+((aks-‘)g). Then 
g E Diag@i,) = O&4) acts by (ak) + (akz (k,S)) for some SeHcPE(Q). The group 
ZA 5Z; satisfies ZfIA = sot(Z) and 

l+Z+ZA-,GL(3,2)-+1 

is split, according to Lemma 7.3. We take P, := QoA s2,, proving the Lemma. 

We give explicit generators for Q,, modulo Z. Let {ii, i2, is} be a basis of H and 
let {d,, d2,d3} be a basis of 0i6 modulo its center. We take them to express the 
duality of H and H*. An element of XYZ/Z may be represented by a 3 x 6 matrix 
over [F,, where the elementary matrix unit Ejk stands for the coset of x(ij,dk) if 
ks 3 and for the coset of ~$4, ik) if 4 I kl6. Let ML, MR , respectively; be the span 
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of the Ejk for j = 1,2,3 and for k = 1,2,3 and 4,5,6, respectively. 

We may identify the action of G on this set of matrices by taking the natural 

action of G on Vs 0 k’s to be the action on MR. Since iML is not a module direct 

summand, we need a factor set to modify the natural action of G on k’s @ k’s, to get 

the right action on k’s 0 I/. The rule x(i, d)x(i, e) = x(i, de)y(i, dfl e) gives the factor 

set. Note that the subgroup of GL(3,2) preserving the direct sum is the group of 

permutation matrices &, taken with respect to the basis {il, iz, i3} (or, equivalently, 

with respect to {d,,d,,d,}). 

Our generators for Qc, modulo Z are all 

<jk :=X(ij, dj)X(ik, dk)y(ij, iki,), for {j, k, 1} = { 1,2,3), 

qjk :=X(ij, dk)Y(ij, iji,)Y(i,, ij>, for {j,k,f}={1,2,3). 

These generators correspond to the respective matrices 

and those obtained from them by natural action of 2s on the indices { 1,2,3} and 

(4,5,6} via the bijection k-k+ 3. To get a basis, remove one rjk. The validity of 

this paragraph was established with a computer program. 

For X= L, R, let px be the projection of M= ML @MR onto the summand M,. 

Then px carries this g-dimensional space of matrices isomorphically onto Mj= 

{[AIO]ItrA=O}ifX=L and onto A4: = { [0 1 B] 1 the sum of the off-diagonal terms 

is 0) if X=R. The &-module I@ is a direct sum of the 2-dimensional faithful 

module M: and Mi, isomorphic to the group algebra F2.&; in fact, Mi = {[A ( 0] (A 
is diagonal and tr A = 0) and A4: = {[A IO] I the diagonal of A is O}. The above iso- 

morphism ML = MR carries Mi to { [0 I B] 1 B is diagonal and tr B = 0} and A@ to the 

span of all Ej,jj++Ej,kk+3Ek,ji-3, for j#k. 

Proposition 7.4. P= P,/soc(Z). 

Proof. Lemma 7.2. 

A slight variation of this idea ought to give p, possibly something using the ex- 

tended code for Hx(Q) in lF:. 

Remark 7.5. It is not always necessary to employ the loop concept to describe para- 

bolics in sporadics. In the monster, the centralizer of a 2-central involution has 

shape (2, 1’24)(.1) and is described with the theory of extraspecial groups and their 

automorphisms. Some 2-locals in sporadics are so small that no special theories are 

needed. 

Remark 7.6. To study representations of certain sporadic parabolics P, it is useful 
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to have a group p with a quotient isomorphic to P. The kernels of relevant P+ P are 

Z2 for P = (2: + *“)(SZE(2n, 2)) in J2, J3, Suz, .I ; 

& =(22+‘1+22 K& xM2,) in 6 ; 

z: = 23 + *GL(3,2) in Ru. 
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