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a b s t r a c t

We propose robust controller designs to synchronize networks with uncertainties in their
node dynamics and their connections. We consider two situations: in the first, we assume
that the effect of uncertainties vanishes as synchronization is achieved. In the second,
disturbances are assume nonvanishing but bounded. To achieve robust synchronization on
these situations, we design local feedback controllers, which are smooth in the first case,
and discontinuous in the latter. These designs allow us to establish synchronization criteria
for this class of uncertain dynamical networks. We use numerical experiments to illustrate
our results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years synchronization of dynamical networks has become a very active area of research [1–3]. In particular,
studies on the synchronization of networks with small-world [4] and scale-free [5] topologies have significantly advance
our understanding of the synchronization phenomenon in real-world complex networks, highlighting their potential
applications to the Internet, electric power distribution, social and economical groups, and even biological systems
[6–9]. In contrast to their wide potential applicability, the bulk of research on network synchronization has concentrated
on networks with identical nodes, linearly and diffusively coupled, where full knowledge of the dynamical description of its
nodes and the structure of their interconnections is available. Under these conditions, approaches like the Master Stability
Function (MSF) [10,11], and other methods based on linearized analysis of the network’s transverse dynamics [6,12,13], can
be used to determine the stability of the overall synchronized behavior of the network. Unfortunately, when considering
more realistic situations, where complete knowledge is not available linearized approaches are not directly applicable.

Although dynamical networks may synchronize spontaneously, in most cases it is necessary to take actions to force
the network into a synchronized state. This situation is referred to as controlled synchronization. In [14], an adaptive
robust controller was proposed to achieve synchronization on uncertain networks that preserve their diffusive structure
under perturbations. That is, networks where perturbations and control inputs vanish at the synchronized solution. For
this type of uncertain networks in [15], synchronization was robustly achieved designing the coupling functions of the
network. In [16], the problem of adaptive synchronization of uncertain networks was reconsidered describing local and
global synchronization designs. Linear feedback controllers to achieve robust synchronization on uncertain networks with
uniformandnonuniform inner couplingmatriceswere proposed in [17]. The effect of coupling delays on the synchronization
of uncertain networks was considered in [18]. Following a linearized analysis under vanishing perturbations in [19,20]
conditions for synchronization of a networkwith slightly different nodeswere derived using theMSF approach. In the above
results it is required that the uncertain network remain diffusive under the effects of perturbations and controls. When
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considering that the topology can be perturbed, the problem becomes more complex. In [21], adaptive synchronization
was considered in the context of networks under the action of slow varying time dependent network topology. In another
paper [22], a similar solution was found from an MSF approach.

In this paperwe extendprevious results by relaxing the requirements of identical nodes and vanishing coupling functions.
In particular, we design controllers for two situations: vanishing and non-vanishing perturbations. In the first, we propose
smooth synchronizing controllers. While for the latter, we propose discontinuous local feedback controllers to achieve
robust synchronization. These controller designs allow us to derive several criteria for robust synchronization of uncertain
networks, which relate emergence of synchronization to: the dynamics of an isolated nominal node, topological features of
the nominal network, and bounds of the uncertainties affecting the network.

The remainder of the paper is as follows: In Section 2, we describe in detail the synchronization problem for
uncertain networks. In Section 3, we provide controllers for two distinct situations; namely, vanishing and non-vanishing
perturbations. While in Section 4, we use different numerical experiments to show the validity of our results. Finally, we
conclude the paper with some closing comments and remarks.

2. Uncertain dynamical network model

The state space description of a networkwith uncertain couplings, where each node is a dynamical systemwith uncertain
parameters and a local controller, is given by:

ẋi = f̃i (xi, ρ̃i) + g̃i(X) + ui, for i = 1, . . . ,N (1)

where xi ∈ Rn are the state variables of the ith node; X = [x1, . . . , xN ] ∈ Rn×N is a row vector of the state variables of each
node in the network; and ui ∈ Rn is a local feedback controller to be designed.

The parameters of each dynamical node are assume to be ρ̃i = ρ + ∆ρ̂i ∈ Rp, with ∆ = ±1, where ρ and ρ̂i are the
nominal and uncertain parts of the parameters of the ith node, respectively. The interactions of the ith node within the
network are given by the uncertain coupling function g̃i(X) = gi(X) + ∆ĝi(X) : Rn×N

→ Rn; where gi(X) describes the
nominal coupling, and ĝi(X) the uncertain part of the interactions between the ith node and the rest of the network. The
uncertain function f̃i (xi, ρ̃i) = f (xi, ρ) + ∆f̂i(xi, ρ̂i) : Rn×p

→ Rn describes the dynamics of the ith node in isolation
(g̃i(X) = 0 ∈ Rn), i.e., disconnected from the network; with the nonlinear Lipschitz function f (xi, ρ) describing the
dynamics of the node with nominal parameters, and the unknown but bounded function f̂i(xi, ρ̂i) describing the effects
of the parameter uncertainties on the ith node dynamics.

Remark 1. The uncertain dynamical network model in (1) is similar to the one used in [14,15,17,18]. However, our model
differs in that it considers uncertainty in both, dynamical description and coupling structure. Further, we express the
uncertainties as deviations from a nominal description which directly depend on unknown parameters and perturbations.
In this way different situations can be considered, including the case of perturbations which render the coupling structure
not vanishing.

We assume that the perturbations affecting the uncertain dynamical network (1) are small and independent of time,
such that for appropriate choices of the feedback control inputs ui the solutions of each node can be made to remain close
to each other. Then, the trajectories of each individual perturbed node are well approximated by the average trajectory of
the network, s̄ =

1
N

N
j=1 xj, which evolves according to:

˙̄s =
1
N

N
j=1

ẋj =
1
N

N
j=1


f̃j

xj, ρ̃j


+ g̃j(X)


. (2)

For the uncertain network (1) the dynamics of average trajectory becomes

˙̄s =
1
N

N
j=1

f (xj, ρ) +
1
N

N
j=1

gj(X) +
1
N

N
j=1

∆


f̂j(xj, ρ̂j) + ĝj(X)


. (3)

In particular, considering the nominal controlled dynamical network

ẋi = f (xi, ρ) + gi(X) + ui, for i = 1, . . . ,N (4)

we have that synchronization is asymptotically achieve if the state solutions of every node in the network evolve at unison,
in the sense that

lim
t→∞

∥xi − s∥ = 0, for i = 1, . . . ,N (5)

where s ∈ Rn is the synchronized solution.
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The existence of a synchronized solution for (4) depends on the properties of the coupling function gi(X). In particular,
in the case of diffusive coupling, that is, a nominal coupling function such that gi(X) = 0 ∀i when x1 = x2 = · · · = xN , the
nominal controlled dynamical network has a synchronized solution with a dynamical evolution given by

ṡ = f (s, ρ) (6)
where f (·) describes the dynamics of an isolated nominal node.

From (4) and (6) the synchronization error (εi = xi − s) for the nominal network evolves according to:
ε̇i = f (xi, ρ) − f (s, ρ) + gi(X) + ui, for i = 1, . . . ,N. (7)

Then, the synchronization of the nominal dynamical network (4) becomes a control problem, where the objective is to
design local controllers such that (7) becomes asymptotically stable about its zero equilibrium point.

Notice that (3) for a diffusive nominal coupling function and vanishing perturbations when xi = xj ∀i, j, becomes (6).
Then, we can write:

˙̄s = f (s, ρ) +
1
N

N
j=1

gj(S) +
1
N

N
j=1

∆


f̂j(xj, ρ̂j) + ĝj(X)


(8)

where S = (x1, . . . , xN) ∈ Rn×N when xi = xj ∀i, j.

Remark 2. Under potentially non vanishing perturbations the synchronized solutions (6) is no longer possible for
network (1), however, it is reasonable to presume that under small perturbations and appropriate control action the
nearly identical nodes evolve on a near-synchronous state [20] which is well approximated by their average trajectory.
Furthermore, if the perturbations vanish at the synchronized solution, the average trajectory becomes the dynamics of an
isolated node. Then, our average trajectory can be conceived as the synchronized solution of the nominal network plus the
average effects of the perturbations.

From (1) and (2) the dynamical evolution of the synchronization error (ei = xi − s̄) is found to be:

ėi = f̃i(xi, ρ̃i) + g̃i(X) − ˙̄s + ui, for i = 1, . . . ,N. (9)
Then, the synchronization of the uncertain network (1) becomes a control problem, where the objective is to design local

controllers ui, such that the error dynamics (9) becomes robustly stable about the zero equilibrium point.

3. Robust synchronization design

We start our design assuming that the nominal coupling functions, gi(X), are diffusive linear combinations of the network
state variables, such that:

gi(X) = c
N
j=1

aijΓ xj (10)

where the inner coupling matrix, Γ ∈ Rn×n, is a 0–1 matrix describing the way the state variables are coupled between
two connected nodes. The network topology is described by the connectivity matrix, A = {aij} ∈ RN×N , which is a matrix
constructed as follows: if there is a connection between the ith and jth nodes (j ≠ i), the entries aij = aji = 1; otherwise
aij = aji = 0, with the diagonal entries given by aii = −

N
j=1,j≠i aij. The variable c ∈ R is the coupling strength between

the nodes, which is taken to be uniform for the entire network.
If the network is connected such that there are no isolated clusters, the eigenvalues of A are real, nonpositive, and can

be ordered as follows [2]:
0 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN . (11)

Further, the connectivity matrix can be rewritten as A = Ω−1ΛΩ , where Λ = Diag(λ1, . . . , λN) and Ω = [ω1, . . . , ωN ] ∈

RN×N , with ωi = [ωi1, . . . , ωiN ]⊤ ∈ RN i = 1, . . . ,N the eigenvectors of A.
Notice that with A constructed as described above, the nominal coupling functions vanish when synchronization is

achieved, i.e., gi(X) = 0, when xi = xj, ∀i, j. Then, gj(S) = 0, ∀j.
It follows that the synchronization error dynamics in (9) become

ėi = f̄i(xi, ρ̃i) + ḡi(X) + c
N
j=1

aijΓ ej + ui, for i = 1, . . . ,N (12)

where f̄i(xi, ρ̃i) = f (xi, ρ) − f (s, ρ) + ∆


f̂i(xi, ρ̂i) −

1
N

N
j=1 f̂j(xj, ρ̂j)


∈ Rn and ḡi(X) = ∆


ĝi(X) −

1
N

N
j=1 ĝj(X)


∈ Rn.

In what follows, the local controllers ui in (12) are designed such that synchronization, in the sense of (4), is robustly
achieved for two distinct situation: In the first, the perturbations due to uncertainties in the network are assume to be
bounded in terms of the synchronization error, as such, they vanish as the network synchronizes. In the second, we consider
these perturbations to be bounded but not vanishing.
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3.1. Under vanishing perturbations

In this subsection we assume that the uncertain parts of the dynamical network (1) satisfy the following bounds: N
m=1

f̄m (xm, ρ̃m) ωim

 ≤ αi

 N
m=1

emωim

 , and (13)

 N
m=1

ḡm (X) ωim

 ≤

N
p=1

βip

 N
m=1

emωpm

 (14)

for i = 1, . . . ,N , where αi ≥ 0 ∈ R and βip ≥ 0 ∈ R are nonnegative constants.
In this case we have the following result:

Theorem 1. Suppose that (13) and (14) hold. If the local controllers ui are constructed as

ui = −c k Γ ei, for i = 1, . . . ,N (15)

with the controller gain k > 0, satisfying the bound

k >
N(α + β)

c
− δ (16)

where δ = min{|λi|}λi≠0, α = max{αi} and β = N max{βji}. Then, the uncertain dynamical network (1) robustly synchronizes,
in the sense that the zero fixed point of (12) is robustly stable.

Proof. Defining the vector variables e = [e1, . . . , eN ] ∈ Rn×N , f̄ =

f̄1 (·) , . . . , f̄N (·)


∈ Rn×N and ḡ = [ḡ1 (·) , . . . , ḡN (·)] ∈

Rn×N the error dynamics (12) are rewritten as: ė = f̄ (X, ρ) + ḡ(X) + cΓ e (A − K); where ρ = [ρ1, . . . , ρN ] and
K = Diag(k, . . . , k) ∈ RN×N . In the transformed coordinates η = eΩ , the error dynamics become η̇ = f̄ (X, ρ) Ω +

ḡ (X) Ω + cΓ η (Λ − K); where η = [η1, . . . , ηN ] ∈ Rn×N , with ηi = e ωi ∈ Rn; or equivalently,

η̇i = f̄ (X, ρ) ωi + ḡ (X) ωi + c (λi − k) Γ ηi, for i = 1, . . . ,N. (17)

The stability of the error dynamics (12) around its zero equilibrium point is determine using the Lyapunov candidate
function: V =

1
2

N
j=1 η⊤

j ηj, the time derivative of V along the trajectories of (17) is given by

V̇ =

N
j=1

η⊤

j c

λj − k


Γ ηj +

N
j=1

η⊤

j


N

m=1

f̄m (xm, ρ̃m) ωjm


+

N
j=1

η⊤

j


N

m=1

ḡm(X)ωjm


. (18)

The first term on the righthand side of (18) is bounded as:

N
j=1

η⊤

j c

λj − k


Γ ηj ≤

N
j=1

η⊤

j (−γ )ηj ≤ −γ

N
j=1

∥ηj∥
2

where −γ In ≥ c

λj − k


Γ for every j, with γ > 0. Since the eigenvalues of A are all nonpositive the bounds on γ are

−c(|λj| + k)Γ with λj ≠ 0. Letting δ = min{|λj|}λj≠0 the bound becomes γ ≤ c (δ + k). From (14) we have the second
term in the righthand side of (18) bounded as:

N
j=1

η⊤

j

N
m=1

f̄m (xm, ρ̃m) ωjm ≤

N
j=1

η⊤

j αj

 N
m=1

emωjm

 ≤ α

N
j=1

∥ηj∥
2

with α = max{αi}. From (15), it follows that the third term in the righthand side of (18) is bounded as:

N
j=1

η⊤

j

N
m=1

ḡm (X) ωjm ≤

N
j=1

η⊤

j

N
i=1

βji

 N
m=1

emωim

 ≤ β

N
j=1

N
i=1

∥ηj∥ ∥ηi∥

with β = N max{βji}. Then, V̇ can be rewritten as a quadratic function of ∥η∥ = [∥η1∥, . . . , ∥ηN∥]⊤ ∈ RN as:

V̇ ≤ −|η|
⊤Q |η|

where Q is a N × N matrix whose elements are given by

qij =


−β for i ≠ j
−(α + β) + γ for i = j.
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By choosing γ > N(α + β), the matrix Q is positive definite (Q > 0) which means that V̇ < 0. Then, the error dynamics
in the transform coordinates (18) are globally uniformly asymptotically stable about the zero fixed point (η = 0), which
implies that the uncertain dynamical network (1) under assumptions (14) and (15) with the controller (15), achieves robust
synchronization. From the above conditions on γ , the relation in (16) is readily obtained from:

c(δ + k) ≥ γ > N(α + β). � (19)

In a similar way, the following result is obtained directly from the previous theorem.

Corollary 2. For the uncertain dynamical network (1) with no controllers (ui = 0, for all i), assuming that the conditions
on (14) and (15) hold. If the coupling strength satisfies the following criterion

c >
N(α + β)

δ
(20)

where δ = min{|λi|}λi≠0, α = max{αi} and β = N max{βji}. Then, the uncertain dynamical network robustly synchronizes to
the solution s̄(t) described in (2), in the sense of (2).

Proof. From (20), when the controller is removed (k = 0), the criterion for robust synchronization in (19) is obtained
following a similar procedure as in the proof of Theorem 1. �

3.2. Under non-vanishing perturbations

In the case where the perturbations in the network do not vanish at the synchronized state, the bounds on the uncertain
parts of the network cannot be expressed in terms of the synchronization error as in (14) and (15). Instead, we assume that
the perturbations are bounded as follows: N

m=1

f̄m (xm, ρ̃m) ωim

 ≤ ai, and (21)

 N
m=1

ḡm (X) ωim

 ≤ bi (22)

for i = 1, . . . ,N , where ai > 0 ∈ R and bi > 0 ∈ R are small positive constants.
To robustly achieve synchronization under these non-vanishing perturbations, we propose the use of discontinuous local

controllers as described in the following result.

Theorem 3. Suppose that (21) and (22) hold. If the local controllers are constructed as:

ui = −c k Γ ei − µ sgn(eΩ)ω∗

i , for i = 1, . . . ,N (23)

where e = [e1, . . . , eN ] ∈ Rn×N , the matrix Ω ∈ RN×N is such that the connectivity matrix can be rewritten as A = Ω−1ΛΩ ,
with Λ = Diag(λ1, . . . , λN); and ω∗

i ∈ RN is the ith column of the matrix Ω−1. sgn(·) represents the conventional sign function,
sgn(ϵ) = {1, for ϵ > 0; 0, for ϵ = 0; −1, for ϵ < 0}, with sgn(eΩ) = sgn(η) = [sgn(η1), . . . , sgn(ηN)] ∈ Rn×N , with
sgn(ηi) = [sgn(ηi1), . . . , sgn(ηin)]

⊤
∈ Rn. Furthermore, if the smooth k > 0 and discontinuous µ > 0 controller gains are

designed such that

k >
γ

c
− δ, and (24)

µ > a + b (25)

where γ > 0, a = max{ai}, and b = max{bi}. Then, the uncertain dynamical network (1), robustly synchronizes to the solution
s̄ described in (2).

Proof. In terms of the vector variables described above, the error dynamics in (12) under control (23) can be rewritten as:
ė = f̄(X, ρ) + ḡ(X) + cΓ e(A − K) − µ sgn(η)Ω−1. In the transform coordinates η = eΩ , the error dynamics become
η̇ = (f̄(X, ρ) + ḡ(X))Ω − µ sgn(η) + cΓ η(Λ − K), or equivalently:

η̇i = (f̄(X, ρ) + ḡ(X))ωi − µ sgn(ηi) + c(λi − k)Γ ηi, for i = 1, . . . ,N. (26)
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The time derivative of the Lyapunov candidate function, V =
1
2

N
j=1 η⊤

j ηj, along the trajectories of (26) is found to be

V̇ =

N
j=1

η⊤

j c

λj − k


Γ ηj − µ

N
j=1

η⊤

j sgn(ηi) +

N
j=1

η⊤

j


N

m=1

f̄m (xm, ρ̃m) + ḡm(X)


ωjm

≤ −γ

N
j=1

∥ηj∥
2
+ (a + b − µ)

N
j=1

∥ηj∥

where a = max{ai}, b = max{bi}, and as before−γ ≤ c(δ +k)with δ = min{|λj|}λj=0. Then, V̇ < 0 ifµ > a+b and γ > 0,
from which conditions (24) and (25) follow directly. �

4. Numerical simulations

Case 1. Vanishing perturbations:
Consider a dynamical network where each node is a chaotic Chen system given by Chen and Ueta [23]:

ẋ1 = p1(x2 − x1)
ẋ2 = (p3 − p1)x1 − x1x3 + p3x2 (27)
ẋ3 = x1x2 − p2x3

with the nominal parameters p1 = 35, p2 = 3, and p3 = 28. Using (27) as nominal nodes, the uncertain dynamical network
(1) becomes:ẋi1

ẋi2
ẋi3


=

 p̃1(xi2 − xi1)
(p̃3 − p̃1)xi1 − xi1xi3 + p̃3xi2

xi1xi2 − p̃2xi3


+ g̃i(X) + ui, for i = 1, . . . ,N (28)

where the uncertain parameters are p̃i = (1 + ∆0.1)pi (i = 1, 2, 3), and the uncertain component of each node is given by

f̂i(xi, ρ̂i) =

 p̂1(xi2 − xi1)
(p̂3 − p̂1)xi1 − xi1xi3 + p̂3xi2

xi1xi2 − p̂2xi3


. (29)

The uncertain coupling functions are g̃i(X) = (1 + ∆0.1)c
N

j=1 aijΓ xj, that is, the nominal coupling function is gi(X) =

c
N

j=1 aijΓ xj with c = 1 a nominal uniform coupling strength, andA = {aij} a 0–1matrix satisfying the diffusive conditions
such that its eigenvalue spectrum can be ordered as in (11). While the uncertain component of the coupling function for
each node is:

ĝi(X) = ĉ
N
j=1

aijΓ xj. (30)

For simplicity, the internal couplingmatrix is taken to be the identity (Γ = I3), and the connectivitymatrixA is constructed
following the scale-free network model using the algorithm proposed by Wang and Chen [5] for N = 50. That is, we start
with a 50 × 50 matrix of zeros, initially there are three nodes (m0 = 3), then the entries aij = aji = 1, and the diagonal
entries are obtain from aii = −

N
j=1 aij. At each time step a new node is added and is connected to m = 3 of the existing

nodes chosenwith a preferential attachment probabilityΠij =
di
j dj

with di the node degree of the i-th node. Once the nodes
are chosen, the corresponding aij are change to one and the diagonal entries are recalculated. This process is repeated until
the fifty nodes are connected.

For a network constructed as described above the uncertain components of the network (28), satisfies the bounds in
(14) and (15), as both vanish at the synchronized state. Then, in order to satisfy the conditions of Theorem 1, the feedback
controller gain is set to k = 50.

For our numerical simulation each node is initiated with different initial conditions, and their uncertain parameters are
achieved as themultiplication of their nominal values times a randomly selected number of appropriatemagnitude. After an
uncontrolled transitory period, the synchronizing controller is activated at t = 4. As shown in Fig. 1, robust synchronization
is achieved shortly after the controller is activated.

Case 2. Non-vanishing perturbations:
Next, we consider that each node is a chaotic Chua circuit:

ẋ1 = q1(x2 − x1 − h(x1))
ẋ2 = x1 − x2 + x3 (31)
ẋ3 = −q2x2
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Fig. 1. Synchronization on a scale-free network of fifty Chen’s systems under vanishing perturbations using the controllers described in Theorem 1.

where h(x1) = mox1 + ( 1
2 )(m1 −mo)(|x1 + 1| − |x1 − 1|) and the nominal parameters are q1 = 9, q2 = 100/7,mo = −5/7,

m1 = −8/7. As such, the uncertain dynamical network (1) becomes:ẋi1
ẋi2
ẋi3


=

q̃1(xi2 − xi1 − h(xi1)) + ∆d̂1
xi1 − xi2 + xi3 + ∆d̂2

−q̃2xi2 + ∆d̂3

+ g̃i(X) + ui, (32)

for i = 1, . . . ,N . The uncertain component of each node are given by

f̂i(xi, ρ̂i) =

q̂1(xi2 − xi1 − h(xi1)) + d̂1
d̂2

−q̂2xi2 + d̂3

 (33)

where the uncertain parameters are q̃i = (1+∆0.1)qi (i = 1, 2) and d̂j = 0.2 (j = 1, 2, 3) are constant value perturbations
affecting the uncertain nodes. The uncertain coupling functions are given by

g̃i(X) = (1 + ∆0.1)c
N
j=1

aijΓ xj + ∆âiiΓ xi (34)

where c = 1, Γ = I3, and A is a 0–1 diffusive 50 × 50 matrix constructed with the scale-free network model algorithm
described above. Notice that here the uncertain component of the coupling functions has the additional perturbation âii =

0.05 (∀i). Under these perturbations, the uncertain parts of the uncertain network (33) do not vanish at the synchronized
solution. However, since the perturbations remain bounded, the bounds in (21) and (22) are satisfied. Then, a discontinuous
local controller (23) can be designed to robustly synchronize the uncertain network to the average trajectory of the network.
The synchronizing controller is designed with smooth and discontinuous gains set to k = 10 and µ = 5, such that the
conditions in (24) and (25) of Theorem 3 are satisfied.

The numerical simulations for this case were carried out in a similar way to the previous case, with different
initial conditions with the uncertain parameters achieved through random number of appropriate magnitude. After an
uncontrolled transitory period the discontinuous synchronizing controller was applied at t = 40. As shown in Fig. 2, robust
synchronization is achieved even in the present of these non-vanishing perturbation.

5. Conclusion

Wepropose a solution to the synchronization problem for a class of uncertain dynamical networks, inwhich uncertainties
are present in both their node descriptions and their interconnections. In particular, we design robust controllers for two
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Fig. 2. Synchronization on a scale-free network of fifty Chua’s circuits under non-vanishing perturbations using the controllers described in Theorem 3.

scenarios: In the first, uncertainties on both node dynamics and coupling structure vanish at the synchronized solution. In
this case we have that the average trajectory of the network coincides with the dynamical evolution of an isolated nominal
node, then local smooth feedback controllers can robustly synchronize the entire network. We illustrate this result using a
scale-free network of Chen systemswithmultiplicative uncertainties in some of the system’s parameters and in the uniform
coupling strength. For these particular choices, we have vanishing perturbations at the synchronized solution, then our
first Theorem is directly applicable. Complementary, in our second scenario, perturbations are nonvanishing. As such, the
dynamical evolution of a nominal node is not at synchronized solution. However, we consider that all nodes are nearly
identical, e.g. under the effects these perturbations, even potentially nonvanishing ones, the trajectories of the dynamical
nodes remain close to each other. Under these conditions, an average trajectory is a reasonable objective for synchronization.
For this particular situation, we propose a discontinuous feedback controller to robustly synchronize the network to its
average trajectory. To illustrate the effectiveness of our design we use a network of Chua’s circuit with multiplicative and
additive uncertainties in some of the system’s parameters and in the diagonal elements of the coupling matrix. With these
type of perturbations the nodes in the network remain nearly identical and the results of our second Theorem are applicable.

Although the results presented above are restricted to dynamical networks with nearly identical uncertain nodes with
possibly nonvanishing perturbations, there are many potential real-world applications, for example, these results can be
applied to the consensus problem for automated vehicles [24]. Another potential application is to describe the coordinated
operation of simplified cell models [25]. Research efforts are currently underway to expand the applicability of our designs
to a wider type of dynamical networks, however those results will be reported elsewhere.
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