CONTINUOUS DERIVATIONS OF THE RING OF WITT-VECTORS

Peter RUSSELL
Department of Mathematics, McGill University Montreal, P.Q. H3C 3G1, Canada

Communicated by M. Barr
Received 10 October 1974

Let k be a commutative ring, $W=W(k)$ the ring of Witt-vectors over k and $W_{n}=W_{n}(k)$ the ring obtained from W by truncation at $\{1, \ldots, n\} \subset \mathbf{N}$ (see [1]). Attempts to compute higher K-groups of $k[t] / t^{n}$ have shown the need to learn something about the W-modules $\Omega\left(W_{n}\right)$ (the Kähler differentials of $\left.W_{n}\right)$. It is the purpose of this note to construct continuous derivations of W (if the target module is discrete these are precisely the derivations factoring through W_{n} for some n) powerful enough to answer some of the questions arising in K-theory (see [2]). The construction is based on higher derivations of k.

1. Let n be a positive integer, p a prime and $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots\right)$ with γ_{i} a non-negative integer and $\gamma_{i}=0$ for all but finitely many i. We put
1.1. (i) $n_{p}=$ largest power of p dividing $n, n_{p}=p^{r(n)}$;
(ii) $|\gamma|=\Sigma_{i} \gamma_{i},\|\gamma\|=\Sigma_{i} i \gamma_{i},\{\gamma\}=\operatorname{GCD}\left(\gamma_{0}, \gamma_{1}, \ldots\right)$;
(iii) $\binom{n}{\gamma}=n!/ \Pi_{i} \gamma_{i}$! (this notation will be used only if $\left.|\gamma|=n\right)$;
(iv) $x^{\gamma}=\Pi_{i} x_{i} \gamma_{i}$ if $x=\left(x_{0}, x_{1}, \ldots\right)$ is a sequence of elements in some (commutative) ring; $x^{p}=\left(x_{0}^{p}, x_{1}^{p}, \ldots\right)$.
Lemma 1.2. (i) If $p \mid\{\gamma\}$, then $\binom{\vdots}{\gamma} \equiv\binom{n / p}{\gamma / p} \bmod n_{p}$.
(ii) If $p \nmid\{\gamma\}$, then $\binom{n}{\gamma} \equiv 0 \bmod n_{p}$.

Proof. Suppose $\gamma_{i}=0$ for $i>s$ and let $X_{0}, X_{1}, \ldots, X_{s}$ be indeterminates over \mathbf{Z}. Now $\left(X_{0}+\ldots+X_{s}\right)^{p} \equiv X_{0}{ }^{p}+\ldots+X_{s}^{p} \bmod p$ implies $\left(X_{0}+\ldots+X_{s}\right)^{n} \equiv\left(X_{0}{ }^{p}+\ldots+X_{s}^{p}\right)^{n / p}$ $\bmod n_{p}$. Hence $\Sigma_{|\gamma|=n}\binom{n}{\gamma} X^{\gamma} \equiv \Sigma_{|\delta|=n / p}\binom{n / p}{\delta} X^{p \delta} \bmod n_{p}$ and we deduce the lemma comparing coefficients.

Corollary 1.2. $\binom{n}{\gamma} \equiv 0 \bmod n_{p} /\{\gamma\}_{p}$.
Corollary 1.3. Let d, e be positive integers such that $e \mid n d$. Suppose $|\gamma|=n d / e$ and $\{\gamma\} \mid n$.
(i) $e\binom{n d / e}{\gamma} \equiv 0 \bmod d$.
(ii) If $p \mid\{\gamma\}$, then $e / d\binom{n d / e}{\gamma} \equiv e / d\binom{n d / p e}{\gamma / p} \bmod n_{p}$.
(iii) If $p x\{\gamma\}$, then $e / d\binom{n d / e}{\gamma} \equiv 0 \bmod n_{p}$.

Definition 1.4. Let $X=\left(X_{0}, X_{1}, \ldots\right)$ be a sequence of variables and m, n non-negative integers. We put

$$
\Phi_{n, m}(X)=\sum_{I}(\underset{r}{m}) X^{\gamma}
$$

where $I=\{\gamma\|\gamma \mid=m,\| \gamma \|=n\}$.
Lemma 1.5. Let n, d, e be positive integers such that e|nd.
(i) $e / d \Phi_{n, n d / e}(X) \in \mathbf{Z}[X]$.
(ii) Let p be a prime such that $p \mid n$ and pe|nd. Then

$$
e / d \Phi_{n, n d / e}(X) \equiv e / d \Phi_{n / p, n d / p e}\left(X^{p}\right) \bmod n_{p} .
$$

Proof. (i) If $\|\gamma\|=n$, then $\{\gamma\} \mid n$ and $e / d\binom{n d / e}{\gamma} \in \boldsymbol{Z}$ by $1.3(\mathrm{i})$.
(ii) e/d $\Phi_{\text {n.nd/e }}(X)=\Sigma_{I} e / d\binom{n d / e}{\gamma} X^{\gamma}+\Sigma_{J}^{\gamma} e / d\binom{n d / e}{p \delta} X^{p \delta}$ where $I=\{\gamma \mid p \nmid\{\gamma\}$, $|\gamma|=n d / e,\|\gamma\|=n\}$ and $J=\{\delta| | \delta \mid=n d / p e,\|\delta\|=n / p\}$. The result follows from 1.3 (ii) and (iii).

Proposition 1.6. Let $T_{i j}, i=0,1,2, \ldots, j=1,2, \ldots$ be variables. Put $T_{j}=\left(T_{0 j}, T_{1 j}, \ldots\right)$ and $T=\left(T_{i j} \mid i=0,1, \ldots, j=1,2, \ldots\right)$. Let d be a positive integer. There exist unique polynomials $\varphi_{j}^{(d)}(T) \in \mathbf{Z}[T], j=1,2, \ldots$, such that for all n

$$
\sum_{e \mid n d} e / d \Phi_{n, n d / e}\left(T_{e}\right)=\sum_{j \mid n} j \varphi_{j}^{(d)}(T)^{n / j} .
$$

Proof. Let $\Psi_{1}=\Sigma_{e \mid n d} e / d \Phi_{n, n d \mid e}\left(T_{e}\right), \Psi_{2}=\Sigma_{j \mid n, j<n} j \varphi_{j}^{(d)}(T)^{n / j}$. Since we can solve uniquely for $n \varphi_{n}{ }^{(d)}(T)$ once the $\varphi_{j}{ }^{(d)}(T)$ have been determined for $j<n$, it will be enough to show that $\Psi_{1} \equiv \Psi_{2} \bmod n_{p}$ for all prime divisors p of n.

Fix p. Note that if $j \mid n$, then either $n_{p} \mid j$ or $j \mid n / p$. Hence $\Psi_{2} \equiv \Sigma_{j \mid n / p} j \varphi_{j}^{(d)}(T)^{n / j}$ $\bmod n_{p}$. Also $\varphi_{j}^{(d)}(T)^{p} \equiv \varphi_{j}^{(d)}\left(T^{p}\right) \bmod p$ implics $j \varphi_{j}^{(d)}(T)^{n}{ }^{2} j \equiv j \varphi_{j}(d)\left(T^{p}\right)^{n / p j}$ $\bmod n_{p}$ if $j \mid n / p$. Hence $\Psi_{2} \equiv \Sigma_{j \mid n / p}{ }_{\varphi} \varphi_{j}^{(d)}\left(T^{p}\right)^{n / j} \bmod n_{p}$ and by induction on n (the statement of the proposition is trivial for $n=1$)

$$
\Psi_{2} \equiv \sum_{c \mid n d / p} e / d \Phi_{n / p, n d / p e}\left(T_{c}^{p}\right) \bmod n_{p}
$$

Again, if $e \mid n d$, either $e_{p}=n_{p} d_{p}$ and $n_{p} \mid e / d$ (i.e. $e / d n_{p}$ is a rational number without p in the denominator) or $e \mid n d / p$. Hence $\Psi_{1} \equiv \Sigma_{e \mid n d / p} e / d \Phi_{n, n d / e}\left(T_{e}\right) \bmod n_{p}$, and by 1.5 (ii) $\Psi_{1} \equiv \Sigma_{e \mid n d / p} e / d \Phi_{n / p, n d / p e}\left(T_{e}^{p}\right) \bmod n_{p}$.

Remark 1.7. $\varphi_{n}{ }^{(d)}$ depends on the $T_{i j}$ with $i \leqslant n$ and $j \mid n d$ only.
2. Let k and K be commutative rings. Let $D: k \rightarrow K$ be a higher derivation of k into K, that is a sequence $D=\left(D_{0}, D_{1}, \ldots\right)$ of additive maps from k to K such that for $n=0,1, \ldots$ and all $x, y \in k$

$$
D_{n}(x y)=\sum_{i+j=n} D_{i}(x) D_{j}(y)
$$

Lemma 2.1. Let m, n be non-negative integers and $x \in k$. Then

$$
D_{n}\left(x^{m}\right)=\Phi_{n, m}\left(D_{0}(x), D_{1}(x), \ldots\right) .
$$

Proof. $D_{n}\left(x^{m}\right)=\Sigma_{A}\left(D_{\alpha_{1}}(x)\left(D_{\alpha_{2}}(x)\right) \ldots\left(D_{\alpha_{m}}(x)\right)\right.$ where the α_{i} are non-negative integers and $A=\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mid \Sigma_{i} \alpha_{i}=n\right\}$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. Suppose i appears γ_{i} times among the $\alpha_{j}, i=0,1,2, \ldots$, and put $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots\right)$. Then $|\gamma|=m$ and $\|\gamma\|=n$. Conversely, a $\boldsymbol{\gamma}$ with this property determines α up to order of the α_{j}.

For any commutative ring R let $W(R)$ be the ring of Witt-vectors over R and

$$
w=\left(w_{n}\right): W(R) \rightarrow R^{\mathbf{N}}
$$

the Witt homomorphism defined by $w_{n}(x)=\Sigma_{j \mid n} j x_{j}^{n / j}$ for $x=\left(x_{1}, x_{2}, \ldots\right) \in W(R)$ and $n=1,2, \ldots$ (see [1]). The following now is a straightforward translation of 2.1 and 1.6.

Definition-Proposition 2.2. Let d be a positive integer and $\varphi_{n}{ }^{(d)}, n=1,2, \ldots$, as defined in 1.6. Let

$$
\delta_{d}: W(k) \rightarrow W(K)
$$

be given by

$$
\delta_{d}(x)_{n}=\varphi_{n}^{(d)}\left(D_{i}\left(x_{j}\right)\right)
$$

for $x=\left(x_{1}, x_{2}, \ldots\right) \in W(k)$. Then

$$
w_{n} \delta_{d}=1 / d D_{n} w_{n d}
$$

for $n=1,2, \ldots$.
Lemma 2.3. Let $k=\mathbf{Q}[t]$, let Δ be the usual derivation on k and put $D_{i}=\Delta^{i} / i!$.
Then $D=\left(D_{0}, D_{1}, \ldots\right)$ is a higher derivation from k to k and the maps $D_{i}: k \rightarrow k$ are algebraically independent over \mathbf{Q}.

Proof. This is all ot vious except, maybe, for the last statement, for which, though, we may appeal to well known facts from the theory of differential equations.

Proposition 2.4. δ_{d} is additive.
Proof. Let $A_{j}(X, Y) \in \mathbb{Z}[X, Y], j=1,2, \ldots, X=\left(X_{1}, X_{2}, \ldots\right), Y=\left(Y_{1}, Y_{2}, \ldots\right)$ be the universal polynomials defining addition of Witt-vectors. There exist polynomials $\psi_{i j}(T, S) \in \mathbb{Z}[T, S], T=\left(T_{l m}\right), S=\left(S_{l^{\prime} m^{\prime}}\right), i, l, l^{\prime}=0,1, \ldots, j, m, m^{\prime}=1,2, \ldots$ such that $D_{i}\left(A_{j}(x, y)\right)=\psi_{i j}\left(\left(D_{l}\left(x_{m}\right)\right),\left(D_{l^{\prime}}\left(y_{m^{\prime}}\right)\right)\right)$ whenever R is a ring, $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$ are sequences of elements in R, and $D=\left(D_{0}, D_{1}, \ldots\right)$ is a higher derivation on R. Now additivity for δ_{d} means

$$
\delta_{d}\left(A_{j}(x, y)\right)_{n}=A_{n}\left(\delta_{d}(x), \delta_{d}(y)\right)
$$

or, equivalently,

$$
\varphi_{n}^{(d)}\left(\psi_{i j}\left(\left(D_{l}\left(x_{m}\right)\right),\left(D_{l^{\prime}}\left(y_{m^{\prime}}\right)\right)\right)\right)=A_{n}\left(\left(\varphi_{s}^{(d)}\left(D_{l}\left(x_{m}\right)\right)\right),\left(\varphi_{s^{\prime}}^{(d)}\left(D_{l^{\prime}}\left(y_{m^{\prime}}\right)\right)\right)\right)
$$

for $n=1,2, \ldots$ and $x, y \in W(k)$. Now if char $k=0=\operatorname{char} K$, then w is injective on $W(k)$ and $W(K)$ and clearly δ_{d} is additive. In view of 2.3 we deduce that there is an identity

$$
\varphi_{n}^{(d)}\left(\psi_{i j}(T, S)\right)=A_{n}\left(\left(\varphi_{s}^{(d)}(T)\right),\left(\varphi_{s^{\prime}}^{(d)}(S)\right)\right),
$$

and this in turn implies additivity for δ_{d} in general.
Now let $F_{d}: W(R) \rightarrow W(R)(R$ a commutative ring) be the functorial endomorphism satisfying

$$
w_{n} F_{d}=w_{n d}
$$

for $n=1,2, \ldots$ (see [1]).
Proposition 2.5. Let $\psi: W(k) \times W(k) \rightarrow W(K)$ be given by

$$
\psi(x, y)=\delta_{d}(x y)-F_{d} D_{0}(x) \delta_{d}(y)-F_{d} D_{0}(y) \delta_{d}(x)
$$

(Here we use the same symbol for the homomorphism $D_{0}: k \rightarrow K$ and the homomorphism $W(k) \rightarrow W(K)$ obtained by applying D_{0} componentwise.) Let p be a prime. Then for $n \leqslant d_{p}$ and $n=p d_{p}$ we have

$$
\psi(x, y)_{n} \equiv 0 \bmod p
$$

for any $x, y \in W(k)$.

Proof. We will show that in fact the coefficients of the polynomials used to define $\psi(x, y)_{n}$ are divisble by p if n is as in the statement of the proposition. We claim first that $w_{n}(\psi(x, y)) \equiv 0 \bmod p n_{p}$. Now
$w_{n}(\psi(x, y))=1 / d \sum_{i+j=n} D_{i}\left(w_{n d}(x)\right) D_{j}\left(w_{n d}(y)\right)$
$-1 / d w_{n d} D_{0}(x) D_{n}\left(w_{n d}(y)\right)-1 / d w_{n d} D_{0}(y) D_{n}\left(w_{n d}(x)\right)$

$$
\begin{aligned}
& =1 / d \sum_{i+j=n, 0<i, j} D_{i}\left(w_{n d}(x)\right) D_{j}\left(w_{n d}(y)\right) \\
& =\sum_{I} e f / d\binom{n d / e}{\gamma}\binom{n d / f}{\delta} u_{e}^{\gamma} v_{f}^{\delta},
\end{aligned}
$$

where $I=\{(e, f, \gamma, \delta)|e| n d, f|n d,|\gamma|=n d / e,|\delta|=n d / f, 0<\|\gamma\|, 0<\|\delta\|$, $\|\gamma\|+\|\delta\|=n\}$ and $u_{e}=\left(D_{0}\left(x_{e}\right), D_{1}\left(x_{e}\right), \ldots\right), v_{f}=\left(D_{0}\left(y_{f}\right), D_{1}\left(y_{f}\right), \ldots\right)$. By 1.2 (ii) we have

$$
e f / d\binom{n d / e}{\gamma}\binom{n d / f}{\delta} \equiv 0 \bmod p^{a}
$$

where $a=r(e)+r(f)-r(d)+2 r(n)+2 r(d)-r(e)-r(f)-r(\{\gamma\})-r(\{\delta\})$. Now if $n \leqslant d_{p}=p^{r(d)}$, then $r(d)>\max \{r(\{\gamma\}), r(\{\delta\})\}$ (we use $0<\|\gamma\|$, $\|\delta\|$ and $n=\|\gamma\|+\|\delta\|)$. Also, $r(n) \geqslant \min \{r(\{\gamma\}), r(\{\delta\})\}$. Hence $a \geqslant r(n)+1$. If $n=p d_{p}=$ $p^{r(d)+1}$, ther $r(n)=r(d)+1$ and $r(\{\gamma\}) \leqslant r(d), r(\{\delta\}) \leqslant r(d)$. Hence $a \geqslant r(d)+2=$ $r(n)+1$. This establishes the claim. Now $w_{n}(\psi(x, y))=n \psi_{n}(x, y)+U$, where U is a sum of terms $e \psi_{e}(x, y)^{n / e}$ with $e \mid n$ and $e<n$. We may assume by induction that $\psi_{e}(x, y) \equiv 0 \bmod p$ for $e \mid n, e<n$. Since $n_{p}=e_{p}(n / e)_{p}<e_{p} p^{n / e}$, we have $U \equiv 0$ $\bmod p n_{p}$. Hence $n \psi_{n}(x, y) \equiv 0 \bmod p n_{p}$ and $\psi_{n}(x, y) \equiv 0 \bmod p$.

Summarizing we obtain
Theorem 2.6. Let k and K be commutative rings and suppose char $K=p, p$ a prime. Let $D=\left(D_{0}, D_{1}, \ldots\right)$ be a higher derivation from k to K, d a positive integer and $d_{p}=p^{r}$. Consider $W(K)$ as a $W(k)$-module via $F_{d} D_{0}$. Then the map

$$
\delta_{d}: W(k) \rightarrow W(K)
$$

of 2.2 induces via truncation (see [1]) continuous derivations $W(k) \rightarrow W_{(1,2, \ldots, n)}(K)$ for $n \leqslant p^{r}$ and $W(k) \rightarrow W_{\left(1, p, \ldots, p^{s}\right)}(K)$ for $s \leqslant r+1$.

Proof. Additivity and the derivation property follow from 2.4 and 2.5 , the continuity from 1.7.

References

[1] G.M. Bergman, Lecture 26 in D. Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies 59 (Princeton, 1966).
[2] J. Labute and P. Russell, On K_{2} of truncated polynomial rings, J. Pure and Applied Algebra 6 (1975) 239-251.

