Journal of Pure and Applied Algebra 6 (1975) 259–263 © North-Holland Publishing Company

CONTINUOUS DERIVATIONS OF THE RING OF WITT-VECTORS

Peter RUSSELL

Department of Mathematics, McGill University Montreal, P.Q. H3C 3G1, Canada

Communicated by M. Barr Received 10 October 1974

Let k be a commutative ring, W = W(k) the ring of Witt-vectors over k and $W_n = W_n(k)$ the ring obtained from W by truncation at $\{1, ..., n\} \subset \mathbb{N}$ (see [1]). Attempts to compute higher K-groups of $k[t]/t^n$ have shown the need to learn something about the W-modules $\Omega(W_n)$ (the Kähler differentials of W_n). It is the purpose of this note to construct continuous derivations of W (if the target module is discrete these are precisely the derivations factoring through W_n for some n) powerful enough to answer some of the questions arising in K-theory (see [2]). The construction is based on higher derivations of k.

1. Let *n* be a positive integer, *p* a prime and $\gamma = (\gamma_0, \gamma_1, ...)$ with γ_i a non-negative integer and $\gamma_i = 0$ for all but finitely many *i*. We put

1.1. (i) n_p = largest power of p dividing n, $n_p = p^{r(n)}$; (ii) $|\gamma| = \hat{\Sigma}_i \gamma_i$, $||\gamma|| = \hat{\Sigma}_i i \gamma_i$, $\{\gamma\} = \text{GCD}(\gamma_0, \gamma_1, ...)$; (iii) $\binom{n}{\gamma} = n!/\prod_i \gamma_i!$ (this notation will be used only if $|\gamma| = n$); (iv) $x^{\gamma} = \prod_i x_i^{\gamma_i}$ if $x = (x_0, x_1, ...)$ is a sequence of elements in some (commutative) ring; $x^p = (x_0^p, x_1^p, ...)$.

Lemma 1.2. (i) If $p | \{\gamma\}$, then $\binom{n}{\gamma} \equiv \binom{n/p}{\gamma/p} \mod n_p$. (ii) If $p \nmid \{\gamma\}$, then $\binom{n}{\gamma} \equiv 0 \mod n_p$.

Proof. Suppose $\gamma_i = 0$ for i > s and let $X_0, X_1, ..., X_s$ be indeterminates over Z. Now $(X_0 + ... + X_s)^p \equiv X_0^p + ... + X_s^p \mod p$ implies $(X_0 + ... + X_s)^n \equiv (X_0^p + ... + X_s^p)^{n/p} \mod n_p$. Hence $\Sigma_{|\gamma|=n} {n \choose \gamma} X^{\gamma} \equiv \Sigma_{|\delta|=n/p} {n/p \choose \delta} X^{p\delta} \mod n_p$ and we deduce the lemma comparing coefficients.

Corollary 1.2. $\binom{n}{\gamma} \equiv 0 \mod n_p / \{\gamma\}_p$.

Corollary 1.3. Let d, e be positive integers such that e | nd. Suppose $|\gamma| = nd/e$ and $\{\gamma\}|n$.

(i) $e\binom{nd/e}{\gamma} \equiv 0 \mod d$. (ii) If $p \mid \{\gamma\}$, then $e/d\binom{nd/e}{\gamma} \equiv e/d\binom{nd/pe}{\gamma/p} \mod n_p$. (iii) If $p \not\mid \{\gamma\}$, then $e/d\binom{nd/e}{\gamma} \equiv 0 \mod n_p$.

Definition 1.4. Let $X = (X_0, X_1, ...)$ be a sequence of variables and m, n non-negative integers. We put

$$\Phi_{n,m}(X) = \sum_{l} \binom{m}{\gamma} X^{\gamma}$$

where $I = \{\gamma | |\gamma| = m, ||\gamma|| = n\}.$

Lemma 1.5. Let n, d, e be positive integers such that e |nd. (i) $e/d \Phi_{n,nd/e}(X) \in \mathbb{Z}[X]$. (ii) Let p be a prime such that p|n and pe|nd. Then

$$e/d \Phi_{n,nd/e}(X) \equiv e/d \Phi_{n/p,nd/pe}(X^p) \mod n_p$$
.

Proof. (i) If $\|\gamma\| = n$, then $\{\gamma\}|n$ and $e/d \binom{nd/e}{\gamma} \in \mathbb{Z}$ by 1.3(i). (ii) $e/d \Phi_{n.nd/e}(X) = \sum_I e/d \binom{nd/e}{\gamma} X^{\gamma} + \sum_J e/d \binom{nd/e}{p\delta} X^{p\delta}$ where $I = \{\gamma | p/\{\gamma\}, |\gamma| = nd/e, \|\gamma\| = n\}$ and $J = \{\delta | |\delta| = nd/pe, \|\delta\| = n/p\}$. The result follows from 1.3 (ii) and (iii).

Proposition 1.6. Let T_{ij} , i = 0, 1, 2, ..., j = 1, 2, ... be variables. Put $T_j = (T_{0j}, T_{1j}, ...)$ and $T = (T_{ii} | i = 0, 1, ..., j = 1, 2, ...)$. Let d be a positive integer. There exist unique polynomials $\varphi_i^{(d)}(T) \in \mathbb{Z}[T]$, j = 1, 2, ..., such that for all n

$$\sum_{e \mid nd} e/d \Phi_{n,nd/e}(T_e) = \sum_{j \mid n} j \varphi_j^{(d)}(T)^{n/j}.$$

Proof. Let $\Psi_1 = \sum_{e|nd} e/d \Phi_{n,nd/e}(T_e)$, $\Psi_2 = \sum_{j|n,j < n} j\varphi_j^{(d)}(T)^{n/j}$. Since we can solve uniquely for $n\varphi_n^{(d)}(T)$ once the $\varphi_j^{(d)}(T)$ have been determined for j < n, it will be enough to show that $\Psi_1 \equiv \Psi_2 \mod n_p$ for all prime divisors p of n.

Fix p. Note that if j|n, then either $n_p|j$ or j|n/p. Hence $\Psi_2 \equiv \sum_{j|n/p} j\varphi_j^{(d)}(T)^{n/j} \mod n_p$. Also $\varphi_j^{(d)}(T)^p \equiv \varphi_j^{(d)}(T^p) \mod p$ implies $j\varphi_j^{(d)}(T)^{n/j} \equiv j\varphi_j^{(d)}(T^p)^{n/j}$ mod n_p if j|n/p. Hence $\Psi_2 \equiv \sum_{i|n/p} j\varphi_i^{(d)} (T^p)^{n/j} \mod n_p$ and by induction on n (the statement of the proposition is trivial for n = 1)

$$\Psi_2 \equiv \sum_{c \mid nd/p} e/d \, \Phi_{n/p, nd/pe}(T_c^p) \bmod n_p \, .$$

Again, if e|nd, either $e_p = n_p d_p$ and $n_p |e|d$ (i.e. $e|dn_p$ is a rational number without p in the denominator) or e |nd/p. Hence $\Psi_1 \equiv \sum_{e |nd/p} e/d \Phi_{n,nd/e}(T_e) \mod n_p$, and by 1.5 (ii) $\Psi_1 \equiv \sum_{c \mid nd/p} e/d \Phi_{n/p, nd/pc}(T_c^p) \mod n_p$.

260

Remark 1.7. $\varphi_n^{(d)}$ depends on the T_{ij} with $i \leq n$ and $j \mid nd$ only.

2. Let k and K be commutative rings. Let $D: k \to K$ be a higher derivation of k into K, that is a sequence $D = (D_0, D_1, ...)$ of additive maps from k to K such that for n = 0, 1, ... and all $x, y \in k$

$$D_n(xy) = \sum_{i+j=n} D_i(x) D_j(y) .$$

Lemma 2.1. Let m, n be non-negative integers and $x \in k$. Then

$$D_n(x^m) = \Phi_{n,m}(D_0(x), D_1(x), ...)$$
.

Proof. $D_n(x^m) = \sum_A (D_{\alpha_1}(x) (D_{\alpha_2}(x)) \dots (D_{\alpha_m}(x)))$ where the α_i are non-negative integers and $A = \{(\alpha_1, ..., \alpha_m) | \sum_i \alpha_i = n\}$. Let $\alpha = (\alpha_1, ..., \alpha_m)$. Suppose *i* appears γ_i times among the α_j , i = 0, 1, 2, ..., and put $\gamma = (\gamma_0, \gamma_1, ...)$. Then $|\gamma| = m$ and $||\gamma|| = n$. Conversely, a γ with this property determines α up to order of the α_j .

For any commutative ring R let W(R) be the ring of Witt-vectors over R and

$$w = (w_n) \colon W(R) \to R^{\mathbb{N}}$$

the Witt homomorphism defined by $w_n(x) = \sum_{j|n} j x_j^{n/j}$ for $x = (x_1, x_2, ...) \in W(R)$ and n = 1, 2, ... (see [1]). The following now is a straightforward translation of 2.1 and 1.6.

Definition-Proposition 2.2. Let d be a positive integer and $\varphi_n^{(d)}$, n = 1, 2, ..., as defined in 1.6. Let

$$\delta_d: W(k) \to W(K)$$

be given by

$$\delta_d(x)_n = \varphi_n^{(d)}(D_i(x_i))$$

for $x = (x_1, x_2, ...) \in W(k)$. Then

$$w_n \delta_d = 1/d D_n w_{nd}$$

for n = 1, 2, ...

Lemma 2.3. Let $k = \mathbf{Q}[t]$, let Δ be the usual derivation on k and put $D_i = \Delta^i / i!$. Then $D = (D_0, D_1, ...)$ is a higher derivation from k to k and the maps $D_i : k \rightarrow k$ are algebraically independent over \mathbf{Q} .

Proof. This is all obvious except, maybe, for the last statement, for which, though, we may appeal to well known facts from the theory of differential equations.

Proposition 2.4. δ_d is additive.

Proof. Let $A_j(X, Y) \in \mathbb{Z}[X, Y]$, $j = 1, 2, ..., X = (X_1, X_2, ...), Y = (Y_1, Y_2, ...)$ be the universal polynomials defining addition of Witt-vectors. There exist polynomials $\psi_{ij}(T,S) \in \mathbb{Z}[T,S]$, $T = (T_{lm}), S = (S_{l'm'}), i,l,l' = 0, 1, ..., j, m, m' = 1, 2, ...$ such that $D_i(A_j(x, y)) = \psi_{ij}((D_l(x_m)), (D_{l'}(y_{m'})))$ whenever R is a ring, $x = (x_1, x_2, ...)$ and $y = (y_1, y_2, ...)$ are sequences of elements in R, and $D = (D_0, D_1, ...)$ is a higher derivation on R. Now additivity for δ_d means

$$\delta_d(A_i(x, y))_n = A_n(\delta_d(x), \delta_d(y))$$

or, equivalently,

$$\varphi_n^{(d)}(\psi_{ij}((D_l(x_m)), (D_{l'}(y_{m'})))) = A_n((\varphi_s^{(d)}(D_l(x_m))), (\varphi_{s'}^{(d)}(D_{l'}(y_{m'}))))$$

for n = 1, 2, ... and $x, y \in W(k)$. Now if char k = 0 = char K, then w is injective on W(k) and W(K) and clearly δ_d is additive. In view of 2.3 we deduce that there is an identity

$$\varphi_n^{(d)}(\psi_{ij}(T,S)) = A_n((\varphi_s^{(d)}(T)), (\varphi_{s'}^{(d)}(S))),$$

and this in turn implies additivity for δ_d in general.

Now let $F_d: W(R) \to W(R)$ (R a commutative ring) be the functorial endomorphism satisfying

 $w_n F_d = w_{nd}$

for n = 1, 2, ... (see [1]).

Proposition 2.5. Let ψ : $W(k) \times W(k) \rightarrow W(K)$ be given by

$$\psi(x,y) = \delta_d(xy) - F_d D_0(x) \delta_d(y) - F_d D_0(y) \delta_d(x) .$$

(Here we use the same symbol for the homomorphism $D_0 : k \to K$ and the homomorphism $W(k) \to W(K)$ obtained by applying D_0 componentwise.) Let p be a prime. Then for $n \leq d_p$ and $n = pd_p$ we have

$$\psi(x,y)_n \equiv 0 \bmod p$$

for any $x, y \in W(k)$.

Proof. We will show that in fact the coefficients of the polynomials used to define $\psi(x, y)_n$ are divisible by p if n is as in the statement of the proposition. We claim first that $w_n(\psi(x, y)) \equiv 0 \mod pn_n$. Now

$$w_n(\psi(x, y)) = 1/d \sum_{i+j=n} D_i(w_{nd}(x)) D_j(w_{nd}(y)) - 1/d w_{nd} D_0(x) D_n(w_{nd}(y)) - 1/d w_{nd} D_0(y) D_n(w_{nd}(x))$$

262

$$= 1/d \sum_{i+j=n, 0 < i,j} D_i(w_{nd}(x)) D_j(w_{nd}(y))$$
$$= \sum_i ef/d \ \binom{nd/e}{\gamma} \binom{nd/f}{\delta} u_e^{\gamma} v_f^{\delta} ,$$

where $I = \{(e, f, \gamma, \delta) | e | nd, f | nd, |\gamma| = nd/e, |\delta| = nd/f, 0 < ||\gamma||, 0 < ||\delta||, ||\gamma|| + ||\delta|| = n\}$ and $u_e = (D_0(x_e), D_1(x_e), ...), v_f = (D_0(y_f), D_1(y_f), ...)$. By 1.2 (ii) we have

$$ef/d \ \binom{nd/e}{\gamma} \binom{nd/f}{\delta} \equiv 0 \mod p^a$$
,

where $a = r(e) + r(f) - r(d) + 2r(n) + 2r(d) - r(e) - r(f) - r(\{\gamma\}) - r(\{\delta\})$. Now if $n \le d_p = p^{r(d)}$, then $r(d) > \max\{r(\{\gamma\}), r(\{\delta\})\}$ (we use $0 < \|\gamma\|, \|\delta\|$ and $n = \|\gamma\| + \|\delta\|$). Also, $r(n) \ge \min\{r(\{\gamma\}), r(\{\delta\})\}$. Hence $a \ge r(n) + 1$. If $n = pd_p = p^{r(d)+1}$, ther r(n) = r(d) + 1 and $r(\{\gamma\}) \le r(d)$, $r(\{\delta\}) \le r(d)$. Hence $a \ge r(d) + 2 = r(n) + 1$. This establishes the claim. Now $w_n(\psi(x, y)) = n\psi_n(x, y) + U$, where U is a sum of terms $e\psi_e(x, y)^{n/e}$ with $e \mid n$ and e < n. We may assume by induction that $\psi_e(x, y) \equiv 0 \mod p$ for $e \mid n, e < n$. Since $n_p = e_p(n/e)_p < e_p p^{n/e}$, we have $U \equiv 0$ mod pn_p . Hence $n\psi_n(x, y) \equiv 0 \mod pn_p$ and $\psi_n(x, y) \equiv 0 \mod p$.

Summarizing we obtain

Theorem 2.6. Let k and K be commutative rings and suppose char K = p, p a prime. Let $D = (D_0, D_1, ...)$ be a higher derivation from k to K, d a positive integer and $d_p = p^r$. Consider W(K) as a W(k)-module via $F_d D_0$. Then the map

$$\delta_d: W(k) \to W(K)$$

of 2.2 induces via truncation (see [1]) continuous derivations $W(k) \rightarrow W_{(1,2,...,n)}(K)$ for $n \leq p^r$ and $W(k) \rightarrow W_{(1,p,...,p^s)}(K)$ for $s \leq r+1$.

Proof. Additivity and the derivation property follow from 2.4 and 2.5, the continuity from 1.7.

References

- [1] G.M. Bergman, Lecture 26 in D. Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies 59 (Princeton, 1966).
- [2] J. Labute and P. Russell, On K₂ of truncated polynomial rings, J. Pure and Applied Algebra 6 (1975) 239-251.