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Abstract

Fourth order hinged plate type problems are usually solved via a system of two second order equations.
For smooth domains such an approach can be justified. However, when the domain has a concave corner the
bi-Laplace problem with Navier boundary conditions may have two different types of solutions, namely u1
with u1,�u1 ∈ H̊ 1 and u2 ∈ H 2 ∩ H̊ 1. We will compare these two solutions. A striking difference is that in
general only the first solution, obtained by decoupling into a system, preserves positivity, that is, a positive
source implies that the solution is positive. The other type of solution is more relevant in the context of
the hinged plate. We will also address the higher-dimensional case. Our main analytical tools will be the
weighted Sobolev spaces that originate from Kondratiev. In two dimensions we will show an alternative
that uses conformal transformation. Next to rigorous proofs the results are illustrated by some numerical
experiments for planar domains.
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1. Introduction

Let Ω a bounded domain in R
n and consider the boundary value problem{

�2u = f in Ω,

u = �u = 0 on ∂Ω.
(1.1)

If Ω is a polygonal domain in R
2, these equations form the linear model for a hinged plate. We

are interested in the question if (1.1) is positivity preserving, meaning f � 0 implies that u � 0.
For the plate it can be rephrased as:

Does a one-sided force moves the plate in that same direction in each point?

This positivity question is rather trivial for (1.1) if ∂Ω is smooth since in that case the result
is a direct consequence of the maximum principle. Writing u = w and −�u = v the boundary
conditions uncouple into a system{−�v = f in Ω with v = 0 on ∂Ω,

−�w = v in Ω with w = 0 on ∂Ω,
(1.2)

and standard arguments yield that for any f ∈ L2(Ω) and f � 0 one finds a unique positive
solution v ∈ H̊ 1(Ω) and even that v ∈ H 2(Ω). Repeating that argument results in the existence
of a unique positive solution w ∈ H 2(Ω)∩ H̊ 1(Ω). Moreover, for ∂Ω ∈ C4 regularity arguments
even show that w ∈ H 4(Ω). The advantage in a numerical approach is that the solution of the
system can be approximated with piecewise linear finite elements which are readily available
in the standard packages. A direct numerical approach to the fourth order problem would need
piecewise quadratic finite elements.

The positivity question becomes more interesting if ∂Ω is not smooth, for example if Ω ⊂ R
2

is like here below. Without smoothness assumption on the boundary one may still solve this
system for f ∈ L2(Ω) to find v = −�w ∈ H̊ 1(Ω) respectively w ∈ H̊ 1(Ω) and by the maximum
principle that f � 0 implies v � 0 and hence w � 0. In general however one does not obtain
w ∈ H 2(Ω).

Alternatively one may look for a possible minimizer of
∫
Ω

((�u)2 − f u)dx in H 2(Ω) ∩
H̊ 1(Ω). If this functional has a minimizer u it does not have to be equal to w. Indeed this differ-
ence of the appropriate solutions for the single equation and for the system has been discussed
by Maz’ya and coauthors in [25] (see also [26, Section 5.8] and [30, Section 6.6.2]).

The second question we will address is:

How do these two types of solutions compare?
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We will show that for two-dimensional domains a solution u ∈ H 2(Ω) ∩ H̊ 1(Ω), the one
which is physically more relevant, might change sign for f � 0 if the domain has a ‘concave’
corner. We will also show that for some Ω such a minimizer may not exist.

The main part of this paper is concerned with the analytical treatment of the problem and after
explaining the general setting we will do so by considering dimension � 4, 3 and 2 separately.
We will end by showing some numerical results that will illustrate the analytical results and by
stating some open problems concerning the positivity question on this type of domains.

Remark 1.0.1. It is known that for systems of second order equations on domains with reentrant
corners several distinct types of solutions may exist. For the dynamic Lamé-system −μ�u −
(λ+μ)∇(∇.u) = ρω2u this has been studied in [16,29]. For the study of corner singularities for
the (time-harmonic) Maxwell equations, that is, for ∇ × E − iωμH = 0 and ∇ × H + iωεE = J,
we refer to [5,9] and also to [1,7,8]. A paper by Birman [6], discussed the Stokes system −�u +
∇p = f with ∇.u = 0 and compares this result with those for the Lamé-system and for the
Maxwell equations.

1.1. Physical background

If n = 2 and if the boundary of Ω is a polygon the problem in (1.1) is the linear model for a
clamped plate with hinged boundary conditions. For such a problem the energy should be finite
and that is guaranteed by u ∈ H 2(Ω). Indeed the elastic energy for such a model is defined by

E(u;Ω) =
∫
Ω

(
1

2
(�u)2 + (1 − σ)

(
u2

xy − uxxuyy

) + f u

)
dx (1.3)

where f is the exterior force and u the bending of this plate; σ is the Poisson ratio.2 See for
example [33, Chapter VI]. The zero boundary condition of the plate is taken care of by the zero
in u ∈ H̊ 1(Ω). The hinged boundary condition �u = 0 comes as a natural boundary condition.
So the appropriate space to be considered for this model is H 2(Ω) ∩ H̊ 1(Ω). For a minimizer u

we find ∫
Ω

(
�u�v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx) + f v

)
dx = 0

for all v ∈ H 2(Ω) ∩ H̊ 1(Ω). Assuming u ∈ H 4(Ω) we may integrate by part and find, writing
n = (ν1, ν2) for the outside normal, that

0 =
∫
Ω

(
�2u − f

)
v dx +

∫
∂Ω

(
�u + (1 − σ)

(
2uxyν1ν2 − uxxν

2
2 − uyyν

2
1

))∂v

∂n
ds.

Note that the term (1 − σ)(u2
xy − uxxuyy) in (1.3) has no influence on the differential equation

but does change one of the boundary conditions on none-straight boundary parts. Indeed, instead

2 The Poisson ratio is defined by σ = λ
2(λ+μ)

with material depending constants λ,μ, the so-called Lamé constants.

Usually λ � 0 and μ > 0 hold true and hence 0 � σ < 1
2 . Some exotic materials have a negative Poisson ratio (see [20]).

For metals the value σ lies around 0.3 (see [21, p. 105]).
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of �u = 0 on ∂Ω one obtains �u + (1 − σ)(2uxyν1ν2 − uxxν
2
2 − uyyν

2
1) = 0 on ∂Ω . Let us

recall that for u = 0 on ∂Ω it holds that

�u + (1 − σ)
(
2uxyν1ν2 − uxxν

2
2 − uyyν

2
1

)
= σ�u + (1 − σ)

(
2uxyν1ν2 + uxxν

2
1 + uyyν

2
2

)
= σ(unn + κun) + (1 − σ)unn = unn + σκun = �u + (1 − σ)κun.

Here κ is the curvature of the boundary. This implies that the physically relevant boundary value
problem reads as {

�2u = f in Ω,

u = �u + (1 − σ)κun = 0 on ∂Ω.
(1.4)

On polygonal domains (1.4) leads to (1.1) with some singularity in the corners. Note that through
an approximation of the boundary the corresponding approximating solutions not necessarily
converge to a solution for the original domain. The difference between the solution of (1.1) on
a disk and the approximation by the solutions on regular m-polygons was noticed in [2]. This
so-called Babuška paradox was studied by Maz’ya et al. in [23]. Finally we would like to refer
to [12] for the positivity question under Dirichlet boundary conditions.

1.2. The two types of solutions

Throughout this paper we will assume that Ω is a bounded uniformly Lipschitz domain in
R

n. If we assume more regularity such will be stated in the theorem. We will recall some of the
known results for the Dirichlet Laplace and the consequences for (1.1). For convex domains both
approaches will lead to the same solution.

1.2.1. The (H 1)2-solution
Let us recall that no matter what regularity the boundary satisfies the following result holds

true for {−�v = f in Ω,

v = 0 on ∂Ω.
(1.5)

Theorem 1.1. (See [19].) Let Ω ⊂ R
n be a bounded domain. Then for every f ∈ L2(Ω) there

exists a unique weak solution v ∈ H̊ 1(Ω) of (1.5). Moreover f � 0 implies v � 0.

As usual by a weak solution of (1.5) we mean a function v ∈ H̊ 1(Ω) such that∫
Ω

(∇v.∇ϕ − f ϕ)dx = 0 for all ϕ ∈ H̊ 1(Ω).

For this solution operator we will use GΩ ; one has GΩ ∈ L(L2(Ω); H̊ 1(Ω)). The solution for
(1.1) obtained by G2

Ω we will call a (H 1)2-solution.
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Theorem 1.2. (See [13].) Let Ω be convex. Then for every f ∈ L2(Ω) the weak solution v ∈
H̊ 1(Ω) of (1.5) lies in H 2(Ω). Moreover, there exists c > 0 such that for every f ∈ L2(Ω) and
corresponding v it holds that

‖v‖H 2(Ω) � c‖f ‖L2(Ω).

Remark 1.2.1. Instead of Ω being convex it is sufficient that there exist C2-diffeomorphisms
that map Ω ‘locally’ onto a convex domain.

Remark 1.2.2. Convexity is not sufficient to conclude for arbitrary p from f ∈ Lp(Ω) that
v ∈ W 2,p(Ω). In a two-dimensional domain with a smooth boundary except for finitely many
corners of opening angle αi one needs that αi <

p
2(p−1)

π for all i.

Corollary 1.3. Let Ω be convex. Then for every f ∈ L2(Ω) there exists a unique w ∈ H 2(Ω) ∩
H̊ 1(Ω) with �w ∈ H 2(Ω) ∩ H̊ 1(Ω) that solves problem (1.1).

Proof. Existence follows form the previous theorem; uniqueness through the maximum princi-
ple. �
1.2.2. The H 2-solution

Let us fix the Hilbert space

H(Ω) = H 2(Ω) ∩ H̊ 1(Ω) (1.6)

supplied with the usual ‖ · ‖H 2(Ω)-norm.

Definition 1.4. We will call u a H 2-solution of (1.1) if

1. u ∈H(Ω);
2.

∫
Ω

(�u�v − f v)dx = 0 for all v ∈H(Ω).

Remark 1.4.1. Note that when u ∈ H 4(Ω) an integration by parts of the integral identity in
Definition 1.4 shows∫

Ω

(
�2u − f

)
v dx −

∫
∂Ω

�u
∂v

∂n
ds = 0 for all v ∈H(Ω), (1.7)

and hence �u|∂Ω = 0. If Γ ⊂ ∂Ω is C4 then one may use local arguments to find �u|Γ = 0.

Existence of such an H 2-solution is not guaranteed on general non-smooth domains. However,
using the result of Theorem 1.2 we may conclude that:

Proposition 1.5. If Ω is a convex domain, then problem (1.1) with the right-hand side f ∈ L2(Ω)

has a unique H 2-solution u. Moreover, there exists c > 0 such that for every f ∈ L2(Ω) and
corresponding u it holds that

‖u‖H 2(Ω) � c‖f ‖L2(Ω). (1.8)
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Proof. Indeed by Theorem 1.2 we find that since Ω is convex the “second fundamental inequal-
ity” ([13], [18, p. 65]) is satisfied for u ∈H(Ω):

‖u‖H 2(Ω) � cΩ‖�u‖L2(Ω) (1.9)

and therefore ((u, v)) := ∫
Ω

�u�v dx is a inner product in H(Ω). Since Ψ (v) = ∫
Ω

f v dx is
a continuous functional on H(Ω) the Riesz representation theorem gives a unique H 2-solution.
Moreover

‖u‖2
H 2(Ω)

� cΩ

∫
Ω

(�u)2 dx = cΩ

∫
Ω

f udx � cΩ‖f ‖L2(Ω)‖u‖L2(Ω)

and one finds that (1.8) holds with c = c
1/2
Ω . �

Corollary 1.6. If Ω is a convex domain, then for f ∈ L2(Ω) the (H 1)2- and H 2-solutions to
problem (1.1) coincide.

Remark 1.6.1. Although these solutions are identical for a convex domain and hence this solution
u satisfies u,�u ∈ H 2(Ω), additional conditions are necessary in order to conclude that u ∈
H 4(Ω).

2. Higher-dimensional domains with a conic point

We will restrict ourselves to domains with only one ‘concave’ boundary point and assume that
the domain near this one point is like a cone.

Definition 2.1. Let ω ⊂ S
n−1 (the unit sphere in R

n) and set

KR
ω := {rθ; 0 < r < R and θ ∈ ω}.

Open sets in Rn of the form K∞
ω := {rθ; 0 < r and θ ∈ ω} will be called cones.

Some special domains we define for α ∈ (0,2π):

Ωα := K1
ωα

with ωα =
{
θ ∈ S

n−1; arccos(θ1) <
1

2
α

}
. (2.1)

Notice that arccos(θ1) is the angle between θ and ê1 = (1,0, . . . ,0). See Fig. 1.
To avoid other non-smooth boundary parts of Ωα the general setting will be as follows.

Condition 2.2. We will assume that Ω ⊂ R
n is bounded and is such that

• ∂Ω\O is C∞;
• there exist R > 0 and a proper subdomain ω of S

n−1 with Ω ∩ BR(O) = KR
ω .
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Fig. 1. Ωα for α = 2π − 2 in dimension 2 and 3.

Here O = (0, . . . ,0) and BR(O) = {x ∈ Rn: |x| < R} is the ball of radius R > 0 centered
at O. In other words, Ω has a smooth boundary except at O where it locally coincides with a
cone.

Due to the singularity at O the equalities in (1.1) are not necessarily pointwise and the appro-
priate formulation of (1.1) becomes

⎧⎨⎩�2u(x) = f (x) for x ∈ Ω,

u(x) = �u(x) = 0 for x ∈ ∂Ω\O,

specified behaviour near O.

(2.2)

For a convex domain Proposition 1.5 gives the existence and uniqueness of a H 2-solution.
This result is based on the estimate in (1.9). In general (1.9) does not hold true for concave
domains and, thus, even the solvability of problem (2.2) in the Sobolev space H 2(Ω) cannot be
concluded directly from the variational formulation. We are forced to proceed by considering the
iterated Dirichlet Laplacian as in (1.2).

3. The Dirichlet problem for the Poisson equation

Let Ω be as in Condition 2.2. In order to study solutions in a domain with a conical boundary
point such, like Ω satisfying Condition 2.2, we know from [15] that a possible approach starts
with considering non-trivial power-law solutions

U(x) = rΛΦ(θ) (3.1)

of the following model problem in the infinite cone

{−�U(x) = 0 for x ∈ K∞
ω ,

U(x) = 0 for x ∈ ∂K∞
ω \O.

(3.2)

Since the Laplace operator in the spherical coordinates takes the form

� = r1−n ∂
rn−1 ∂ + r−2�̃,
∂r ∂r
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where �̃ denotes the Laplace–Beltrami operator on the unit sphere, the functions in (3.1) get the
exponents

Λ±
k = −n − 2

2
±

√
(n − 2)2

4
+ μk. (3.3)

Here μk is the kth eigenvalue of the problem{−�̃Φ(θ) = μΦ(θ) for θ ∈ ω,

Φ(θ) = 0 for θ ∈ ∂ω,
(3.4)

and the angular part Φ in (3.1) is a corresponding eigenfunction. Eigenvalues of problem (3.4)
form the sequence

0 < μ1 < μ2 � μ3 � · · · and μk → ∞ for k → ∞.

The first eigenvalue μ1 is simple and the corresponding eigenfunction Φ1 can be chosen positive
in ω. The positive exponents of power-law solutions (3.1) also form the sequence

0 < Λ+
1 < Λ+

2 � Λ+
3 � · · · and Λ+

k → ∞ for k → ∞. (3.5)

The negative exponents in (3.3) are related to (3.5) by the formula Λ−
k = 2 − n − Λ+

k .
Let us recall the function spaces which fit to problem (1.5) on Ω satisfying Condition 2.2.

First we set

C∞
c (Ω\O) := {

u ∈ C∞(Ω); support(u) ⊂ Ω\Bε(O) for some ε > 0
}
.

Definition 3.1. Let V
l,p
β (Ω) be defined as the completion of C∞

c (Ω\O) with respect to the
weighted norm below. That is:

V
l,p
β (Ω) = C∞

c (Ω\O)‖·‖, (3.6)

‖z‖ := ‖z‖
V

l,p
β (Ω)

=
(

l∑
j=0

∥∥|x|β−l+j∇j
x z

∥∥p

Lp(Ω)

)1/p

, (3.7)

where l ∈ {0,1, . . .}, p ∈ (1,+∞) and β ∈ R.

Remark 3.1.1. The coefficients l, p and β are respectively the indices of smoothness, summa-
bility, and weight. If l � s and β � γ then the inclusion V

s,p
γ+s−l (Ω) ⊂ V

l,p
β (Ω) holds. This

inclusion becomes compact only under the restrictions l > s and β < γ .

In order to define the appropriate space for zero Dirichlet boundary conditions we set

C∞
0 (Ω) := {

u ∈ C∞(Ω); support(u) ⊂ Ω
}
.
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Definition 3.2. Set V̊
l,p
β (Ω) = C∞

c (Ω)‖·‖ with the norm as in (3.7) for the same parameters
l ∈ {0,1, . . .}, p ∈ (1,+∞) and β ∈ R.

Remark 3.2.1. The space V̊
l,p
β (Ω) is the subspace of functions v ∈ V

l,p
β (Ω) satisfying

( ∂
∂n

)kv = 0 for k ∈ {0, . . . , l − 1} on ∂Ω\O.

The following assertion is a direct consequence of general results in the theory of elliptic
problems in domains with piecewise smooth boundaries. See the key works by Kondratiev [15],
by Maz’ya and collaborators [17,27,28] or by Grisvard [11]. For precise statements we may
also refer to [30], namely Chapter 6 Theorem 1.4 (p. 226), Chapter 4 Theorem 1.7 (p. 105) and
Chapter 3 Theorem 6.10 (p. 82).

Proposition 3.3. Suppose Ω satisfies Condition 2.2 and let Λ+
1 be defined by (3.3), (3.4). The

operator of problem (1.5) regarded as the mapping

A
l,p
β :V l+1,p

β (Ω) ∩ V̊
1,p
β−l (Ω) → V

l−1,p
β (Ω) (3.8)

is an isomorphism if and only if

1 − Λ+
1 < β − l + n

p
< n − 1 + Λ+

1 . (3.9)

More precisely,

1. if β − l + n
p

< 1 − Λ+
1 , then there exist f ∈ V

l−1,p
β (Ω) for which problem (1.5) has no

solution in V
l+1,p
β (Ω) ∩ V̊

1,p
β−l (Ω);

2. if β − l + n
p

> n − 1 + Λ+
1 , problem (1.5) with f = 0 has a non-trivial solution v ∈

V
l+1,p
β (Ω);

3. in the cases β − l+ n
p

= 1−Λ+
1 and β − l+ n

p
= n−1+Λ+

1 , mapping (3.8) is not Fredholm,

namely, the range ImA
l,p
β is not closed in V

l−1,p
β (Ω).

For further consideration we need the particular indices

l = 1, p = 2, β = 0 (3.10)

that provide V
l−1,p
β (Ω) = V

0,2
0 (Ω) = L2(Ω).

Lemma 3.4. It holds that

V
2,2
0 (Ω) ∩ V̊

1,2
−1 (Ω) = H 2(Ω) ∩ H̊ 1(Ω). (3.11)

Proof. Let us write V(Ω) = V
2,2
0 (Ω)∩ V̊

1,2
−1 (Ω). Then we observe that the exponents of r in the

weighted norm (3.7) with β = 0 and l = 2 are non-positive for j = 0,1,2. Thus, the inclusion
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V(Ω) ⊂ H(Ω) is evident. To verify the inverse inclusion H(Ω) ⊂ V(Ω), we first need the one-
dimensional Hardy inequality

∞∫
0

rn−3w(r)2 dr � 4

(n − 2)2

∞∫
0

rn−1
∣∣∣∣dw

dr
(r)

∣∣∣∣2

dr for all w ∈ C1
0 [0,∞)

which assures that ∥∥|x|−1∇v
∥∥

L2(Ω)
� c‖∇v‖H 1(Ω) � c′‖v‖H 2(Ω).

Secondly, by using the Dirichlet condition v = 0 on ∂Ω and the Poincaré–Friedrichs inequality
on the domain ω ⊂ S

n−1 we find∫
ω

∣∣v(θ)
∣∣2

dsθ � c

∫
ω

∣∣∇̃v(θ)
∣∣2

dsθ for all v ∈ H̊ 1(ω),

where ∇̃ stands for the angular part of the gradient ∇ = (∂/∂r, r−1∇̃). As a result we obtain

∥∥|x|−2v
∥∥2

L2(Ω∩BR(O))
=

R∫
0

rn−5
∫
ω

∣∣v(rθ)
∣∣2

dsθ dr � c

R∫
0

rn−5
∫
ω

∣∣∇̃v(rθ)
∣∣2

dsθ dr

� c′
R∫

0

rn−3
∫
ω

∣∣∇v(rθ)
∣∣2

dsθ dr = c
∥∥|x|−1∇xv

∥∥2
L2(Ω∩BR(O))

.

Since r > R on Ω\BR(O), we conclude that ‖|x|−2v‖L2(Ω) � c‖|x|−1∇xv‖L2(Ω) and finish the
proof. �
4. Domains in dimension n��� 4

As a consequence of Proposition 3.3 we may conclude that typical four and higher-
dimensional concave boundary points do not destroy the positivity preserving property.

Proposition 4.1. Let n � 4 and suppose that Ω is as in Condition 2.2. If f ∈ L2(Ω) and f � 0,
then there is a unique weak solution u ∈ H(Ω) of (1.1) and u � 0.

Proof. Taking the indices as in (3.10) Proposition 3.3 states that

A
1,2
0 :V 2,2

0 (Ω) ∩ V̊
1,2
−1 (Ω) → V

0,2
0 (Ω)

is an isomorphism whenever, see (3.9),

1 − Λ+
1 < 0 − 1 + n

< n − 1 + Λ+
1 , (4.1)
2
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or, equivalently,

n > 4 − 2Λ+
1 . (4.2)

For n � 4 the condition in (4.2) is satisfied. We have V
0,2
0 (Ω) = L2(Ω) and from Lemma 3.4 we

know that H(Ω) = V
2,2
0 (Ω) ∩ V̊

1,2
−1 (Ω). So A

1,2
0 :H(Ω) → L2(Ω) is an isomorphism and both

problems (1.1) and (1.2) have unique solutions in H 2(Ω). In particular, this means that problem
(2.2) has a unique generalized solution u ∈ H(Ω) and estimate (1.8) is valid. �
Remark 4.1.1.

1. Since v ∈ V
2,2
0 (Ω) Proposition 4.1 gives a necessary and sufficient condition for the exis-

tence of the solution u = w ∈ V
4,2
0 (Ω) ∩ V̊

1,2
−1 (Ω) ⊂ H 4(Ω) to problem (2.2) whenever

1 − Λ+
1 < 0 − 3 + n

2
< n − 1 + Λ+

1 (4.3)

or, equivalently, n > 8 − 2Λ+
1 . So inequality (4.3) is satisfied for the case n � 8. Hence for

n � 8 we always have that u ∈ H 4(Ω).
2. If the cone K∞

ω is convex, i.e. ω ⊂ S
n−1+ , then by Rayleigh’s principle μ1(ω) > μ1(S

n−1 ∩
R

n+) = 2 and hence

Λ+
1 > 1. (4.4)

The last equality follows from the fact that U(x) = xn is a positive power-law solution to the
model problem (3.2) in the cone K∞

ω = R
n+ = {x; xn > 0}. The estimate in (4.4) shows that

(4.3) is valid for n � 6 and u ∈ H 4(Ω).
3. Finally, if K∞

ω ⊂ R
n++ = {x: xn > 0, xn−1 > 0}, then μ1(ω) > μ1(S

n−1 ∩ R
n++) = 6 and

Λ+
1 > 2 (4.5)

because the model problem (3.2) in R
n++ has the positive power-law solution U(x) = xnxn−1

and Λ+
1 (Sn−1 ∩ R

n++) = 2. In that case (4.3) is satisfied for any dimension n � 4 and u ∈
H 4(Ω).

Remark 4.1.2. Since v ∈ V
2,2
0 (Ω) ⊂ V

2,2
1 (Ω) it may be of interest to get a solution u = w ∈

V
4,2
1 (Ω) ⊂ H 3(Ω). The condition

1 − Λ+
1 < 1 − 3 + n

2
< n − 1 + Λ+

1 (4.6)

is verified for any n � 6. By virtue of (4.4), inequalities (4.6) hold true for any convex cone
K ⊂ R

n whenever n � 4.
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5. Domains in dimension n = 3

Now condition (3.9) with indices (3.10) reads as 1 − Λ+
1 < 1

2 < 2 + Λ+
1 . So in order to use

the above argument to conclude the existence of the generalized solution u ∈ H 2(Ω) to problem
(2.2) we need

Λ+
1 >

1

2
. (5.1)

Lemma 5.1. There exist cones K∞
ω with ω ⊂ S

2 as in Definition 2.1 such that μ1 = 3
4 .

Remark 5.1.1. If Ω ⊂ R
3 satisfies Condition 2.2 with ω such that μ1 = 3

4 then Λ+
1 = 1

2 . With
the lemma such domains Ω can be constructed.

Proof. Let K be a slender cone, K ⊂ Kε = {x ∈ R
n+: |x|2 − x2

n < εx2
n} where ε > 0 is a small

parameter. As shown in [24] (see also [26, Chapter 10]), there exist positive constants εK and
cK such that, for ε ∈ (0, εK) and the exterior cone K∗ = R

3\K with the cross-section ω∗ =
S

n−1\ωK , we have

Λ+
1 (ω∗) < cK∗ |log ε|−1. (5.2)

Estimate (5.2) with a sufficiently small ε provides the inequality

Λ+
1 < 1/2, (5.3)

and hence μ1(ω) < 1. Furthermore, since the first eigenvalue μ1(ω) of problem (3.4) depends
continuously on the domain ω (see [14] for details) and according to (4.4) μ1(S

2 ∩ R
3+) = 2,

there exist (infinitely many, non-convex) cones K∞
ω , for which μ1(ω) = 3

4 , that is with formula
(3.3),

Λ+
1 = 1/2, (5.4)

which completes the proof. �
Lemma 5.2. Suppose that Ω ⊂ R

3 satisfies Condition 2.2. Then Λ+
2 > 1.

Proof. With formula (3.3) it is sufficient to prove that μ2(ω) > 2. By [10, Satz 3, Chapter VI, §2]
one knows that Ωa ⊂ Ωb implies that μm(Ωa) � μm(Ωb). Indeed, setting for vi ∈ L2(Ω), i =
1, . . . ,m,

dΩ(v1, . . . , vm) := inf

{∫
Ω

|∇ϕ|2 dx∫
Ω

ϕ2 dx
; ϕ ∈ H̊ 1(Ω)\{0} with

∫
Ω

ϕvi dx = 0

}
,

it holds that

μm(Ω) = sup
{
d(v1, . . . , vm); vi ∈ L2(Ω), i = 1, . . . ,m

}
.
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Since every vi ∈ L2(Ωb) can be restricted to Rvi ∈ L2(Ωa) and ϕ ∈ H̊ 1(Ωa) can be extended to
Eϕ ∈ H̊ 1(Ωb) with

∫
Ωa

ϕRvi dx = ∫
Ωb

Eϕvi dx one finds

dΩa (Rv1, . . . ,Rvm) � dΩb
(v1, . . . , vm).

Since R :L2(Ωb) → L2(Ωa) is onto we find, by taking the suprema on both sides, μn(Ωa) �
μn(Ωb). If Ωa lies strictly within Ωb then the inequality is strict. Indeed, suppose that μn(Ωa) =
μn(Ωb) and let ϕn be the corresponding eigenfunction on Ωa . Then Eϕn is an eigenfunction on
Ωb which is zero on an open set. Since we assumed that Ωb is connected we find by the unique
continuation that Eϕn ≡ 0, a contradiction. So

μn(Ωa) > μn(Ωb).

For the present case we may conclude that μ2(ω) > μ2(S
2) = 2. �

For every f ∈ L2(Ω) the iterated Dirichlet Laplacian (1.2) gives a solution w ∈ H 1(Ω) of
problem (2.2). To demonstrate that if Λ+

1 ∈ (0,1/2) this solution w does not belong to H 2(Ω) for
at least some positive right-hand side f ∈ L2(Ω), we will introduce a weight function (see [27]).
Let Φ1 and μ1 be the first eigenfunction and eigenvalue on ω and let Φ1 be normalized by
‖Φ1‖L2(ω) = 1 and Φ1 > 0. Set

U−
1 (rθ) = r−1−Λ+

1 Φ1(θ) (5.5)

and define

ζ1(x) = 1

1 + 2Λ+
1

χ(r)U−
1 (x) + ζ̂1(x), (5.6)

where χ ∈ C∞
0 [0,R) is a cut-off function such that χ(r) = 1 as r ∈ (0,R/2), and where ζ̂1 ∈

H̊ 1(Ω) is the solution to (1.5) with

f = −2∇χ · ∇U−
1 + U−

1 �χ

1 + 2Λ+
1

∈ C∞
c (Ω\O).

Clearly, χU−
1 /∈ H 1(Ω) and, therefore, ζ1 is non-trivial irregular solution to the homogeneous

problem (1.1). Since c1 > 0 and Φ1(θ) > 0 for θ ∈ ω, the harmonics ζ1 is positive inside Ω .

Lemma 5.3. Suppose that Λ+
1 < 1

2 . Then the solution v ∈ H̊ 1(Ω) of problem (1.5) with the
right-hand side f ∈ L2(Ω) admits the asymptotic representation

v(x) = χ(r)c1U
+
1 (x) + ṽ(x) (5.7)

where ṽ ∈ H 2(Ω), U+
1 (x) = rΛ+

1 Φ1(θ), and

c1 =
∫

ζ1(x)f (x) dx. (5.8)
Ω
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Furthermore, it holds true that

‖ṽ‖H 2(Ω) + |c1| � c‖f ‖L2(Ω). (5.9)

Proof. In view of Lemma 5.2 and under assumption (5.3), the representation (5.7) together with
the estimate in (5.9) follow from the general results in [15] which are also presented in Propo-
sition 3.3. See [30, Theorem 3.5.6 (p. 68) and Theorem 4.2.1 (p. 106)]. We also like to refer to
[4] where a formula of type (5.7) is used to calculate the defect index of the Laplacian with the
domain H 2(Ω) ∩ H̊ 1(Ω) in the two-dimensional case. Let us verify the integral formulae (5.8)
by applying method in [27] (see also [30, Theorem 3.5.10 (p. 72) and Theorem 3.3.9 (p. 117)]).
In view of (5.7) and (5.6) the Green formula in the domain Ωδ = Ω\Bδ(O) yields

∫
Ω

ζ1f dx = lim
δ→0

∫
Ωδ

ζ1f dx = lim
δ→0

∫
Ωδ

(v�ζ − ζ�v)dx

= lim
δ→0

∫
∂Bδ∩K∞

ω

(
ζm

∂v

∂r
− v

∂ζ1

∂r

)
dsx

= lim
δ→0

δ2

1 + 2Λ+
1

cj

(
Λ+

1 δ−1−Λ+
1 δΛ+

1 −1 + (
1 + Λ+

1

)
δΛ+

1 δ−2−Λ+
1
)

×
∫
ω

Φ1(θ)2 dsθ = c1. �

If f � 0 and f �= 0, then the coefficient c1 in (5.7) is positive and v /∈ H 2(Ω) because U+
1 /∈

H 2(Ω ∩ KR
ω ) according to (5.3). A way to construct the generalized solution u ∈ H 2(Ω) of

problem (1.1) was proposed in [25]. Observing that by (5.3), ζ1 ∈ L2(Ω), we take

v = v0 + a1ζ1 ∈ L2(Ω) (5.10)

as a solution to problem (1.1) while a1 is a constant to be fixed and v0 ∈ H̊ 1(Ω) is the energy
solution of problem (1.1). According to Lemma 5.3, the solution u = w ∈ H̊ 1(Ω) to problem
(1.5) with the right-hand side (5.10) belongs to H 2(Ω) provided

c0
1 =

∫
Ω

ζ1(x)v0(x) dx + a1

∫
Ω

ζ1(x)2 dx = 0. (5.11)

The factor at a1 in (5.11) is positive. Thus, we may compute a1 and fix the function v as in (5.10).
The inequalities

|a1| � c‖v0‖L2(Ω) � c‖f ‖L2(Ω),

are valid so that, due to (5.9), estimate (1.9) holds true for the solution u of problem (2.2).
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Remark 5.3.1. Let us compare the asymptotics of the constructed solution u ∈ H 2(Ω) to prob-
lem (1.1) with the asymptotics

w(x) = χ(r)Cw
1 rΛ+

1 Φ1(θ) + O(r), r → 0, (5.12)

of the solution w ∈ H 1(Ω) of the iterated Dirichlet Laplacian (1.2). We wrote rθ = x. Since the
main singularity of the right-hand side (5.10) in problem (1.5) for u is of the form

χ(r)
a1

1 + 2Λ+
1

r−1−Λ+
1 Φ1(θ) + o(1), r → 0,

and coefficient (5.11) is annulled, we find the solution

V 1(x) = − 1/2

1 − 2Λ+
1

r1−Λ+
1 Φ1(θ) (5.13)

of the inhomogeneous model problem

−�V 1(x) = r−1−Λ+
1 Φ1(θ), x ∈ K∞

ω ; V 1(x) = 0, x ∈ ∂K∞
ω \O, (5.14)

and derive the asymptotic formula

u(x) = −χ(r)
a1/2

1 − (2Λ+
1 )2

r1−Λ+
1 Φ1(θ) + O(r) for r → 0. (5.15)

Comparing (5.12) and (5.15), we observe that the above modification of solving the iterated
Dirichlet Laplacian changes the singularity χ(r)rΛ+

1 Φ1(θ) ∈ H 1(Ω)\H 2(Ω) into the singular-
ity χ(r)r1−Λ+

1 Φ1(θ) ∈ H 2(Ω) (the inclusions are ensured since Λ+
1 ∈ (0,1/2)). Note that the

singular term rΛ+
1 Φ1(θ) in (5.12) has the positive angular part Φ1 while in (5.15) the same

angular part is attributed to r1−Λ+
1 Φ1(θ) which, owing to Lemma 5.2, remains to be the main

asymptotic term.

Let us now consider the case (5.4), Λ+
1 = 1

2 . Since the left inequality in (3.9) with β = 0,
l = 1, n = 3 and Λ+

1 = 1
2 is invalid, Proposition 3.3 does not supply us with the solutions v

and w of problem (1.2) in H 2(Ω) ∩ H̊ 1(Ω). This fact can be explained by observing that the
asymptotics of both, v and w, must contain term r1/2Φ1(θ) which is not in H 2(Ω). At the same
time, there is no generalized solution u ∈ H 2(Ω) of problem (1.1). Indeed, an attempt to improve
the regularity property of w by considering the solution (5.10) to problem (1.1) provides an even
worse singularity of u. Indeed, since now 1 − 2Λ+

1 = 0, formula (5.13) cannot be used and a
solution to the model problem (5.14) takes the form

V 1(x) = −1

2
r1/2(log r + C)Φ1(θ)

where the constant C is arbitrary.
The following example explains why properties of solutions to the problems in question

change crucially in the case Λ+ = 1/2.
1
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Example 5.3.2. Let r1/2Φ(θ) be a non-trivial solution to the model problem (3.2). We introduce
the cut-off function

χN(t) = (
1 − χ(t)

)
χ(t − N − 1)

where N ∈ N and χ ∈ C∞(R), 0 � χ(t) � 1, χ(t) = 1 for t < 0 and χ(t) = 0 for t � 1. The
function

vN(x) = χN

(
log

R

r

)
r1/2Φ(θ)

belongs to C∞
0 (Ω\O) and

∥∥vN ;H 2(Ω)
∥∥2 �

∥∥r−2∇̃2vN ;L2(Ω)
∥∥2 �

Re−1∫
Re−N−1

r−4(r1/2)2
r2 dr

∥∥∇̃2Φ1;L2(ω)
∥∥2

= cΦ

(
log

R

e
− log

R

eN+1

)
= NcΦ (5.16)

where cΦ > 0. On the other hand,

fN(x) := −�vN(x) = Φ(θ)r−2 ∂

∂r
r3/2χ ′

(
log

R

r

)
where χ ′(t) = dχ

dt
(t). The support of fN is located in the union of the sets KR

ω \Ke−1R
ω and

Ke−N−1R
ω \Ke−N−2R

ω . Hence,

‖fN‖2
L2(Ω)

� c

(
1 +

Re−N−1∫
Re−N−2

r2(−2+1/2)r2 dr

)
� C. (5.17)

Comparing (5.16) and (5.17) shows that the range of the operator of problem (1.1),

A :H 2(Ω) ∩ H̊ 1(Ω) → L2(Ω)

is not closed because the estimate ‖v‖H 2(Ω) � C‖f ‖L2(Ω) cannot hold with a constant C inde-
pendent of the right-hand side f .

6. Domains in dimension n = 2

We start by recalling the following result from [25].

Theorem 6.1. Let Ω ⊂ R2 be a bounded domain that has a boundary which is C2 except for
finitely many corners. Then for every f ∈ L2(Ω) there exists a unique solution u ∈ H 2(Ω).
Moreover, there is a constant cΩ such that for all f

‖u‖H 2(Ω) � c‖f ‖L2(Ω).
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For simplicity we will not only assume that Ω satisfies Condition 2.2 but even the following.

Condition 6.2. The domain Ω ⊂ R
2 is bounded and simply connected with

• ∂Ω\O ∈ C∞;
• there exist α ∈ (π,2π] such that K1

ωα
⊂ Ω ⊂ K∞

ωα
.

An important application appears for α = 2π ; then the domain contains a so-called crack.
Such problems have been studied for example in [22].

We are interested in domains with a non-convex angular point so α > π . For the definition
of ωα see (2.1). Note that the only extra restriction is that Ω itself lies inside a multiple of its
interior cone. This restriction is not fundamental but will be convenient for positivity statements.
Since most of our arguments use the asymptotic behavior near O we may replace the assumption
K1

ωα
⊂ Ω ⊂ K∞

ωα
by {x ∈ Ω; |x| < 1} = K1

ωα
if we multiply by an appropriate cut-off function.

6.1. Comparing the (H 1)2 and the H 2-solutions

Let us recall the weight function from [30, Chapter 2 (p. 32)]. Notice that weight functions
for general boundary value problems were introduced in [27].

Definition 6.3. Set

ζ(x) = 1

π
r−π/α cos

(
π

α
ϕ

)
+ ζ̂ (x)

with x = (r cosϕ, r sinϕ) and where ζ̂ ∈ H 1(Ω) is the unique solution of{
−�ζ̂ = 0 in Ω,

ζ̂ = − 1
π
r−π/α cos

(
π
α
ϕ
)

on ∂Ω.

Remark 6.3.1. If Ω = Ωα ⊂ R
2 then ζ(x) = 1

π
(r−π/α − rπ/α) cos(π

α
ϕ).

If Ω satisfies Condition 6.2 we find that ζ ∈ C2(Ω\{0}), and that ζ satisfies{−�ζ = 0 in Ω,

ζ = 0 on ∂Ω\{0}.

Notice that due to the assumption above the boundary values of ζ̂ are zero on ∂Ω ∩ B1(0) and
since the boundary values are hence regular we find hence ζ̂ ∈ H 1(Ω). Also notice that a direct
computation shows ζ ∈ L2(Ω) and ζ /∈ H 1(Ω) when α > π .

Lemma 6.4. Let Ω ⊂ R
2 satisfy Condition 6.2. One finds that ζ > 0 in Ω .

Proof. Since ζ̂|∂Ω is bounded the maximum principle shows that ζ̂ is bounded in Ω . Since
the singularity of ζ goes to +∞ we find min(0, ζ ) ∈ H 1(Ω) and even min(0, ζ ) ∈ H̊ 1(Ω).
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Moreover, min(0, ζ ) is superharmonic. So the strong maximum principle implies min(0, ζ ) > 0
in Ω or min(0, ζ ) = 0 in Ω . Since ζ �≡ 0 we get ζ > 0 in Ω . �

Using this auxiliary function ζ ∈ L2(Ω) we may solve the second part of (1.2) except in 0,
that is {−�v = f in Ω,

v = 0 on ∂Ω\{0}, (6.1)

by

va(x) = v(x) + aζ(x), (6.2)

where v = GΩf is the unique solution in H̊ 1(Ω) of (6.1) and a some arbitrary constant. Next,
solving the remaining part of the system with the right-hand side va :{−�wa = va in Ω,

wa = 0 on ∂Ω.
(6.3)

Notice that v ∈ L2(Ω) and hence we find for each va a unique solution wa ∈ H̊ 1(Ω). So all
functions wa = G2

Ωf + aGΩζ , with a ∈ R, satisfy (2.2). If we demand that wa,�wa ∈ H̊ 1(Ω),
then a = 0. We will show that the solution u of (1.1) in H 2(Ω) ∩ H̊ 1(Ω) has a �= 0. This
procedure to find a solution in H 2(Ω) can also be found in [24]. It is similar as in the 3d-case
discussed in the previous section.

Let us introduce a second auxiliary function.

Definition 6.5. Let Ω satisfy Condition 6.2. Set

η(x) = rπ/α cos

(
π

α
ϕ

)
χ(r)

with x = (r cosϕ, r sinϕ) and where χ ∈ C∞(R) satisfies 0 � χ � 1 with

χ(r) = 1 for r � 1

2
R and χ(r) = 0 for r � R.

Remark 6.5.1. One may show that η ∈ H̊ 1(Ω) and η /∈ H 2(Ω).

The function w that solves (6.3) has the unique representation

wa(x) = cη(x) + w̃(x) (6.4)

with w̃ ∈ H 2(Ω) ∩ H̊ 1(Ω). Indeed, see [4] or [30, Chapter 2 (pp. 33, 34 and 36–38)]. So if we
want wa ∈ H 2(Ω) we need c = 0. This c is the so-called intensity factor for which the following
integral representation holds (see [30, Chapter 2, formula 3.7 (p. 33)])

c =
∫

va(x)ζ(x) dx (6.5)
Ω
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with va the right-hand side in (6.3). For va as in (6.2) we find that

a = −‖ζ‖−2
L2(Ω)

∫
Ω

v(x)ζ(x) dx.

So the solution u ∈ H 2(Ω) ∩ H̊ 1(Ω) of (1.1) is as follows

u = G2
Ωf −

∫
Ω

v(x)ζ(x) dx

‖ζ‖2
L2(Ω)

GΩζ = G2
Ωf −

∫
Ω

(GΩf )(x)ζ(x) dx

‖ζ‖2
L2(Ω)

GΩζ,

or, if we set Pζ the L2(Ω)-projection on ζ

u = HΩf := (
G2

Ω − GΩPζGΩ

)
f. (6.6)

Since ζ > 0 we may immediately state.

Corollary 6.6. Let Ω ⊂ R2 satisfy Condition 6.2. If f ∈ L2(Ω) satisfies f > 0 then the solutions
u ∈ H 2(Ω) ∩ H̊ 1(Ω) of (1.1) and w ∈ H̊ 1(Ω) with �w ∈ H̊ 1(Ω) of (1.2) are ordered: u � w

in Ω .

Notice that the solution operator for the plate problem (1.1) is well defined for f ∈ H−1(Ω).
So GΩ may be extended to H−1(Ω). One finds GΩf ∈ H̊ 1(Ω) ⊂ L2(Ω) and HΩ :H−1(Ω) →
L2(Ω) is well defined. Hence the operator HΩ is also defined for (C(Ω))′ and it will be sufficient
(and also necessary) for the positivity of HΩ to study if HΩδx � 0 for all x ∈ Ω . Here δx is the
Dirac measure at x ∈ Ω . We have that HΩ is positive if and only if∫

Ω

GΩ(x, z)GΩ(z, y) dz

∫
Ω

ζ(z)ζ(z) dz �
∫
Ω

GΩ(z, y)ζ(z) dz

∫
Ω

GΩ(x, z)ζ(z) dz (6.7)

where GΩ(x,y) is the kernel of GΩ .

6.2. Asymptotic expansion

6.2.1. Formal asymptotics
By the work of Kondratiev [15] one knows that a solution of a boundary value problem such

as (1.1) for Ω a cone and f ≡ 0 near the vertex has formally the following asymptotic expansion
near that vertex

u(x) ∼
∑

i

κi−1∑
k=0

ci,kr
λi (log r)kψi,k(ϕ). (6.8)

Here we used x = (r cosϕ, r sinϕ). In the present planar case the values λi (with κi the multi-
plicity of λi ) and functions ψi,k are determined by the spectral problem on the arc:⎧⎨⎩

(
λ2

i + ∂2

∂ϕ2

)(
(λi − 2)2 + ∂2

∂ϕ2

)
ψλi,k(ϕ) = ψλi,k−1(ϕ) for |ϕ| < 1

2α,

ψλi,k

( 1α
) = ψ ′′ ( 1α

) = ψλi,k

(− 1α
) = ψ ′′ (− 1α

) = 0,
2 λi ,k 2 2 λi ,k 2
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where we take ψλi,−1(ϕ) ≡ 0. One finds, allowing j ∈ {0,1} and n ∈ N, that

λi = 2j ± n
π

α
and ψλi,0(ϕ) = sin

(
n
π

α

(
ϕ + 1

2
α

))
.

Let us define for n ∈ Z\{0}

Un,j (r, ϕ) = r2j+n π
α sin

(
n
π

α

(
ϕ + 1

2
α

))
. (6.9)

Notice that the multiplicity of λi is 1 except when 2 ± nπ
α

= nπ
α

for some n ∈ Z, that is, for
α = nπ . Since we are interested in α ∈ (π,2π] this does not occur except when α = 2π . So we
find that κi = 0 for all eigenvalues whenever α ∈ (π,2π) and (6.8) becomes

u ∼
∑
n∈Z

∑
j∈{0,1}

cn,j r
2j+n π

α sin

(
n
π

α

(
ϕ + 1

2
α

))
. (6.10)

For α = 2π the situation degenerates since U−2,1(r, ϕ) = U2,0(r, ϕ) = −r sin(ϕ) and we are
forced to add U2

ln(r, ϕ) = r ln(r) sin(ϕ) to the functions in (6.9). However, since U2
ln does not

belong to H 2 locally near 0 it does not influence the asymptotic behaviour of an H 2-solution.

6.2.2. Solutions
For f ∈ L2(Ω) only some asymptotic terms in (6.10) play a role. Since V

0,2
δ (Ω) ⊃

V
0,2
0 (Ω) = L2(Ω) for δ > 0 we have f ∈ V

0,2
δ (Ω) with δ � 0.

If 2j + nπ
α

�= 3 − δ for n ∈ Z\{0}, then a solution u of (1.1) in H 2(Ω) can be written as

u(x) =
∑

1<2j+n π
α

<3−δ

cn,jU
n,j (r, ϕ) + ũ(x) for α ∈ (π,2π) (6.11)

with ũ ∈ V
4,2
δ (Ω). Indeed r2j+n π

α sin(nπ
α
(ϕ + 1

2α)) ∈ H 2(Ω) with α ∈ (π,2π) if and only if
2j + nπ

α
> 1. The restriction 1 < 2j + nπ

α
< 3 − δ brings at most six asymptotic terms.

In the case α ∈ (π,2π) these are

U−1,1(r, ϕ) = r2− π
α cos

(
π

α
ϕ

)
, U1,1(r, ϕ) = r2+ π

α cos

(
π

α
ϕ

)
,

U2,0(r, ϕ) = r2 π
α sin

(
2
π

α
ϕ

)
, U3,0(r, ϕ) = r3 π

α cos

(
3
π

α
ϕ

)
,

U4,0(r, ϕ) = r4 π
α sin

(
4
π

α
ϕ

)
, U5,0(r, ϕ) = r5 π

α cos

(
5
π

α
ϕ

)
. (6.12)

For α = 2π we obtain

u(x) =
∑

1�2j+ 1 n<3−δ

cn,jU
n,j (r, ϕ) + ũ(x). (6.13)
2
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Fig. 2. The relation between λi and α.

Now the functions U−1,1 and U2,0 coincide and lie in C∞(Ω)˙, indeed

U2,0(r, ϕ) = U−1,1(r, ϕ) = r sin(ϕ) = y.

Note that the function U2
ln does not lie in H 2(Ω) and hence does not appear in the expansion.

Remark 6.6.1. We will show that the sign near (0,0) is determined by the leading term in the
expansion (6.10), that is, the one with the smallest exponent. Figure 2 reminds us that the function
Un,j with the smallest exponent, that is, the lowest order coefficient 2j + nπ

α
, is as follows:

1. for α > 3
2π the sign-changing function U2,0 leads;

2. for π < α < 3
2π the positive function U−1,1 leads.

Remark 6.6.2. One may also notice that U4,0,U5,0 ∈ V
4,2
1 (Ω) for respectively α < 4

3π and
α < 5

3π .

6.2.3. Embedding
Lemma 6.7. There exist cM > 0 such that for all w ∈ V 2,2

γ (K1
ωα

) with |γ | � M and |α| � π the
following holds

∣∣v(r,ϕ)
∣∣ � cM r1−γ ‖v‖

V
2,2
γ (K1

ωα
)
. (6.14)

Proof. Setting v̂(t, ϕ) = e(1−γ )t v(e−t , ϕ) we find that there exists c > 0 such that

‖v̂‖H 2(R+×(−α/2,α/2)) =
2∑

k=0

k∑
p=0

α/2∫ ∞∫ ∣∣∂k−p
t ∂p

ϕ ṽ(t, ϕ)
∣∣2

dt dϕ
−α/2 0
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=
2∑

k=0

k∑
p=0

α/2∫
−α/2

1∫
0

∣∣(r∂r )
k−p∂p

ϕ

(
rγ−1v(r,ϕ)

)∣∣2 1

r
dr dϕ

� c

2∑
k=0

k∑
p=0

α/2∫
−α/2

1∫
0

r2(γ−2+k)

∣∣∣∣∂k−p
r

(
1

r
∂ϕ

)p

v(r,ϕ)

∣∣∣∣2

r dr dϕ

� c′‖v‖
V

2,2
γ (K1

ωα
)
. (6.15)

By the Sobolev embedding H 2(D) ⊂ L∞(D) for any D ⊂ R
2 and one finds∣∣v̂(t, ϕ)

∣∣ � c‖v̂‖H 2(R+×(−α/2,α/2)). (6.16)

Combining (6.15) and (6.16) implies (6.14). �
Corollary 6.8. There exist cδ > 0 such that for all w ∈ V

4,2
δ (K1

ωα
):

rδ−3
∣∣w(x)

∣∣ + rδ−2
∣∣∇w(x)

∣∣ � cδ‖w‖
V

4,2
δ (K1

ωα
)
. (6.17)

Proof. Since V
4,2
δ (K1

ωα
) ⊂ V

2,2
δ−2(K

1
ωα

) we find, by taking γ = δ − 2 in (6.14), that for some
c̃1 > 0

rδ−3
∣∣w(x)

∣∣ � c̃1‖w‖
V

4,2
δ (K1

ωα
)
.

Similarly, since ∇w ∈ V
3,2
δ (K1

ωα
), we have from (6.14) that

rδ−2
∣∣∇w(x)

∣∣ � c̃2‖w‖
V

4,2
δ (K1

ωα
)
. �

Corollary 6.9. There exist cδ > 0 such that for all w ∈ V
4,2
δ (K1

ωα
) ∩ V̊

1,2
−1 (Ω):

∣∣w(x)
∣∣ � cδ r3−δ cos

(
π

α
ϕ

)
‖w‖

V
4,2
δ (K1

ωα
)
.

Proof. If w ∈ V
4,2
δ (K1

ωα
) then r−2∂2

ϕw ∈ V
2,2
δ (K1

ωα
) and hence by Lemma 6.7∣∣r−2∂2

ϕw(r,ϕ)
∣∣ � cM r1−δ‖w‖

V
4,2
δ (K1

ωα
)
.

Since w(r,−α/2) = w(r,α/2) = 0 it follows from (6.14) that

∣∣w(r,ϕ)
∣∣ � 1

2

(
1

4
α2 − ϕ2

)∥∥∂2
ϕw(·, ϕ)

∥∥
L∞(−α/2,α/2)

� 2πcMr3−δ cos

(
π

α
ϕ

)
‖w‖

V
4,2
δ (K1

ωα
)
. �
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6.2.4. Coefficients
The weight functions that define the coefficients for general boundary value problems were

introduced in [27]. Let us recall the particular weight functions from [30, Chapter 2 (p. 32)] that
correspond by duality to the power type solutions in (6.12):

Y−1,1(r, ϕ) = 1

2

1

2 − 2π
α

r
π
α cos

(
π

α
ϕ

)
, Y 1,1(r, ϕ) = 1

2

1

2 + 2π
α

r− π
α cos

(
π

α
ϕ

)
,

Y 2,0(r, ϕ) = 1

4

1

4π
α

− 2
r2−2 π

α sin

(
2
π

α
ϕ

)
, Y 3,0(r, ϕ) = 1

6

1

6π
α

− 2
r2−3 π

α cos

(
3
π

α
ϕ

)
,

Y 4,0(r, ϕ) = 1

8

1

8π
α

− 2
r2−4 π

α sin

(
4
π

α
ϕ

)
, Y 5,0(r, ϕ) = 1

10

1

10π
α

− 2
r2−5 π

α cos

(
5
π

α
ϕ

)
.

(6.18)

Definition 6.10. Set

ζn,j (r, ϕ) = Yn,j (r, ϕ) + ζ̂n,j (r, ϕ) (6.19)

where ζ̂n,j ∈ H 1(Ω) is the unique solution of{
−�ζ̂n,j = 0 in Ω,

ζ̂n,j = −Yn,j on ∂Ω.

Note that the restriction of Yn,j to ∂Ω are smooth.
Similar as in Lemma 5.3 the coefficients in (6.11) are defined by

cn,j = cn,j (f ) :=
∫
Ω

f (x)ζn,j (x) dx.

6.2.5. Conclusion
Proposition 6.11. Suppose that Ω satisfies Condition 6.2. Let f ∈ L2(Ω) and let u be the
H 2-solution of (1.1).

1. If 3
2π < α � 2π and c2,0(f ) �= 0 then u changes sign near 0.

2. If α = 3
2π and |c2,0(f )| > 1

2 |c−1,1(f )| then u changes sign near 0.

If α = 3
2π and |c2,0(f )| < 1

2 |c−1,1(f )| then u has a fixed sign near 0.
3. If π < α < 3

2π and c−1,1(f ) �= 0 then u has a fixed sign near 0.

Proof. From the expansion (6.11) and the embedding of Lemma 6.7 of we find that

u(x) =
∑

1�2j+n π
α

<3−δ

cn,j (f )Un,j (r, ϕ) + o

(
r3/2 cos

(
π

α
ϕ

))
.

If α �= 3π and the appropriate coefficient is non-zero we may conclude by Remark 6.6.1.
2
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For α = 3
2π we have U−1,1(r, ϕ) = r

4
3 cos( 2

3ϕ) and U2,0(r, ϕ) = r
4
3 sin( 4

3ϕ). Since sin( 4
3ϕ) �

2 cos( 2
3ϕ) the solution is of fixed sign whenever |c2,0(f )| < 1

2 |c−1,1(f )|. On the other hand, for
any ε > 0 one has that cos( 2

3ϕ) − ( 1
2 + ε) sin( 4

3ϕ) is of opposite sign near ± 3
4π . So the solution

changes sign whenever |c2,0(f )| > 1
2 |c−1,1(f )|. �

Lemma 6.12. If α ∈ ( 3
2π,2π] there exist f ∈ L2(Ω) with f � 0 and c2,0(f ) �= 0.

Proof. The coefficient is fixed by c2,0(f ) = ∫
Ω

f (x)ζ2,0(x) dx. The function ζ2,0 is sign-
changing so support(ζ+

2,0) is non-empty and we may take any non-trivial non-negative f ∈
L2(Ω) with support(f ) ⊂ support(ζ+

2,0) in order to find that c2,0(f ) > 0. �
Corollary 6.13. Let Ω satisfy Condition 6.2. For α ∈ ( 3

2π,2π] the H 2-solution operator is not
positivity preserving.

6.3. Alternative approach

Let GΩ , HΩ and ζ be as in Section 6.1 so if we set Pζ the L2(Ω)-projection on ζ the
H 2-solution u satisfies

u = HΩf := (
G2

Ω − GΩPζGΩ

)
f. (6.20)

A powerful tool for the Laplace equation in 2 dimensions are conformal mappings. We may
use a conformal mapping that straightens the corner. This will allow us to transfer system (1.1)
to a system with a smooth domain but with singularities in the right-hand sides. On the smooth
image domain we may use standard techniques for smooth domains.

For the two-dimensional domains that satisfy Condition 2.2 such a conformal mapping is
h(z) = zπ/α . Remember that for a conformal bijection

GΩ(x, z) = Gh(Ω)

(
h(x),h(z)

)
.

A first observation is that ũ ∈ C1(h(Ω)) ∩ C0(h(Ω)) with u = ũ ◦ h ∈ H 2,2(Ω) may only
hold if

∂

∂x1
ũ(0,0) = 0. (6.21)

The second observation is concerned with regularity. Since f ∈ L2(Ω) implies f̃ := (f ◦
h−1).Jh−1 ∈ L2(h(Ω)) one finds ṽ := Gh(Ω)(f̃ .Jh−1) ∈ H 2,2(h(Ω)) ⊂ Cγ (h(Ω)) for all γ ∈
(0,1). A direct computation shows that Jh−1 ∈ Cmin(1,2( a

π
−1))(h(Ω)) and hence for α > π that(

G2
Ωf

) ◦ h−1 = Gh(Ω)(ṽ.Jh−1) ∈ C2,γ
(
h(Ω)

)
for some γ > 0. (6.22)

Next we address the second term in (6.6), namely GΩPζGΩf = cf (GΩζ). The Dirichlet
Laplace with ζ for a right-hand side on the infinite cone K∞

ω has α x1|x|2( α
π

−1) as a so-
4(α−π)
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lution. Taking into account the boundary contribution by ∂Ω\∂K∞
ω for the solution on Ω one

finds that for some w ∈ C2(h(Ω))

GΩζ ◦ h−1 = w − α

4(α − π)
x1|x|2( α

π
−1). (6.23)

So we have

ũ = (
G2

Ωf
) ◦ h−1 − cf

(
w − α

4(α − π)
x1|x|2( α

π
−1)

)
= ((

G2
Ωf

) ◦ h−1 − cf w
) + cf

α

4(α − π)
x1|x|2( α

π
−1)

with

∂

∂x1

((
G2

Ωf
) ◦ h−1 − cf w

)
(0,0) = 0. (6.24)

Finally notice that for 2( α
π

− 1) > 1 we have x1|x|2( α
π

−1) = o(|x|2) and ũ ∈ C2(h(Ω)).
By (6.24) the sign near (0,0) is determined by the second order derivatives, or even more

specifically, since ∂2

∂x2
2
ũ(0,0) = 0 and hence by the differential equation also ∂2

∂x2
1
ũ(0,0) = 0,

by ∂
∂x1

∂
∂x2

ũ(0,0). So we may conclude that if ∂
∂x1

∂
∂x2

ũ(0,0) �= 0 the solution u changes sign
near (0,0).

That such a sign change can occur follows from the next observation. If for example Ω is
symmetric in x2 = 0 so is w and hence ∂

∂x1

∂
∂x2

ũ(0,0) = 0. In that case the solution changes sign

if and only if ∂
∂x1

∂
∂x2

Gh(Ω)(ṽ.Jh−1) �= 0. For generic f this will indeed be the case. If one chooses
f which has a support in the upper part Ω such a non-zero mixed derivative will follow from
Serrin’s Maximum Principle at a corner [31].

We conclude by remarking that we find a similar sign changing result as before since 2( α
π

−
1) > 1 is equivalent to α > 3

2π .

6.4. Open problems

In the case α ∈ (π, 3
2π) one knows that whenever f ∈ L2(Ω) with 0 �= f � 0 the H 2-solution

u will not display a sign change near 0. However, numerical evidence shows that there are still
sign changing solutions with positive right-hand side at least for α near 3

2π . We expect such a
sign change for all values between π and 3

2π . So let us fix that claim.

Conjecture 6.14. For each planar domain Ω which has a concave corner with angle in (π, 3
2π]

there is a non-negative right-hand side f ∈ L2(Ω) such that the H 2-solution u of (1.1) changes
sign.

Suppose the domain with a concave corner in the origin is symmetric with respect to y and
if we take f � 0 such that f (x, y) = f (x,−y) then the coefficient for U2,0 equals 0. Hence at
least locally near the origin positivity is preserved for all angles in (π,2π). Are such solutions
positive on the whole domain? We expect so but not been able to prove such a result. Let us state
a precise claim.
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Conjecture 6.15. Suppose that Ω is a planar domain satisfying Condition 6.2 which is symmetric
with respect to y = 0. Then for every non-trivial non-negative right-hand side f ∈ L2(Ω) that
satisfies f (x, y) = f (x,−y), the H 2-solution u is positive.

Remark 6.15.1. Note that the difference between the H 2-solution u and the (H 1)2 solution
w is, see (6.6), a multiple of the ζ from Definition 6.3. In the notation of (6.12) we have that
ζ = U−1,0. A right-hand side with the above symmetry implies that the U2,0-component both
of u and w is 0. Near 0 both for w and for u the contribution of the leading term, respectively
U−1,0 and U−1,1, is positive when f is positive. But only for w the maximum principle yields
global positivity.

One might pose a related conjecture for non-symmetric domains.

Conjecture 6.16. Suppose that Ω is a planar domain satisfying Condition 6.2. Then for every
non-trivial non-negative right-hand side f ∈ L2(Ω) that satisfies

∫
Ω

f (x)ζ2,0(x) dx = 0, the
H 2-solution u is positive.

These conjectures are quite blunt. It could very well be that some number α1 ∈ (π, 3
2π)

exists with positivity preserving for angles α ∈ (π,α1]. Under the additional condition that∫
Ω

f (x)ζ2,0(x) dx = 0 the problem could be positivity preserving only for α ∈ (π,α2] where
α2 is strictly less than 2π . In order to show that indeed α < 2π one might try to use for f a
combination of U−1,1, U3,0 and U1,1 similar as in the last remark in [32].

7. Numerical evidence

Numerical approximations for higher order problems in the presence of non-convex boundary
singularities are by no means easy. In this section we do not want to present rigorous numerical
results. Our aim is twofold. First we want to illustrate that on a standard L-shaped domain both
solution are crucially different. See Figs. 3, 4 and 5. Secondly, we use sectorial domains to give
numerical evidence for our claim that also for angles just below 3

2π sign-change occurs. See
Fig. 6.

7.1. Finite differences

Using finite differences for (GΩ)2 and for the H 2-solution operator on an L-shaped domain
we obtained numerical results that confirmed the above features. See Fig. 3. The right-hand side
f is defined by a vector with a single non-zero entry. The number of grid points (degrees of
freedom) is ±1800.

7.2. Finite elements

Using finite elements the available software often restricts one to second order equations. If
one does so here to find a solution by the iteration through (1.2) one would find an approxima-
tion of the (H 1)2-solution w. In order to find the physically more relevant H 2-solution one either
needs a direct approach using at least second order elementary functions or one proceeds through
the system and subtracts a numerical approximation of the GΩPζGΩf -term in (6.6). The limi-
tations of the available software forced us to proceed through this second approach. Illustrations
of the obtained results can be found in Figs. 4 and 5.
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Fig. 3. The approximation for w (left) and u (right), the solution of (1.1), respectively in (H 1)2- and H 2-sense, with
a point source on the right-hand side. The arrow shows the location of the point source. Both solutions have been
obtained by finite differences with uniformly distributed nodes. Only near the concave corner the discretization-matrices
are different. The red part shows the area where the approximation of u is negative. These two graphs have been obtained
using Mathematica [A]. (For interpretation of the references to colour in this figure legend, the reader is reffered to the
web version of this article.)

Fig. 4. On the left the level lines for respectively the approximation of the w-solution in (H 1)2 and the u-solution
in H 2 by finite elements for a point source. In small on the right the approximation level sets of the u-solution with
the subdomains for the positive (green = light) and negative (red = dark) part. The approximations were obtained by
FreeFem++ software [B] using adaptive mesh generation.

Fig. 5. On the left the (H 1)2-solution w and on the right the H 2-solution u. The virtual reflection was produced by the
Medit-software [C] of the ‘Laboratoire Jacques Louis Lions.’ It enhances the fact that the w is much more ‘curved’ near
the concave corner: in fact there the energy integral is divergent.
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Fig. 6. On the left the level lines for the approximation by finite elements of the w-solution in (H 1)2 respectively the
u-solution in H 2 for a point source. In small on the right the approximation for the u-solution in H 2 with the subdomains
for the positive (blue or light) and negative (green or dark) part. For each graph the number of triangles used lies around
13 000. Obtained by FreeFem++ software.
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In our knowledge one of the early papers that addresses numerical treatment of a elliptic
system with a reentrant corner, is [3] by Bernardi and Raugel.

7.2.1. Technical details
For both approximations we used the Free++ software [B] using an adaptive mesh generation

with P 2-elements. For the approximation of the singular ζ the domain was slightly altered by
removing a small disk around the concave corner. Although ζ itself is not bounded it lies in
L2 and hence also the integrals

∫
Ω

ζv dx converges. The finite element problem is numerically
solved as follows:

• f := e−100((x−x0)
2+(y−y0)

2) where the position of (x0, y0) has been picked by hand for opti-
mal visual effect;

• v := Gf is solved by a conjugate gradient method using piecewise linear elements;
• w := Gv is solved by the same method;
• a mesh adaptation according to a numerical estimate of the error in w is applied and v,w

are recomputed. As a result of the preset error bound the process terminates with the number
of triangles around 15 000 and the number of interior nodes (= degrees of freedom) around
30 000;

• for the computation of u the stress intensity factor ci is approximated and u := w − ciGζ .
Also Gζ is computed by the same conjugate gradient method.

Remark 7.0.1. Notice that the results for u by finite differences and by finite elements only
roughly coincide. One should remark that the grid for the finite differences is rather course.
Nevertheless, in both cases the nodal line seems to go straight down from the reentrant corner
although the asymptotic formula tells us that it should bisect the angle.

Remark 7.0.2. We have shown that sign-changing occurs in the H 2-solution u whenever α ∈
( 3

2π,π). From the numerical evidence shown in Fig. 6 one may guess that 3
2π is not optimal.

Software

[A] Mathematica 4, http://www.wolfram.com/.
[B] FreeFem++, http://www.ann.jussieu.fr/~hecht/freefem++.htm.
[C] Medit, http://www.ann.jussieu.fr/~frey/logiciels/medit.html.
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